1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-04-04 18:06:22 +03:00
occt/src/LProp/LProp_SLProps.gxx
kgv 9fd2d2c382 0028838: Configuration - undefine macros coming from X11 headers in place of collision
The macros Status, Convex, Opposite, FillSolid (coming from X11 headers)
are now undefined in place of definition of methods with same name in OCCT headers.
The usage of variables with name Status is now avoided.

GL_GLEXT_LEGACY is now defined only if not already defined.

The macros AddPrinter (coming from WinAPI headers) is now undefined
within Message_Messenger class definition having method with the same name.
CurrentDirectory macro is now undefined in OSD_Process.hxx.
2017-06-15 15:27:36 +03:00

539 lines
13 KiB
Plaintext

// Copyright (c) 1995-1999 Matra Datavision
// Copyright (c) 1999-2014 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
#include <LProp_Status.hxx>
#include <LProp_NotDefined.hxx>
#include <Standard_OutOfRange.hxx>
#include <Standard_DomainError.hxx>
#include <CSLib.hxx>
#include <CSLib_DerivativeStatus.hxx>
#include <CSLib_NormalStatus.hxx>
#include <TColgp_Array2OfVec.hxx>
#include <math_DirectPolynomialRoots.hxx>
static const Standard_Real MinStep = 1.0e-7;
static Standard_Boolean IsTangentDefined (LProp_SLProps& SProp,
const Standard_Integer cn,
const Standard_Real linTol,
const Standard_Integer Derivative,
Standard_Integer& Order,
LProp_Status& theStatus)
{
Standard_Real Tol = linTol * linTol;
gp_Vec V[2];
Order = 0;
while (Order < 3)
{
Order++;
if(cn >= Order)
{
switch(Order)
{
case 1:
V[0] = SProp.D1U();
V[1] = SProp.D1V();
break;
case 2:
V[0] = SProp.D2U();
V[1] = SProp.D2V();
break;
}//switch(Order)
if(V[Derivative].SquareMagnitude() > Tol)
{
theStatus = LProp_Defined;
return Standard_True;
}
}//if(cn >= Order)
else
{
theStatus = LProp_Undefined;
return Standard_False;
}
}
return Standard_False;
}
LProp_SLProps::LProp_SLProps (const Surface& S,
const Standard_Real U,
const Standard_Real V,
const Standard_Integer N,
const Standard_Real Resolution)
: mySurf(S),myDerOrder(N), myCN(4), // (Tool::Continuity(S)),
myLinTol(Resolution)
{
Standard_OutOfRange_Raise_if(N < 0 || N > 2,
"LProp_SLProps::LProp_SLProps()");
SetParameters(U, V);
}
LProp_SLProps::LProp_SLProps (const Surface& S,
const Standard_Integer N,
const Standard_Real Resolution)
: mySurf(S), myU(RealLast()), myV(RealLast()), myDerOrder(N),
myCN(4), // (Tool::Continuity(S))
myLinTol(Resolution),
myUTangentStatus (LProp_Undecided),
myVTangentStatus (LProp_Undecided),
myNormalStatus (LProp_Undecided),
myCurvatureStatus(LProp_Undecided)
{
Standard_OutOfRange_Raise_if(N < 0 || N > 2,
"LProp_SLProps::LProp_SLProps()");
}
LProp_SLProps::LProp_SLProps (const Standard_Integer N,
const Standard_Real Resolution)
: myU(RealLast()), myV(RealLast()), myDerOrder(N), myCN(0),
myLinTol(Resolution),
myUTangentStatus (LProp_Undecided),
myVTangentStatus (LProp_Undecided),
myNormalStatus (LProp_Undecided),
myCurvatureStatus(LProp_Undecided)
{
Standard_OutOfRange_Raise_if(N < 0 || N > 2,
"LProp_SLProps::LProp_SLProps() bad level");
}
void LProp_SLProps::SetSurface (const Surface& S )
{
mySurf = S;
myCN = 4; // =Tool::Continuity(S);
}
void LProp_SLProps::SetParameters (const Standard_Real U,
const Standard_Real V)
{
myU = U;
myV = V;
switch (myDerOrder)
{
case 0:
Tool::Value(mySurf, myU, myV, myPnt);
break;
case 1:
Tool::D1(mySurf, myU, myV, myPnt, myD1u, myD1v);
break;
case 2:
Tool::D2(mySurf, myU, myV, myPnt, myD1u, myD1v, myD2u, myD2v, myDuv);
break;
}
myUTangentStatus = LProp_Undecided;
myVTangentStatus = LProp_Undecided;
myNormalStatus = LProp_Undecided;
myCurvatureStatus = LProp_Undecided;
}
const gp_Pnt& LProp_SLProps::Value() const
{
return myPnt;
}
const gp_Vec& LProp_SLProps::D1U()
{
if (myDerOrder < 1)
{
myDerOrder =1;
Tool::D1(mySurf,myU,myV,myPnt,myD1u,myD1v);
}
return myD1u;
}
const gp_Vec& LProp_SLProps::D1V()
{
if (myDerOrder < 1)
{
myDerOrder =1;
Tool::D1(mySurf,myU,myV,myPnt,myD1u,myD1v);
}
return myD1v;
}
const gp_Vec& LProp_SLProps::D2U()
{
if (myDerOrder < 2)
{
myDerOrder =2;
Tool::D2(mySurf,myU,myV,myPnt,myD1u,myD1v,myD2u,myD2v,myDuv);
}
return myD2u;
}
const gp_Vec& LProp_SLProps::D2V()
{
if (myDerOrder < 2)
{
myDerOrder =2;
Tool::D2(mySurf,myU,myV,myPnt,myD1u,myD1v,myD2u,myD2v,myDuv);
}
return myD2v;
}
const gp_Vec& LProp_SLProps::DUV()
{
if (myDerOrder < 2)
{
myDerOrder =2;
Tool::D2(mySurf,myU,myV,myPnt,myD1u,myD1v,myD2u,myD2v,myDuv);
}
return myDuv;
}
Standard_Boolean LProp_SLProps::IsTangentUDefined ()
{
if (myUTangentStatus == LProp_Undefined)
return Standard_False;
else if (myUTangentStatus >= LProp_Defined)
return Standard_True;
// uTangentStatus == Lprop_Undecided
// we have to calculate the first non null U derivative
return IsTangentDefined(*this, myCN, myLinTol, 0,
mySignificantFirstDerivativeOrderU, myUTangentStatus);
}
void LProp_SLProps::TangentU (gp_Dir& D)
{
if(!IsTangentUDefined())
throw LProp_NotDefined();
if(mySignificantFirstDerivativeOrderU == 1)
D = gp_Dir(myD1u);
else
{
const Standard_Real DivisionFactor = 1.e-3;
Standard_Real anUsupremum, anUinfium;
Standard_Real anVsupremum, anVinfium;
Tool::Bounds(mySurf,anUinfium,anVinfium,anUsupremum,anVsupremum);
Standard_Real du;
if((anUsupremum >= RealLast()) || (anUinfium <= RealFirst()))
du = 0.0;
else
du = anUsupremum-anUinfium;
const Standard_Real aDeltaU = Max(du*DivisionFactor,MinStep);
gp_Vec V = myD2u;
Standard_Real u;
if(myU-anUinfium < aDeltaU)
u = myU+aDeltaU;
else
u = myU-aDeltaU;
gp_Pnt P1, P2;
Tool::Value(mySurf, Min(myU, u),myV,P1);
Tool::Value(mySurf, Max(myU, u),myV,P2);
gp_Vec V1(P1,P2);
Standard_Real aDirFactor = V.Dot(V1);
if(aDirFactor < 0.0)
V = -V;
D = gp_Dir(V);
}
}
Standard_Boolean LProp_SLProps::IsTangentVDefined ()
{
if (myVTangentStatus == LProp_Undefined)
return Standard_False;
else if (myVTangentStatus >= LProp_Defined)
return Standard_True;
// vTangentStatus == Lprop_Undecided
// we have to calculate the first non null V derivative
return IsTangentDefined(*this, myCN, myLinTol, 1,
mySignificantFirstDerivativeOrderV, myVTangentStatus);
}
void LProp_SLProps::TangentV (gp_Dir& D)
{
if(!IsTangentVDefined())
throw LProp_NotDefined();
if(mySignificantFirstDerivativeOrderV == 1)
D = gp_Dir(myD1v);
else
{
const Standard_Real DivisionFactor = 1.e-3;
Standard_Real anUsupremum, anUinfium;
Standard_Real anVsupremum, anVinfium;
Tool::Bounds(mySurf,anUinfium,anVinfium,anUsupremum,anVsupremum);
Standard_Real dv;
if((anVsupremum >= RealLast()) || (anVinfium <= RealFirst()))
dv = 0.0;
else
dv = anVsupremum-anVinfium;
const Standard_Real aDeltaV = Max(dv*DivisionFactor,MinStep);
gp_Vec V = myD2v;
Standard_Real v;
if(myV-anVinfium < aDeltaV)
v = myV+aDeltaV;
else
v = myV-aDeltaV;
gp_Pnt P1, P2;
Tool::Value(mySurf, myU, Min(myV, v),P1);
Tool::Value(mySurf, myU, Max(myV, v),P2);
gp_Vec V1(P1,P2);
Standard_Real aDirFactor = V.Dot(V1);
if(aDirFactor < 0.0)
V = -V;
D = gp_Dir(V);
}
}
Standard_Boolean LProp_SLProps::IsNormalDefined()
{
if (myNormalStatus == LProp_Undefined)
return Standard_False;
else if (myNormalStatus >= LProp_Defined)
return Standard_True;
// status = UnDecided
// first try the standard computation of the normal.
CSLib_DerivativeStatus aStatus = CSLib_Done;
CSLib::Normal(myD1u, myD1v, myLinTol, aStatus, myNormal);
if (aStatus == CSLib_Done)
{
myNormalStatus = LProp_Computed;
return Standard_True;
}
// else solve the degenerated case only if continuity >= 2
myNormalStatus = LProp_Undefined;
return Standard_False;
}
const gp_Dir& LProp_SLProps::Normal ()
{
if(!IsNormalDefined())
{
throw LProp_NotDefined();
}
return myNormal;
}
Standard_Boolean LProp_SLProps::IsCurvatureDefined ()
{
if (myCurvatureStatus == LProp_Undefined)
return Standard_False;
else if (myCurvatureStatus >= LProp_Defined)
return Standard_True;
if(myCN < 2)
{
myCurvatureStatus = LProp_Undefined;
return Standard_False;
}
// status = UnDecided
if (!IsNormalDefined())
{
myCurvatureStatus = LProp_Undefined;
return Standard_False;
}
// pour eviter un plantage dans le cas du caro pointu
// en fait on doit pouvoir calculer les courbure
// avoir
if(!IsTangentUDefined() || !IsTangentVDefined())
{
myCurvatureStatus = LProp_Undefined;
return Standard_False;
}
// here we compute the curvature features of the surface
gp_Vec Norm (myNormal);
Standard_Real E = myD1u.SquareMagnitude();
Standard_Real F = myD1u.Dot(myD1v);
Standard_Real G = myD1v.SquareMagnitude();
if(myDerOrder < 2)
this->D2U();
Standard_Real L = Norm.Dot(myD2u);
Standard_Real M = Norm.Dot(myDuv);
Standard_Real N = Norm.Dot(myD2v);
Standard_Real A = E * M - F * L;
Standard_Real B = E * N - G * L;
Standard_Real C = F * N - G * M;
Standard_Real MaxABC = Max(Max(Abs(A),Abs(B)),Abs(C));
if (MaxABC < RealEpsilon()) // ombilic
{
myMinCurv = N / G;
myMaxCurv = myMinCurv;
myDirMinCurv = gp_Dir (myD1u);
myDirMaxCurv = gp_Dir (myD1u.Crossed(Norm));
myMeanCurv = myMinCurv; // (Cmin + Cmax) / 2.
myGausCurv = myMinCurv * myMinCurv; // (Cmin * Cmax)
myCurvatureStatus = LProp_Computed;
return Standard_True;
}
A = A / MaxABC;
B = B / MaxABC;
C = C / MaxABC;
Standard_Real Curv1, Curv2, Root1, Root2;
gp_Vec VectCurv1, VectCurv2;
if (Abs(A) > RealEpsilon())
{
math_DirectPolynomialRoots Root (A, B, C);
if(Root.NbSolutions() != 2)
{
myCurvatureStatus = LProp_Undefined;
return Standard_False;
}
else
{
Root1 = Root.Value(1);
Root2 = Root.Value(2);
Curv1 = ((L * Root1 + 2. * M) * Root1 + N) /
((E * Root1 + 2. * F) * Root1 + G);
Curv2 = ((L * Root2 + 2. * M) * Root2 + N) /
((E * Root2 + 2. * F) * Root2 + G);
VectCurv1 = Root1 * myD1u + myD1v;
VectCurv2 = Root2 * myD1u + myD1v;
}
}
else if (Abs(C) > RealEpsilon())
{
math_DirectPolynomialRoots Root(C, B, A);
if((Root.NbSolutions() != 2))
{
myCurvatureStatus = LProp_Undefined;
return Standard_False;
}
else
{
Root1 = Root.Value(1);
Root2 = Root.Value(2);
Curv1 = ((N * Root1 + 2. * M) * Root1 + L) /
((G * Root1 + 2. * F) * Root1 + E);
Curv2 = ((N * Root2 + 2. * M) * Root2 + L) /
((G * Root2 + 2. * F) * Root2 + E);
VectCurv1 = myD1u + Root1 * myD1v;
VectCurv2 = myD1u + Root2 * myD1v;
}
}
else
{
Curv1 = L / E;
Curv2 = N / G;
VectCurv1 = myD1u;
VectCurv2 = myD1v;
}
if (Curv1 < Curv2)
{
myMinCurv = Curv1;
myMaxCurv = Curv2;
myDirMinCurv = gp_Dir (VectCurv1);
myDirMaxCurv = gp_Dir (VectCurv2);
}
else
{
myMinCurv = Curv2;
myMaxCurv = Curv1;
myDirMinCurv = gp_Dir (VectCurv2);
myDirMaxCurv = gp_Dir (VectCurv1);
}
myMeanCurv = ((N * E) - (2. * M * F) + (L * G)) // voir Farin p.282
/ (2. * ((E * G) - (F * F)));
myGausCurv = ((L * N) - (M * M))
/ ((E * G) - (F * F));
myCurvatureStatus = LProp_Computed;
return Standard_True;
}
Standard_Boolean LProp_SLProps::IsUmbilic ()
{
if(!IsCurvatureDefined())
throw LProp_NotDefined();
return Abs(myMaxCurv - myMinCurv) < Abs(Epsilon(myMaxCurv));
}
Standard_Real LProp_SLProps::MaxCurvature ()
{
if(!IsCurvatureDefined())
throw LProp_NotDefined();
return myMaxCurv;
}
Standard_Real LProp_SLProps::MinCurvature ()
{
if(!IsCurvatureDefined())
throw LProp_NotDefined();
return myMinCurv;
}
void LProp_SLProps::CurvatureDirections(gp_Dir& Max, gp_Dir& Min)
{
if(!IsCurvatureDefined())
throw LProp_NotDefined();
Max = myDirMaxCurv;
Min = myDirMinCurv;
}
Standard_Real LProp_SLProps::MeanCurvature ()
{
if(!IsCurvatureDefined())
throw LProp_NotDefined();
return myMeanCurv;
}
Standard_Real LProp_SLProps::GaussianCurvature ()
{
if(!IsCurvatureDefined())
throw LProp_NotDefined();
return myGausCurv;
}