mirror of
https://git.dev.opencascade.org/repos/occt.git
synced 2025-08-04 13:13:25 +03:00
License statement text corrected; compiler warnings caused by Bison 2.41 disabled for MSVC; a few other compiler warnings on 54-bit Windows eliminated by appropriate type cast Wrong license statements corrected in several files. Copyright and license statements added in XSD and GLSL files. Copyright year updated in some files. Obsolete documentation files removed from DrawResources.
505 lines
14 KiB
Plaintext
505 lines
14 KiB
Plaintext
// Created on: 1995-03-14
|
|
// Created by: Modelistation
|
|
// Copyright (c) 1995-1999 Matra Datavision
|
|
// Copyright (c) 1999-2014 OPEN CASCADE SAS
|
|
//
|
|
// This file is part of Open CASCADE Technology software library.
|
|
//
|
|
// This library is free software; you can redistribute it and/or modify it under
|
|
// the terms of the GNU Lesser General Public License version 2.1 as published
|
|
// by the Free Software Foundation, with special exception defined in the file
|
|
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
|
|
// distribution for complete text of the license and disclaimer of any warranty.
|
|
//
|
|
// Alternatively, this file may be used under the terms of Open CASCADE
|
|
// commercial license or contractual agreement.
|
|
|
|
#ifndef DEB
|
|
#define No_Standard_OutOfRange
|
|
#define No_Standard_RangeError
|
|
#endif
|
|
|
|
|
|
|
|
#include <math.hxx>
|
|
#include <math_Vector.hxx>
|
|
#include <math_Matrix.hxx>
|
|
#include <TColgp_Array1OfPnt.hxx>
|
|
#include <TColgp_Array1OfPnt2d.hxx>
|
|
#include <gp_Pnt2d.hxx>
|
|
#include <gp_Pnt.hxx>
|
|
#include <gp_Vec.hxx>
|
|
#include <gp_Vec2d.hxx>
|
|
#include <TColgp_Array1OfVec.hxx>
|
|
#include <TColgp_Array1OfVec2d.hxx>
|
|
#include <AppParCurves_MultiPoint.hxx>
|
|
#include <AppCont_ContMatrices.hxx>
|
|
#include <PLib.hxx>
|
|
|
|
|
|
|
|
|
|
//=======================================================================
|
|
//function : AppCont_LeastSquare
|
|
//purpose :
|
|
//=======================================================================
|
|
|
|
AppCont_LeastSquare::AppCont_LeastSquare
|
|
(const MultiLine& SSP,
|
|
const Standard_Real U0,
|
|
const Standard_Real U1,
|
|
const AppParCurves_Constraint FirstCons,
|
|
const AppParCurves_Constraint LastCons,
|
|
const Standard_Integer Deg,
|
|
const Standard_Integer NbPoints):
|
|
SCU(Deg+1),
|
|
Points(1, NbPoints, 1, NbBColumns(SSP)),
|
|
Poles(1, Deg+1, 1, NbBColumns(SSP), 0.0),
|
|
myParam(1, NbPoints),
|
|
VB(1, Deg+1, 1, NbPoints)
|
|
|
|
{
|
|
Done = Standard_False;
|
|
Degre = Deg;
|
|
math_Matrix InvM(1, Deg+1, 1, Deg+1);
|
|
Standard_Integer i, j, k, c, i2;
|
|
Standard_Integer classe = Deg+1, cl1 = Deg;
|
|
Standard_Real U, dU, Coeff, Coeff2;
|
|
Standard_Real IBij, IBPij;
|
|
|
|
Standard_Integer FirstP = 1, LastP = NbPoints;
|
|
Standard_Integer nbcol = NbBColumns(SSP);
|
|
math_Matrix B(1, classe, 1, nbcol, 0.0);
|
|
Standard_Integer bdeb = 1, bfin = classe;
|
|
AppParCurves_Constraint myFirstC = FirstCons, myLastC = LastCons;
|
|
nbP = LineTool::NbP3d(SSP);
|
|
nbP2d = LineTool::NbP2d(SSP);
|
|
Standard_Integer mynbP = nbP, mynbP2d = nbP2d;
|
|
if (nbP == 0) mynbP = 1;
|
|
if (nbP2d == 0) mynbP2d = 1;
|
|
|
|
Standard_Integer i2plus1, i2plus2;
|
|
Nbdiscret = NbPoints;
|
|
TColgp_Array1OfPnt TabP(1, mynbP);
|
|
TColgp_Array1OfVec TabV(1, mynbP);
|
|
TColgp_Array1OfPnt2d TabP2d(1, mynbP2d);
|
|
TColgp_Array1OfVec2d TabV2d(1, mynbP2d);
|
|
|
|
Standard_Boolean Ok;
|
|
if (myFirstC == AppParCurves_TangencyPoint) {
|
|
if (nbP != 0 && nbP2d != 0) Ok=LineTool::D1(SSP, U0, TabV, TabV2d);
|
|
else if (nbP != 0) Ok=LineTool::D1(SSP, U0, TabV);
|
|
else Ok=LineTool::D1(SSP, U0, TabV2d);
|
|
if (!Ok) myFirstC = AppParCurves_PassPoint;
|
|
}
|
|
|
|
if (myLastC == AppParCurves_TangencyPoint) {
|
|
if (nbP != 0 && nbP2d != 0) Ok=LineTool::D1(SSP, U1, TabV, TabV2d);
|
|
else if (nbP != 0) Ok=LineTool::D1(SSP, U1, TabV);
|
|
else Ok=LineTool::D1(SSP, U1, TabV2d);
|
|
if (!Ok) myLastC = AppParCurves_PassPoint;
|
|
}
|
|
|
|
math_Vector GaussP(1, NbPoints), GaussW(1, NbPoints);
|
|
math::GaussPoints(NbPoints, GaussP);
|
|
math::GaussWeights(NbPoints, GaussW);
|
|
|
|
math_Vector TheWeights(1, NbPoints), VBParam(1, NbPoints);
|
|
|
|
dU = 0.5*(U1-U0);
|
|
|
|
// calcul et mise en ordre des parametres et des poids:
|
|
for (i = FirstP; i <= LastP; i++) {
|
|
U = 0.5*(U1+U0) + dU*GaussP(i);
|
|
if (i <= (NbPoints+1)/2) {
|
|
myParam(LastP-i+1) = U;
|
|
VBParam(LastP-i+1) = 0.5*(1 + GaussP(i));
|
|
TheWeights(LastP-i+1) = 0.5*GaussW(i);
|
|
}
|
|
else {
|
|
VBParam(i-(NbPoints+1)/2) = 0.5*(1 + GaussP(i));
|
|
myParam(i-(NbPoints+1)/2) = U;
|
|
TheWeights(i-(NbPoints+1)/2) = 0.5*GaussW(i);
|
|
}
|
|
}
|
|
|
|
|
|
for (i = FirstP; i <= LastP; i++) {
|
|
U = myParam(i);
|
|
if (nbP != 0 && nbP2d != 0) LineTool::Value(SSP, U, TabP, TabP2d);
|
|
else if (nbP != 0) LineTool::Value(SSP, U, TabP);
|
|
else LineTool::Value(SSP, U, TabP2d);
|
|
|
|
i2 = 1;
|
|
for (j = 1; j <= nbP; j++) {
|
|
(TabP(j)).Coord(Points(i, i2), Points(i, i2+1), Points(i, i2+2));
|
|
i2 += 3;
|
|
}
|
|
for (j = 1; j <= nbP2d; j++) {
|
|
(TabP2d(j)).Coord(Points(i, i2), Points(i, i2+1));
|
|
i2 += 2;
|
|
}
|
|
}
|
|
|
|
// Calcul du VB ( Valeur des fonctions de Bernstein):
|
|
|
|
// for (i = 1; i <= classe; i++) {
|
|
// for (j = 1; j <= NbPoints; j++) {
|
|
// VB(i,j)=PLib::Binomial(cl1,i-1)*Pow((1-VBParam(j)),classe-i)*
|
|
// Pow(VBParam(j),i-1);
|
|
// }
|
|
// }
|
|
|
|
VBernstein(classe, NbPoints, VB);
|
|
|
|
// Traitement du second membre:
|
|
|
|
Standard_Real *tmppoints, *tmpbis;
|
|
tmppoints = new Standard_Real[nbcol];
|
|
|
|
for (c = 1; c <= classe; c++) {
|
|
tmpbis = tmppoints;
|
|
for (k = 1; k <= nbcol; k++, tmpbis++) {
|
|
*tmpbis = 0.0;
|
|
}
|
|
for (i = 1; i <= NbPoints; i++) {
|
|
Coeff = TheWeights(i)*VB(c, i);
|
|
tmpbis = tmppoints;
|
|
for (j = 1; j <= nbcol; j++, tmpbis++) {
|
|
*tmpbis += Points(i, j)*Coeff;
|
|
//B(c, j) += Points(i, j)*Coeff;
|
|
}
|
|
}
|
|
tmpbis = tmppoints;
|
|
for (k = 1; k <= nbcol; k++, tmpbis++) {
|
|
B(c, k) += *tmpbis;
|
|
}
|
|
}
|
|
|
|
delete [] tmppoints;
|
|
|
|
if (myFirstC == AppParCurves_NoConstraint &&
|
|
myLastC == AppParCurves_NoConstraint) {
|
|
|
|
math_Matrix InvM(1, classe, 1, classe);
|
|
InvMMatrix(classe, InvM);
|
|
// Calcul direct des poles:
|
|
|
|
for (i = 1; i <= classe; i++) {
|
|
for (j = 1; j <= classe; j++) {
|
|
IBij = InvM(i, j);
|
|
for (k = 1; k <= nbcol; k++) {
|
|
Poles(i, k) += IBij * B(j, k);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
else {
|
|
math_Matrix M(1, classe, 1, classe);
|
|
MMatrix(classe, M);
|
|
|
|
if (myFirstC == AppParCurves_PassPoint ||
|
|
myFirstC == AppParCurves_TangencyPoint) {
|
|
|
|
if (nbP != 0 && nbP2d != 0) LineTool::Value(SSP, U0, TabP, TabP2d);
|
|
else if (nbP != 0) LineTool::Value(SSP, U0, TabP);
|
|
else LineTool::Value(SSP, U0, TabP2d);
|
|
i2 =1;
|
|
for (k = 1; k<= nbP; k++) {
|
|
(TabP(k)).Coord(Poles(1, i2), Poles(1, i2+1), Poles(1, i2+2));
|
|
i2 += 3;
|
|
}
|
|
for (k = 1; k<= nbP2d; k++) {
|
|
(TabP2d(k)).Coord(Poles(1, i2), Poles(1, i2+1));
|
|
i2 += 2;
|
|
}
|
|
|
|
}
|
|
|
|
if (myLastC == AppParCurves_PassPoint ||
|
|
myLastC == AppParCurves_TangencyPoint) {
|
|
|
|
i2 = 1;
|
|
if (nbP != 0 && nbP2d != 0) LineTool::Value(SSP, U1, TabP, TabP2d);
|
|
else if (nbP != 0) LineTool::Value(SSP, U1, TabP);
|
|
else LineTool::Value(SSP, U1, TabP2d);
|
|
for (k = 1; k<= nbP; k++) {
|
|
(TabP(k)).Coord(Poles(classe,i2),
|
|
Poles(classe,i2+1),
|
|
Poles(classe,i2+2));
|
|
i2 += 3;
|
|
}
|
|
for (k = 1; k<= nbP2d; k++) {
|
|
(TabP2d(k)).Coord(Poles(classe, i2), Poles(classe, i2+1));
|
|
i2 += 2;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
if (myFirstC == AppParCurves_PassPoint) {
|
|
bdeb = 2;
|
|
// mise a jour du second membre:
|
|
for (i = 1; i <= classe; i++) {
|
|
Coeff = M(i, 1);
|
|
for (k = 1; k <= nbcol; k++) {
|
|
B(i, k) -= Poles(1, k)*Coeff;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
if (myLastC == AppParCurves_PassPoint) {
|
|
bfin = cl1;
|
|
for (i = 1; i <= classe; i++) {
|
|
Coeff = M(i, classe);
|
|
for (k = 1; k <= nbcol; k++) {
|
|
B(i, k) -= Poles(classe, k)*Coeff;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
if (myFirstC == AppParCurves_TangencyPoint) {
|
|
// On fixe le second pole::
|
|
bdeb = 3;
|
|
if (nbP != 0 && nbP2d != 0) LineTool::D1(SSP, U0, TabV, TabV2d);
|
|
else if (nbP != 0) LineTool::D1(SSP, U0, TabV);
|
|
else LineTool::D1(SSP, U0, TabV2d);
|
|
i2 = 1;
|
|
Coeff = (U1-U0)/Degre;
|
|
for (k = 1; k<= nbP; k++) {
|
|
i2plus1 = i2+1; i2plus2 = i2+2;
|
|
Poles(2, i2) = Poles(1, i2) + TabV(k).X()*Coeff;
|
|
Poles(2, i2plus1) = Poles(1, i2plus1) + TabV(k).Y()*Coeff;
|
|
Poles(2, i2plus2) = Poles(1, i2plus2) + TabV(k).Z()*Coeff;
|
|
i2 += 3;
|
|
}
|
|
for (k = 1; k<= nbP2d; k++) {
|
|
i2plus1 = i2+1;
|
|
Poles(2, i2) = Poles(1, i2) + TabV2d(k).X()*Coeff;
|
|
Poles(2, i2plus1) = Poles(1, i2plus1) + TabV2d(k).Y()*Coeff;
|
|
i2 += 2;
|
|
}
|
|
|
|
|
|
for (i = 1; i <= classe; i++) {
|
|
Coeff = M(i, 1); Coeff2 = M(i, 2);
|
|
for (k = 1; k <= nbcol; k++) {
|
|
B(i, k) -= Poles(1, k)*Coeff+Poles(2, k)*Coeff2;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (myLastC == AppParCurves_TangencyPoint) {
|
|
bfin = classe-2;
|
|
|
|
if (nbP != 0 && nbP2d != 0) LineTool::D1(SSP, U1, TabV, TabV2d);
|
|
else if (nbP != 0) LineTool::D1(SSP, U1, TabV);
|
|
else LineTool::D1(SSP, U1, TabV2d);
|
|
i2 = 1;
|
|
Coeff = (U1-U0)/Degre;
|
|
for (k = 1; k<= nbP; k++) {
|
|
i2plus1 = i2+1; i2plus2 = i2+2;
|
|
Poles(cl1,i2) = Poles(classe, i2) - TabV(k).X()*Coeff;
|
|
Poles(cl1,i2plus1) = Poles(classe, i2plus1) - TabV(k).Y()*Coeff;
|
|
Poles(cl1,i2plus2) = Poles(classe, i2plus2) - TabV(k).Z()*Coeff;
|
|
i2 += 3;
|
|
}
|
|
for (k = 1; k<= nbP2d; k++) {
|
|
i2plus1 = i2+1;
|
|
Poles(cl1,i2) = Poles(classe, i2) - TabV2d(k).X()*Coeff;
|
|
Poles(cl1,i2plus1) = Poles(classe, i2plus1) - TabV2d(k).Y()*Coeff;
|
|
i2 += 2;
|
|
}
|
|
|
|
for (i = 1; i <= classe; i++) {
|
|
Coeff = M(i, classe); Coeff2 = M(i, cl1);
|
|
for (k = 1; k <= nbcol; k++) {
|
|
B(i, k) -= Poles(classe, k)*Coeff + Poles(cl1, k)*Coeff2;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (bdeb <= bfin) {
|
|
math_Matrix B2(bdeb, bfin, 1, B.UpperCol(), 0.0);
|
|
|
|
for (i = bdeb; i <= bfin; i++) {
|
|
for (j = 1; j <= classe; j++) {
|
|
Coeff = M(i, j);
|
|
for (k = 1; k <= nbcol; k++) {
|
|
B2(i, k) += B(j, k)*Coeff;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// Resolution:
|
|
// ===========
|
|
math_Matrix IBP(bdeb, bfin, bdeb, bfin);
|
|
|
|
// dans IBPMatrix at IBTMatrix ne sont stockees que les resultats pour
|
|
// une classe inferieure ou egale a 26 (pour l instant du moins.)
|
|
|
|
if (bdeb == 2 && bfin == classe-1 && classe <= 26) {
|
|
IBPMatrix(classe, IBP);
|
|
}
|
|
else if (bdeb == 3 && bfin == classe-2 && classe <= 26) {
|
|
IBTMatrix(classe, IBP);
|
|
}
|
|
else {
|
|
math_Matrix MP(1, classe, bdeb, bfin);
|
|
|
|
for (i = 1; i <= classe; i++) {
|
|
for (j = bdeb; j <= bfin; j++) {
|
|
MP(i, j) = M(i, j);
|
|
}
|
|
}
|
|
math_Matrix IBP1(bdeb, bfin, bdeb, bfin);
|
|
IBP1 = MP.Transposed()*MP;
|
|
IBP = IBP1.Inverse();
|
|
}
|
|
|
|
|
|
Done = Standard_True;
|
|
for (i = bdeb; i <= bfin; i++) {
|
|
for (j = bdeb; j <= bfin; j++) {
|
|
IBPij = IBP(i, j);;
|
|
for (k = 1; k<= nbcol; k++) {
|
|
Poles(i, k) += IBPij * B2(j, k);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
//=======================================================================
|
|
//function : NbBColumns
|
|
//purpose :
|
|
//=======================================================================
|
|
|
|
Standard_Integer AppCont_LeastSquare::NbBColumns(
|
|
const MultiLine& SSP) const
|
|
{
|
|
Standard_Integer BCol;
|
|
BCol = (LineTool::NbP3d(SSP))*3 +
|
|
(LineTool::NbP2d(SSP))*2;
|
|
return BCol;
|
|
}
|
|
|
|
|
|
//=======================================================================
|
|
//function : Value
|
|
//purpose :
|
|
//=======================================================================
|
|
|
|
const AppParCurves_MultiCurve& AppCont_LeastSquare::Value()
|
|
{
|
|
|
|
Standard_Integer i, j, j2;
|
|
gp_Pnt Pt;
|
|
gp_Pnt2d Pt2d;
|
|
Standard_Integer ideb = 1, ifin = Degre+1;
|
|
|
|
// On met le resultat dans les curves correspondantes
|
|
for (i = ideb; i <= ifin; i++) {
|
|
j2 = 1;
|
|
AppParCurves_MultiPoint MPole(nbP, nbP2d);
|
|
for (j = 1; j <= nbP; j++) {
|
|
Pt.SetCoord(Poles(i, j2), Poles(i, j2+1), Poles(i,j2+2));
|
|
MPole.SetPoint(j, Pt);
|
|
j2 += 3;
|
|
}
|
|
for (j = nbP+1;j <= nbP+nbP2d; j++) {
|
|
Pt2d.SetCoord(Poles(i, j2), Poles(i, j2+1));
|
|
MPole.SetPoint2d(j, Pt2d);
|
|
j2 += 2;
|
|
}
|
|
SCU.SetValue(i, MPole);
|
|
}
|
|
return SCU;
|
|
}
|
|
|
|
|
|
|
|
//=======================================================================
|
|
//function : Error
|
|
//purpose :
|
|
//=======================================================================
|
|
|
|
void AppCont_LeastSquare::Error(Standard_Real& F,
|
|
Standard_Real& MaxE3d,
|
|
Standard_Real& MaxE2d) const
|
|
{
|
|
Standard_Integer i, j, k, c, i2, classe = Degre+1;
|
|
// Standard_Real Coeff, val = 0.0, err3d = 0.0, err2d =0.0;
|
|
Standard_Real Coeff, err3d = 0.0, err2d =0.0;
|
|
Standard_Integer ncol = Points.UpperCol()-Points.LowerCol()+1;
|
|
|
|
math_Matrix MyPoints(1, Nbdiscret, 1, ncol);
|
|
MyPoints = Points;
|
|
|
|
MaxE3d = MaxE2d = F = 0.0;
|
|
|
|
Standard_Real *tmppoles, *tmpbis;
|
|
tmppoles = new Standard_Real[ncol];
|
|
|
|
for (c = 1; c <= classe; c++) {
|
|
tmpbis = tmppoles;
|
|
for (k = 1; k <= ncol; k++, tmpbis++) {
|
|
*tmpbis = Poles(c, k);
|
|
}
|
|
for (i = 1; i <= Nbdiscret; i++) {
|
|
Coeff = VB(c, i);
|
|
tmpbis = tmppoles;
|
|
for (j = 1; j <= ncol; j++, tmpbis++) {
|
|
MyPoints(i, j) -= (*tmpbis)*Coeff; // Poles(c, j)*Coeff;
|
|
}
|
|
}
|
|
}
|
|
delete [] tmppoles;
|
|
|
|
Standard_Real e1, e2, e3;
|
|
for (i = 1; i <= Nbdiscret; i++) {
|
|
i2 = 1;
|
|
for (j = 1; j<= nbP; j++) {
|
|
e1 = MyPoints(i, i2);
|
|
e2 = MyPoints(i, i2+1);
|
|
e3 = MyPoints(i, i2+2);
|
|
err3d = e1*e1+e2*e2+e3*e3;
|
|
MaxE3d = Max(MaxE3d, err3d);
|
|
F += err3d;
|
|
i2 += 3;
|
|
}
|
|
for (j = 1; j<= nbP2d; j++) {
|
|
e1 = MyPoints(i, i2);
|
|
e2 = MyPoints(i, i2+1);
|
|
err2d = e1*e1+e2*e2;
|
|
MaxE2d = Max(MaxE2d, err2d);
|
|
F += err2d;
|
|
i2 += 2;
|
|
}
|
|
}
|
|
|
|
MaxE3d = Sqrt(MaxE3d);
|
|
MaxE2d = Sqrt(MaxE2d);
|
|
|
|
}
|
|
|
|
|
|
//=======================================================================
|
|
//function : IsDone
|
|
//purpose :
|
|
//=======================================================================
|
|
|
|
Standard_Boolean AppCont_LeastSquare::IsDone() const
|
|
{
|
|
return Done;
|
|
}
|