mirror of
https://git.dev.opencascade.org/repos/occt.git
synced 2025-04-05 18:16:23 +03:00
The Message_ProgressIndicator handle is added as a parameter to the function LU_Decompose and the the member functions of math_Gauss, Plate_Plate and GeomPlate_BuildPlateSurface classes.
125 lines
3.4 KiB
C++
125 lines
3.4 KiB
C++
// Copyright (c) 1997-1999 Matra Datavision
|
|
// Copyright (c) 1999-2014 OPEN CASCADE SAS
|
|
//
|
|
// This file is part of Open CASCADE Technology software library.
|
|
//
|
|
// This library is free software; you can redistribute it and/or modify it under
|
|
// the terms of the GNU Lesser General Public License version 2.1 as published
|
|
// by the Free Software Foundation, with special exception defined in the file
|
|
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
|
|
// distribution for complete text of the license and disclaimer of any warranty.
|
|
//
|
|
// Alternatively, this file may be used under the terms of Open CASCADE
|
|
// commercial license or contractual agreement.
|
|
|
|
//#ifndef OCCT_DEBUG
|
|
#define No_Standard_RangeError
|
|
#define No_Standard_OutOfRange
|
|
#define No_Standard_DimensionError
|
|
|
|
//#endif
|
|
|
|
#include <math_Gauss.hxx>
|
|
#include <math_Matrix.hxx>
|
|
#include <math_NotSquare.hxx>
|
|
#include <math_Recipes.hxx>
|
|
#include <Standard_DimensionError.hxx>
|
|
#include <Standard_NotImplemented.hxx>
|
|
#include <StdFail_NotDone.hxx>
|
|
|
|
math_Gauss::math_Gauss(const math_Matrix& A,
|
|
const Standard_Real MinPivot,
|
|
const Handle(Message_ProgressIndicator) & aProgress)
|
|
: LU (1, A.RowNumber(), 1, A.ColNumber()),
|
|
Index(1, A.RowNumber()) {
|
|
|
|
math_NotSquare_Raise_if(A.RowNumber() != A.ColNumber(), " ");
|
|
LU = A;
|
|
Standard_Integer Error = LU_Decompose(LU,
|
|
Index,
|
|
D,
|
|
MinPivot,
|
|
aProgress);
|
|
if(!Error) {
|
|
Done = Standard_True;
|
|
}
|
|
else {
|
|
Done = Standard_False;
|
|
}
|
|
}
|
|
|
|
void math_Gauss::Solve(const math_Vector& B, math_Vector& X) const{
|
|
|
|
StdFail_NotDone_Raise_if(!Done, " ");
|
|
|
|
X = B;
|
|
LU_Solve(LU,
|
|
Index,
|
|
X);
|
|
}
|
|
|
|
void math_Gauss::Solve (math_Vector& X) const{
|
|
|
|
StdFail_NotDone_Raise_if(!Done, " ");
|
|
|
|
if(X.Length() != LU.RowNumber()) {
|
|
throw Standard_DimensionError();
|
|
}
|
|
LU_Solve(LU,
|
|
Index,
|
|
X);
|
|
}
|
|
|
|
Standard_Real math_Gauss::Determinant() const{
|
|
|
|
StdFail_NotDone_Raise_if(!Done, " ");
|
|
|
|
Standard_Real Result = D;
|
|
for(Standard_Integer J = 1; J <= LU.UpperRow(); J++) {
|
|
Result *= LU(J,J);
|
|
}
|
|
return Result;
|
|
}
|
|
|
|
void math_Gauss::Invert(math_Matrix& Inv) const{
|
|
|
|
StdFail_NotDone_Raise_if(!Done, " ");
|
|
|
|
Standard_DimensionError_Raise_if((Inv.RowNumber() != LU.RowNumber()) ||
|
|
(Inv.ColNumber() != LU.ColNumber()),
|
|
" ");
|
|
|
|
Standard_Integer LowerRow = Inv.LowerRow();
|
|
Standard_Integer LowerCol = Inv.LowerCol();
|
|
math_Vector Column(1, LU.UpperRow());
|
|
|
|
Standard_Integer I, J;
|
|
for(J = 1; J <= LU.UpperRow(); J++) {
|
|
for(I = 1; I <= LU.UpperRow(); I++) {
|
|
Column(I) = 0.0;
|
|
}
|
|
Column(J) = 1.0;
|
|
LU_Solve(LU, Index, Column);
|
|
for(I = 1; I <= LU.RowNumber(); I++) {
|
|
Inv(I+LowerRow-1,J+LowerCol-1) = Column(I);
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
|
|
void math_Gauss::Dump(Standard_OStream& o) const {
|
|
o << "math_Gauss ";
|
|
if(Done) {
|
|
o<< " Status = Done \n";
|
|
o << " Determinant of A = " << D << endl;
|
|
}
|
|
else {
|
|
o << " Status = not Done \n";
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|