1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-04-07 18:30:55 +03:00
occt/src/Geom2dGcc/Geom2dGcc_FunctionTanCuCuOnCu.cxx
ski 9775fa6110 0026937: Eliminate NO_CXX_EXCEPTION macro support
Macro NO_CXX_EXCEPTION was removed from code.
Method Raise() was replaced by explicit throw statement.
Method Standard_Failure::Caught() was replaced by normal C++mechanism of exception transfer.
Method Standard_Failure::Caught() is deprecated now.
Eliminated empty constructors.
Updated samples.
Eliminate empty method ChangeValue from NCollection_Map class.
Removed not operable methods from NCollection classes.
2017-02-02 16:35:54 +03:00

419 lines
12 KiB
C++

// Created on: 1992-01-20
// Created by: Remi GILET
// Copyright (c) 1992-1999 Matra Datavision
// Copyright (c) 1999-2014 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
#include <ElCLib.hxx>
#include <Geom2dAdaptor_Curve.hxx>
#include <Geom2dGcc_CurveTool.hxx>
#include <Geom2dGcc_FunctionTanCuCuOnCu.hxx>
#include <gp_Circ2d.hxx>
#include <gp_Lin2d.hxx>
#include <gp_Pnt2d.hxx>
#include <gp_Vec2d.hxx>
#include <math_Matrix.hxx>
#include <Standard_ConstructionError.hxx>
void Geom2dGcc_FunctionTanCuCuOnCu::
InitDerivative(const math_Vector& X,
gp_Pnt2d& Point1,
gp_Pnt2d& Point2,
gp_Pnt2d& Point3,
gp_Vec2d& Tan1,
gp_Vec2d& Tan2,
gp_Vec2d& Tan3,
gp_Vec2d& D21,
gp_Vec2d& D22,
gp_Vec2d& D23) {
switch (TheType) {
case Geom2dGcc_CuCuOnCu:
{
Geom2dGcc_CurveTool::D2(Curv1,X(1),Point1,Tan1,D21);
Geom2dGcc_CurveTool::D2(Curv2,X(2),Point2,Tan2,D22);
Geom2dGcc_CurveTool::D2(Curvon,X(3),Point3,Tan3,D23);
}
break;
case Geom2dGcc_CiCuOnCu:
{
ElCLib::D2(X(1),Circ1,Point1,Tan1,D21);
Geom2dGcc_CurveTool::D2(Curv2,X(2),Point2,Tan2,D22);
Geom2dGcc_CurveTool::D2(Curvon,X(3),Point3,Tan3,D23);
}
break;
case Geom2dGcc_LiCuOnCu:
{
ElCLib::D1(X(1),Lin1,Point1,Tan1);
D21 = gp_Vec2d(0.,0.);
Geom2dGcc_CurveTool::D2(Curv2,X(2),Point2,Tan2,D22);
Geom2dGcc_CurveTool::D2(Curvon,X(3),Point3,Tan3,D23);
}
break;
case Geom2dGcc_CuPtOnCu:
{
Geom2dGcc_CurveTool::D2(Curv1,X(1),Point1,Tan1,D21);
Geom2dGcc_CurveTool::D2(Curvon,X(3),Point3,Tan3,D23);
Point2 = Pnt2;
Tan2 = gp_Vec2d(0.,0.);
D22 = gp_Vec2d(0.,0.);
}
break;
case Geom2dGcc_CuCuOnCi:
{
Geom2dGcc_CurveTool::D2(Curv1,X(1),Point1,Tan1,D21);
Geom2dGcc_CurveTool::D2(Curv2,X(2),Point2,Tan2,D22);
ElCLib::D2(X(3),Circon,Point3,Tan3,D23);
}
break;
case Geom2dGcc_CiCuOnCi:
{
ElCLib::D2(X(1),Circ1,Point1,Tan1,D21);
Geom2dGcc_CurveTool::D2(Curv2,X(2),Point2,Tan2,D22);
ElCLib::D2(X(3),Circon,Point3,Tan3,D23);
}
break;
case Geom2dGcc_LiCuOnCi:
{
ElCLib::D1(X(1),Lin1,Point1,Tan1);
D21 = gp_Vec2d(0.,0.);
Geom2dGcc_CurveTool::D2(Curv2,X(2),Point2,Tan2,D22);
ElCLib::D2(X(3),Circon,Point3,Tan3,D23);
}
break;
case Geom2dGcc_CuPtOnCi:
{
Geom2dGcc_CurveTool::D2(Curv1,X(1),Point1,Tan1,D21);
Point2 = Pnt2;
Tan2 = gp_Vec2d(0.,0.);
D22 = gp_Vec2d(0.,0.);
ElCLib::D2(X(3),Circon,Point3,Tan3,D23);
}
break;
case Geom2dGcc_CuCuOnLi:
{
Geom2dGcc_CurveTool::D2(Curv1,X(1),Point1,Tan1,D21);
Geom2dGcc_CurveTool::D2(Curv2,X(2),Point2,Tan2,D22);
ElCLib::D1(X(3),Linon,Point3,Tan3);
D23 = gp_Vec2d(0.,0.);
}
break;
case Geom2dGcc_CiCuOnLi:
{
ElCLib::D2(X(1),Circ1,Point1,Tan1,D21);
Geom2dGcc_CurveTool::D2(Curv2,X(2),Point2,Tan2,D22);
ElCLib::D1(X(3),Linon,Point3,Tan3);
D23 = gp_Vec2d(0.,0.);
}
break;
case Geom2dGcc_LiCuOnLi:
{
ElCLib::D1(X(1),Lin1,Point1,Tan1);
Geom2dGcc_CurveTool::D2(Curv2,X(2),Point2,Tan2,D22);
D21 = gp_Vec2d(0.,0.);
ElCLib::D1(X(3),Linon,Point3,Tan3);
D23 = gp_Vec2d(0.,0.);
}
break;
case Geom2dGcc_CuPtOnLi:
{
Geom2dGcc_CurveTool::D2(Curv1,X(1),Point1,Tan1,D21);
Point2 = Pnt2;
Tan2 = gp_Vec2d(0.,0.);
D22 = gp_Vec2d(0.,0.);
ElCLib::D1(X(3),Linon,Point3,Tan3);
D23 = gp_Vec2d(0.,0.);
}
break;
default:
{
throw Standard_ConstructionError();
}
}
}
Geom2dGcc_FunctionTanCuCuOnCu::
Geom2dGcc_FunctionTanCuCuOnCu(const Geom2dAdaptor_Curve& C1 ,
const Geom2dAdaptor_Curve& C2 ,
const Geom2dAdaptor_Curve& C3 ,
const Standard_Real Rad ) {
Curv1 = C1;
Curv2 = C2;
Curvon = C3;
FirstRad = Rad;
TheType = Geom2dGcc_CuCuOnCu;
}
Geom2dGcc_FunctionTanCuCuOnCu::
Geom2dGcc_FunctionTanCuCuOnCu(const gp_Circ2d& C1 ,
const Geom2dAdaptor_Curve& C2 ,
const Geom2dAdaptor_Curve& C3 ,
const Standard_Real Rad ) {
Circ1 = C1;
Curv2 = C2;
Curvon = C3;
FirstRad = Rad;
TheType = Geom2dGcc_CiCuOnCu;
}
Geom2dGcc_FunctionTanCuCuOnCu::
Geom2dGcc_FunctionTanCuCuOnCu(const gp_Lin2d& L1 ,
const Geom2dAdaptor_Curve& C2 ,
const Geom2dAdaptor_Curve& C3 ,
const Standard_Real Rad ) {
Lin1 = L1;
Curv2 = C2;
Curvon = C3;
FirstRad = Rad;
TheType = Geom2dGcc_LiCuOnCu;
}
Geom2dGcc_FunctionTanCuCuOnCu::
Geom2dGcc_FunctionTanCuCuOnCu(const Geom2dAdaptor_Curve& C1 ,
const gp_Pnt2d& P2 ,
const Geom2dAdaptor_Curve& C3 ,
const Standard_Real Rad ) {
Curv1 = C1;
Pnt2 = P2;
Curvon = C3;
FirstRad = Rad;
TheType = Geom2dGcc_CuPtOnCu;
}
Geom2dGcc_FunctionTanCuCuOnCu::
Geom2dGcc_FunctionTanCuCuOnCu(const Geom2dAdaptor_Curve& C1 ,
const Geom2dAdaptor_Curve& C2 ,
const gp_Lin2d& OnLi ,
const Standard_Real Rad ) {
Curv1 = C1;
Curv2 = C2;
Linon = OnLi;
FirstRad = Rad;
TheType = Geom2dGcc_CuCuOnLi;
}
Geom2dGcc_FunctionTanCuCuOnCu::
Geom2dGcc_FunctionTanCuCuOnCu(const gp_Circ2d& C1 ,
const Geom2dAdaptor_Curve& C2 ,
const gp_Lin2d& OnLi ,
const Standard_Real Rad ) {
Circ1 = C1;
Curv2 = C2;
Linon = OnLi;
FirstRad = Rad;
TheType = Geom2dGcc_CiCuOnLi;
}
Geom2dGcc_FunctionTanCuCuOnCu::
Geom2dGcc_FunctionTanCuCuOnCu(const gp_Lin2d& L1 ,
const Geom2dAdaptor_Curve& C2 ,
const gp_Lin2d& OnLi ,
const Standard_Real Rad ) {
Lin1 = L1;
Curv2 = C2;
Linon = OnLi;
FirstRad = Rad;
TheType = Geom2dGcc_LiCuOnLi;
}
Geom2dGcc_FunctionTanCuCuOnCu::
Geom2dGcc_FunctionTanCuCuOnCu(const Geom2dAdaptor_Curve& C1 ,
const gp_Pnt2d& P2 ,
const gp_Lin2d& OnLi ,
const Standard_Real Rad ) {
Curv1 = C1;
Pnt2 = P2;
Linon = OnLi;
FirstRad = Rad;
TheType = Geom2dGcc_CuPtOnLi;
}
Geom2dGcc_FunctionTanCuCuOnCu::
Geom2dGcc_FunctionTanCuCuOnCu(const Geom2dAdaptor_Curve& C1 ,
const Geom2dAdaptor_Curve& C2 ,
const gp_Circ2d& OnCi ,
const Standard_Real Rad ) {
Curv1 = C1;
Curv2 = C2;
Circon = OnCi;
FirstRad = Rad;
TheType = Geom2dGcc_CuCuOnCi;
}
Geom2dGcc_FunctionTanCuCuOnCu::
Geom2dGcc_FunctionTanCuCuOnCu(const gp_Circ2d& C1 ,
const Geom2dAdaptor_Curve& C2 ,
const gp_Circ2d& OnCi ,
const Standard_Real Rad ) {
Circ1 = C1;
Curv2 = C2;
Circon = OnCi;
FirstRad = Rad;
TheType = Geom2dGcc_CuCuOnCi;
}
Geom2dGcc_FunctionTanCuCuOnCu::
Geom2dGcc_FunctionTanCuCuOnCu(const gp_Lin2d& L1 ,
const Geom2dAdaptor_Curve& C2 ,
const gp_Circ2d& OnCi ,
const Standard_Real Rad ) {
Lin1 = L1;
Curv2 = C2;
Circon = OnCi;
FirstRad = Rad;
TheType = Geom2dGcc_LiCuOnCi;
}
Geom2dGcc_FunctionTanCuCuOnCu::
Geom2dGcc_FunctionTanCuCuOnCu(const Geom2dAdaptor_Curve& C1 ,
const gp_Pnt2d& P2 ,
const gp_Circ2d& OnCi ,
const Standard_Real Rad ) {
Curv1 = C1;
Pnt2 = P2;
Circon = OnCi;
FirstRad = Rad;
TheType = Geom2dGcc_CuPtOnCi;
}
Standard_Integer Geom2dGcc_FunctionTanCuCuOnCu::
NbVariables () const { return 4; }
Standard_Integer Geom2dGcc_FunctionTanCuCuOnCu::
NbEquations () const { return 4; }
Standard_Boolean Geom2dGcc_FunctionTanCuCuOnCu::
Value (const math_Vector& X ,
math_Vector& Fval ) {
gp_Pnt2d Point1,Point2,Point3;
gp_Vec2d Tan1,Tan2,Tan3,D21,D22,D23;
InitDerivative(X,Point1,Point2,Point3,Tan1,Tan2,Tan3,D21,D22,D23);
//pipj (normes) et PiPj (non Normes).
gp_Vec2d P1P2(Point1,Point2);
gp_Vec2d P2P3(Point2,Point3);
gp_Vec2d P3P1(Point3,Point1);
gp_Vec2d p1p2,p2p3,p3p1;
// if (FirstRad < 1.) {FirstRad = 1.; }
p1p2 = P1P2/FirstRad;
p2p3 = P2P3/FirstRad;
p3p1 = P3P1/FirstRad;
//norme des Tani.
Standard_Real nnor1 = Tan1.Magnitude();
Standard_Real nnor2 = Tan2.Magnitude();
// Fonctions Fui.
// ==============
Fval(1) = (P3P1.Dot(P3P1)-X(4)*X(4))/(FirstRad*FirstRad);
Fval(2) = (P2P3.Dot(P2P3)-X(4)*X(4))/(FirstRad*FirstRad);
Fval(3) = P3P1.Dot(Tan1)/(nnor1*FirstRad);
Fval(4) = P2P3.Dot(Tan2)/(nnor2*FirstRad);
return Standard_True;
}
Standard_Boolean Geom2dGcc_FunctionTanCuCuOnCu::
Derivatives (const math_Vector& X ,
math_Matrix& Deriv ) {
gp_Pnt2d Point1,Point2,Point3;
gp_Vec2d Tan1,Tan2,Tan3;
gp_Vec2d D21,D22,D23;
InitDerivative(X,Point1,Point2,Point3,Tan1,Tan2,Tan3,D21,D22,D23);
//pipj (normes) et PiPj (non Normes).
gp_Vec2d P1P2(Point1,Point2);
gp_Vec2d P2P3(Point2,Point3);
gp_Vec2d P3P1(Point3,Point1);
gp_Vec2d p1p2,p2p3,p3p1;
// if (FirstRad < 1.) {FirstRad = 1.; }
p1p2 = P1P2/FirstRad;
p2p3 = P2P3/FirstRad;
p3p1 = P3P1/FirstRad;
//normales au courbes normees Nori et non nromees nori et norme des nori.
Standard_Real nnor1 = Tan1.Magnitude();
Standard_Real nnor2 = Tan2.Magnitude();
// Derivees dFui/uj 1 <= ui <= 3 , 1 <= uj <= 3
// =============================================
Deriv(1,1) = 2.*Tan1.Dot(P3P1)/(FirstRad*FirstRad);
Deriv(1,2) = 0.;
Deriv(1,3) = -2.*Tan3.Dot(P3P1)/(FirstRad*FirstRad);
Deriv(1,4) = -2.*X(4)/(FirstRad*FirstRad);
Deriv(2,1) = 0.;
Deriv(2,2) = -2.*Tan2.Dot(P2P3)/(FirstRad*FirstRad);
Deriv(2,3) = 2.*Tan3.Dot(P2P3)/(FirstRad*FirstRad);
Deriv(2,4) = -2.*X(4)/(FirstRad*FirstRad);
Deriv(3,1) = (P3P1.Dot(D21)+Tan1.Dot(Tan1))/(FirstRad*nnor1)-
(P3P1.Dot(Tan1)*D21.Dot(Tan1))/(FirstRad*nnor1*nnor1*nnor1);
Deriv(3,2) = 0.;
Deriv(3,3) = -(Tan3.Dot(Tan1))/(FirstRad*nnor1);
Deriv(3,4) = 0.;
Deriv(4,1) = 0.;
Deriv(4,2) = (P2P3.Dot(D22)-Tan2.Dot(Tan2))/(FirstRad*nnor2)-
P2P3.Dot(Tan2)*Tan2.Dot(D22)/(FirstRad*nnor2*nnor2*nnor2);
Deriv(4,3) = Tan3.Dot(Tan2)/(FirstRad*nnor1);
Deriv(4,4) = 0.;
return Standard_True;
}
Standard_Boolean Geom2dGcc_FunctionTanCuCuOnCu::
Values (const math_Vector& X ,
math_Vector& Fval ,
math_Matrix& Deriv ) {
gp_Pnt2d Point1,Point2,Point3;
gp_Vec2d Tan1,Tan2,Tan3;
gp_Vec2d D21,D22,D23;
InitDerivative(X,Point1,Point2,Point3,Tan1,Tan2,Tan3,D21,D22,D23);
//pipj (normes) et PiPj (non Normes).
gp_Vec2d P1P2(Point1,Point2);
gp_Vec2d P2P3(Point2,Point3);
gp_Vec2d P3P1(Point3,Point1);
gp_Vec2d p1p2,p2p3,p3p1;
// if (FirstRad < 1.) {FirstRad = 1.; }
p1p2 = P1P2/FirstRad;
p2p3 = P2P3/FirstRad;
p3p1 = P3P1/FirstRad;
//normales au courbes normees Nori et non nromees nori et norme des nori.
Standard_Real nnor1 = Tan1.Magnitude();
Standard_Real nnor2 = Tan2.Magnitude();
// Fonctions Fui.
// ==============
Fval(1) = (P3P1.Dot(P3P1)-X(4)*X(4))/(FirstRad*FirstRad);
Fval(2) = (P2P3.Dot(P2P3)-X(4)*X(4))/(FirstRad*FirstRad);
Fval(3) = P3P1.Dot(Tan1)/(nnor1*FirstRad);
Fval(4) = P2P3.Dot(Tan2)/(nnor2*FirstRad);
// Derivees dFui/uj 1 <= ui <= 3 , 1 <= uj <= 3
// =============================================
Deriv(1,1) = 2.*Tan1.Dot(P3P1)/(FirstRad*FirstRad);
Deriv(1,2) = 0.;
Deriv(1,3) = -2.*Tan3.Dot(P3P1)/(FirstRad*FirstRad);
Deriv(1,4) = -2.*X(4)/(FirstRad*FirstRad);
Deriv(2,1) = 0.;
Deriv(2,2) = -2.*Tan2.Dot(P2P3)/(FirstRad*FirstRad);
Deriv(2,3) = 2.*Tan3.Dot(P2P3)/(FirstRad*FirstRad);
Deriv(2,4) = -2.*X(4)/(FirstRad*FirstRad);
Deriv(3,1) = (P3P1.Dot(D21)+Tan1.Dot(Tan1))/(FirstRad*nnor1)-
(P3P1.Dot(Tan1)*D21.Dot(Tan1))/(FirstRad*nnor1*nnor1*nnor1);
Deriv(3,2) = 0.;
Deriv(3,3) = -(Tan3.Dot(Tan1))/(FirstRad*nnor1);
Deriv(3,4) = 0.;
Deriv(4,1) = 0.;
Deriv(4,2) = (P2P3.Dot(D22)-Tan2.Dot(Tan2))/(FirstRad*nnor2)-
P2P3.Dot(Tan2)*Tan2.Dot(D22)/(FirstRad*nnor2*nnor2*nnor2);
Deriv(4,3) = Tan3.Dot(Tan2)/(FirstRad*nnor1);
Deriv(4,4) = 0.;
return Standard_True;
}