1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-04-05 18:16:23 +03:00
occt/src/math/math_Gauss.cxx
drazmyslovich 9f785738a1 0029719: Modeling Algorithms - GeomPlate_BuildPlateSurface has no progress information and is not abortable
The Message_ProgressIndicator handle is added as a parameter to the function LU_Decompose and the the member functions of math_Gauss, Plate_Plate and GeomPlate_BuildPlateSurface classes.
2018-06-14 14:03:02 +03:00

125 lines
3.4 KiB
C++

// Copyright (c) 1997-1999 Matra Datavision
// Copyright (c) 1999-2014 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
//#ifndef OCCT_DEBUG
#define No_Standard_RangeError
#define No_Standard_OutOfRange
#define No_Standard_DimensionError
//#endif
#include <math_Gauss.hxx>
#include <math_Matrix.hxx>
#include <math_NotSquare.hxx>
#include <math_Recipes.hxx>
#include <Standard_DimensionError.hxx>
#include <Standard_NotImplemented.hxx>
#include <StdFail_NotDone.hxx>
math_Gauss::math_Gauss(const math_Matrix& A,
const Standard_Real MinPivot,
const Handle(Message_ProgressIndicator) & aProgress)
: LU (1, A.RowNumber(), 1, A.ColNumber()),
Index(1, A.RowNumber()) {
math_NotSquare_Raise_if(A.RowNumber() != A.ColNumber(), " ");
LU = A;
Standard_Integer Error = LU_Decompose(LU,
Index,
D,
MinPivot,
aProgress);
if(!Error) {
Done = Standard_True;
}
else {
Done = Standard_False;
}
}
void math_Gauss::Solve(const math_Vector& B, math_Vector& X) const{
StdFail_NotDone_Raise_if(!Done, " ");
X = B;
LU_Solve(LU,
Index,
X);
}
void math_Gauss::Solve (math_Vector& X) const{
StdFail_NotDone_Raise_if(!Done, " ");
if(X.Length() != LU.RowNumber()) {
throw Standard_DimensionError();
}
LU_Solve(LU,
Index,
X);
}
Standard_Real math_Gauss::Determinant() const{
StdFail_NotDone_Raise_if(!Done, " ");
Standard_Real Result = D;
for(Standard_Integer J = 1; J <= LU.UpperRow(); J++) {
Result *= LU(J,J);
}
return Result;
}
void math_Gauss::Invert(math_Matrix& Inv) const{
StdFail_NotDone_Raise_if(!Done, " ");
Standard_DimensionError_Raise_if((Inv.RowNumber() != LU.RowNumber()) ||
(Inv.ColNumber() != LU.ColNumber()),
" ");
Standard_Integer LowerRow = Inv.LowerRow();
Standard_Integer LowerCol = Inv.LowerCol();
math_Vector Column(1, LU.UpperRow());
Standard_Integer I, J;
for(J = 1; J <= LU.UpperRow(); J++) {
for(I = 1; I <= LU.UpperRow(); I++) {
Column(I) = 0.0;
}
Column(J) = 1.0;
LU_Solve(LU, Index, Column);
for(I = 1; I <= LU.RowNumber(); I++) {
Inv(I+LowerRow-1,J+LowerCol-1) = Column(I);
}
}
}
void math_Gauss::Dump(Standard_OStream& o) const {
o << "math_Gauss ";
if(Done) {
o<< " Status = Done \n";
o << " Determinant of A = " << D << endl;
}
else {
o << " Status = not Done \n";
}
}