mirror of
https://git.dev.opencascade.org/repos/occt.git
synced 2025-04-03 17:56:21 +03:00
The macros Status, Convex, Opposite, FillSolid (coming from X11 headers) are now undefined in place of definition of methods with same name in OCCT headers. The usage of variables with name Status is now avoided. GL_GLEXT_LEGACY is now defined only if not already defined. The macros AddPrinter (coming from WinAPI headers) is now undefined within Message_Messenger class definition having method with the same name. CurrentDirectory macro is now undefined in OSD_Process.hxx.
153 lines
6.3 KiB
C++
153 lines
6.3 KiB
C++
// Created on: 1991-09-09
|
|
// Created by: Michel Chauvat
|
|
// Copyright (c) 1991-1999 Matra Datavision
|
|
// Copyright (c) 1999-2014 OPEN CASCADE SAS
|
|
//
|
|
// This file is part of Open CASCADE Technology software library.
|
|
//
|
|
// This library is free software; you can redistribute it and/or modify it under
|
|
// the terms of the GNU Lesser General Public License version 2.1 as published
|
|
// by the Free Software Foundation, with special exception defined in the file
|
|
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
|
|
// distribution for complete text of the license and disclaimer of any warranty.
|
|
//
|
|
// Alternatively, this file may be used under the terms of Open CASCADE
|
|
// commercial license or contractual agreement.
|
|
|
|
#ifndef _CSLib_HeaderFile
|
|
#define _CSLib_HeaderFile
|
|
|
|
#include <Standard.hxx>
|
|
#include <Standard_DefineAlloc.hxx>
|
|
#include <Standard_Handle.hxx>
|
|
|
|
#include <Standard_Real.hxx>
|
|
#include <CSLib_DerivativeStatus.hxx>
|
|
#include <Standard_Boolean.hxx>
|
|
#include <CSLib_NormalStatus.hxx>
|
|
#include <Standard_Integer.hxx>
|
|
#include <TColgp_Array2OfVec.hxx>
|
|
class gp_Vec;
|
|
class gp_Dir;
|
|
class CSLib_Class2d;
|
|
class CSLib_NormalPolyDef;
|
|
|
|
|
|
//! This package implements functions for basis geometric
|
|
//! computation on curves and surfaces.
|
|
//! The tolerance criterions used in this package are
|
|
//! Resolution from package gp and RealEpsilon from class
|
|
//! Real of package Standard.
|
|
class CSLib
|
|
{
|
|
public:
|
|
|
|
DEFINE_STANDARD_ALLOC
|
|
|
|
|
|
|
|
//! The following functions computes the normal to a surface
|
|
//! inherits FunctionWithDerivative from math
|
|
//!
|
|
//! Computes the normal direction of a surface as the cross product
|
|
//! between D1U and D1V.
|
|
//! If D1U has null length or D1V has null length or D1U and D1V are
|
|
//! parallel the normal is undefined.
|
|
//! To check that D1U and D1V are colinear the sinus of the angle
|
|
//! between D1U and D1V is computed and compared with SinTol.
|
|
//! The normal is computed if theStatus == Done else the theStatus gives the
|
|
//! reason why the computation has failed.
|
|
Standard_EXPORT static void Normal (const gp_Vec& D1U, const gp_Vec& D1V, const Standard_Real SinTol, CSLib_DerivativeStatus& theStatus, gp_Dir& Normal);
|
|
|
|
|
|
//! If there is a singularity on the surface the previous method
|
|
//! cannot compute the local normal.
|
|
//! This method computes an approched normal direction of a surface.
|
|
//! It does a limited development and needs the second derivatives
|
|
//! on the surface as input data.
|
|
//! It computes the normal as follow :
|
|
//! N(u, v) = D1U ^ D1V
|
|
//! N(u0+du,v0+dv) = N0 + DN/du(u0,v0) * du + DN/dv(u0,v0) * dv + Eps
|
|
//! with Eps->0 so we can have the equivalence N ~ dN/du + dN/dv.
|
|
//! DNu = ||DN/du|| and DNv = ||DN/dv||
|
|
//!
|
|
//! . if DNu IsNull (DNu <= Resolution from gp) the answer Done = True
|
|
//! the normal direction is given by DN/dv
|
|
//! . if DNv IsNull (DNv <= Resolution from gp) the answer Done = True
|
|
//! the normal direction is given by DN/du
|
|
//! . if the two directions DN/du and DN/dv are parallel Done = True
|
|
//! the normal direction is given either by DN/du or DN/dv.
|
|
//! To check that the two directions are colinear the sinus of the
|
|
//! angle between these directions is computed and compared with
|
|
//! SinTol.
|
|
//! . if DNu/DNv or DNv/DNu is lower or equal than Real Epsilon
|
|
//! Done = False, the normal is undefined
|
|
//! . if DNu IsNull and DNv is Null Done = False, there is an
|
|
//! indetermination and we should do a limited developpement at
|
|
//! order 2 (it means that we cannot omit Eps).
|
|
//! . if DNu Is not Null and DNv Is not Null Done = False, there are
|
|
//! an infinity of normals at the considered point on the surface.
|
|
Standard_EXPORT static void Normal (const gp_Vec& D1U, const gp_Vec& D1V, const gp_Vec& D2U, const gp_Vec& D2V, const gp_Vec& D2UV, const Standard_Real SinTol, Standard_Boolean& Done, CSLib_NormalStatus& theStatus, gp_Dir& Normal);
|
|
|
|
|
|
//! Computes the normal direction of a surface as the cross product
|
|
//! between D1U and D1V.
|
|
Standard_EXPORT static void Normal (const gp_Vec& D1U, const gp_Vec& D1V, const Standard_Real MagTol, CSLib_NormalStatus& theStatus, gp_Dir& Normal);
|
|
|
|
//! find the first order k0 of deriviative of NUV
|
|
//! where: foreach order < k0 all the derivatives of NUV are
|
|
//! null all the derivatives of NUV corresponding to the order
|
|
//! k0 are collinear and have the same sens.
|
|
//! In this case, normal at U,V is unique.
|
|
Standard_EXPORT static void Normal (const Standard_Integer MaxOrder, const TColgp_Array2OfVec& DerNUV, const Standard_Real MagTol, const Standard_Real U, const Standard_Real V, const Standard_Real Umin, const Standard_Real Umax, const Standard_Real Vmin, const Standard_Real Vmax, CSLib_NormalStatus& theStatus, gp_Dir& Normal, Standard_Integer& OrderU, Standard_Integer& OrderV);
|
|
|
|
//! -- Computes the derivative of order Nu in the --
|
|
//! direction U and Nv in the direction V of the not --
|
|
//! normalized normal vector at the point P(U,V) The
|
|
//! array DerSurf contain the derivative (i,j) of the surface
|
|
//! for i=0,Nu+1 ; j=0,Nv+1
|
|
Standard_EXPORT static gp_Vec DNNUV (const Standard_Integer Nu, const Standard_Integer Nv, const TColgp_Array2OfVec& DerSurf);
|
|
|
|
//! Computes the derivatives of order Nu in the direction Nu
|
|
//! and Nv in the direction Nv of the not normalized vector
|
|
//! N(u,v) = dS1/du * dS2/dv (cases where we use an osculating surface)
|
|
//! DerSurf1 are the derivatives of S1
|
|
Standard_EXPORT static gp_Vec DNNUV (const Standard_Integer Nu, const Standard_Integer Nv, const TColgp_Array2OfVec& DerSurf1, const TColgp_Array2OfVec& DerSurf2);
|
|
|
|
//! -- Computes the derivative of order Nu in the --
|
|
//! direction U and Nv in the direction V of the
|
|
//! normalized normal vector at the point P(U,V) array
|
|
//! DerNUV contain the derivative (i+Iduref,j+Idvref)
|
|
//! of D1U ^ D1V for i=0,Nu ; j=0,Nv Iduref and Idvref
|
|
//! correspond to a derivative of D1U ^ D1V which can
|
|
//! be used to compute the normalized normal vector.
|
|
//! In the regular cases , Iduref=Idvref=0.
|
|
Standard_EXPORT static gp_Vec DNNormal (const Standard_Integer Nu, const Standard_Integer Nv, const TColgp_Array2OfVec& DerNUV, const Standard_Integer Iduref = 0, const Standard_Integer Idvref = 0);
|
|
|
|
|
|
|
|
|
|
protected:
|
|
|
|
|
|
|
|
|
|
|
|
private:
|
|
|
|
|
|
|
|
|
|
friend class CSLib_Class2d;
|
|
friend class CSLib_NormalPolyDef;
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#endif // _CSLib_HeaderFile
|