mirror of
https://git.dev.opencascade.org/repos/occt.git
synced 2025-04-04 18:06:22 +03:00
IntPatch/IntPatch_ImpPrmIntersection.cxx - calculation of step depending on resolution of surface IntWalk_IWalking_6.gxx - calculation of point-line coincidence is improved Correction of tests according to current results lowalgos/intss/bug30703 - new test case added
273 lines
8.0 KiB
Plaintext
273 lines
8.0 KiB
Plaintext
// Copyright (c) 1995-1999 Matra Datavision
|
|
// Copyright (c) 1999-2014 OPEN CASCADE SAS
|
|
//
|
|
// This file is part of Open CASCADE Technology software library.
|
|
//
|
|
// This library is free software; you can redistribute it and/or modify it under
|
|
// the terms of the GNU Lesser General Public License version 2.1 as published
|
|
// by the Free Software Foundation, with special exception defined in the file
|
|
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
|
|
// distribution for complete text of the license and disclaimer of any warranty.
|
|
//
|
|
// Alternatively, this file may be used under the terms of Open CASCADE
|
|
// commercial license or contractual agreement.
|
|
|
|
#ifndef OCCT_DEBUG
|
|
#define No_Standard_RangeError
|
|
#define No_Standard_OutOfRange
|
|
#endif
|
|
|
|
|
|
void IntWalk_IWalking::AddPointInCurrentLine
|
|
(const Standard_Integer N,
|
|
const ThePointOfPath& PathPnt,
|
|
const Handle(IntWalk_TheIWLine)& CurrentLine) const {
|
|
|
|
|
|
IntSurf_PntOn2S Psol;
|
|
Psol.SetValue(ThePointOfPathTool::Value3d(PathPnt),
|
|
reversed,wd1[N].ustart,wd1[N].vstart);
|
|
CurrentLine->AddPoint(Psol);
|
|
}
|
|
|
|
|
|
void IntWalk_IWalking::MakeWalkingPoint
|
|
(const Standard_Integer Case,
|
|
const Standard_Real U,
|
|
const Standard_Real V,
|
|
TheIWFunction& sp,
|
|
IntSurf_PntOn2S& Psol )
|
|
|
|
{
|
|
|
|
// Case == 1 : make a WalkinkPoint.
|
|
// Case == 2 : make a WalkinkPoint.
|
|
// The computation of the tangency on is done
|
|
// Case == 10 + i : make a WalkinkPoint according to i.
|
|
// but F is updated according to U and V
|
|
// Case == other : the exception Standard_Failure is raised.
|
|
|
|
if ((Case == 1) || (Case == 2))
|
|
{
|
|
Psol.SetValue(sp.Point(), reversed, U, V);
|
|
}
|
|
else if (Case == 11 || Case == 12)
|
|
{
|
|
Standard_Real aUV[2], aFF[1], aDD[1][2];
|
|
math_Vector UV(aUV, 1, 2);
|
|
math_Vector FF(aFF, 1, 1);
|
|
math_Matrix DD(aDD, 1, 1, 1, 2);
|
|
UV(1) = U;
|
|
UV(2) = V;
|
|
sp.Values(UV, FF, DD);
|
|
MakeWalkingPoint(Case - 10, U, V, sp, Psol);
|
|
}
|
|
else
|
|
{
|
|
throw Standard_ConstructionError();
|
|
}
|
|
}
|
|
|
|
|
|
|
|
void IntWalk_IWalking::OpenLine(const Standard_Integer N,
|
|
const IntSurf_PntOn2S& Psol,
|
|
const ThePOPIterator& Pnts1,
|
|
TheIWFunction& sp,
|
|
const Handle(IntWalk_TheIWLine)& Line )
|
|
// **************** open the line and restart in the other direction********
|
|
|
|
{
|
|
ThePointOfPath PathPnt;
|
|
|
|
Standard_Real aUV[2], aFF[1], aDD[1][2];
|
|
math_Vector UV(aUV,1, 2);
|
|
math_Vector FF(aFF,1, 1);
|
|
math_Matrix DD(aDD,1, 1, 1, 2);
|
|
|
|
previousPoint = Line->Value(1);
|
|
if (!reversed) {
|
|
previousPoint.ParametersOnS2(UV(1),UV(2));
|
|
}
|
|
else {
|
|
previousPoint.ParametersOnS1(UV(1),UV(2));
|
|
}
|
|
sp.Values(UV, FF, DD);
|
|
previousd3d = sp.Direction3d();
|
|
previousd2d = sp.Direction2d();
|
|
|
|
if (N>0) { //departure point given at input
|
|
PathPnt = Pnts1.Value(N);
|
|
//mark the line as open with a given stop point
|
|
Line->AddStatusFirst(Standard_False,Standard_True,N,PathPnt);
|
|
|
|
|
|
AddPointInCurrentLine(N,PathPnt,Line);
|
|
|
|
}
|
|
else {
|
|
if (N <0) Line->AddPoint(Psol);
|
|
Line->AddStatusFirst(Standard_False,Standard_False);
|
|
//mark the line as open without given stop point
|
|
}
|
|
Line->Reverse(); //inverser la ligne
|
|
Line->SetTangentVector(previousd3d.Reversed(),Line->NbPoints());
|
|
}
|
|
|
|
Standard_Boolean IntWalk_IWalking::IsValidEndPoint(const Standard_Integer IndOfPoint,
|
|
const Standard_Integer IndOfLine)
|
|
{
|
|
if (PointLineLine.IsEmpty())
|
|
return Standard_True;
|
|
|
|
TColStd_ListIteratorOfListOfInteger itl(PointLineLine(IndOfPoint));
|
|
for (; itl.More(); itl.Next())
|
|
if (itl.Value() == IndOfLine)
|
|
{
|
|
PointLineLine(IndOfPoint).Remove(itl);
|
|
return Standard_True;
|
|
}
|
|
return Standard_False;
|
|
}
|
|
|
|
void IntWalk_IWalking::RemoveTwoEndPoints(const Standard_Integer IndOfPoint)
|
|
{
|
|
if (PointLineLine.IsBound(IndOfPoint))
|
|
{
|
|
Standard_Integer Line1 = PointLineLine(IndOfPoint).First();
|
|
Standard_Integer Line2 = PointLineLine(IndOfPoint).Last();
|
|
for (Standard_Integer iseq = 1; iseq <= seqAlone.Length(); iseq++)
|
|
{
|
|
if (seqAlone(iseq) == Line1 ||
|
|
seqAlone(iseq) == Line2)
|
|
seqAlone.Remove(iseq--);
|
|
}
|
|
}
|
|
}
|
|
|
|
Standard_Boolean IntWalk_IWalking::IsPointOnLine(const gp_Pnt2d& theP2d,
|
|
const Standard_Integer Irang)
|
|
{
|
|
const Handle(IntWalk_TheIWLine)& aLine = lines.Value(Abs(Irang));
|
|
for (Standard_Integer i = 1; i <= aLine->NbPoints(); i++)
|
|
{
|
|
gp_Pnt2d P2d1 = aLine->Value(i).ValueOnSurface(reversed);
|
|
if (Abs(P2d1.X() - theP2d.X()) <= tolerance(1) &&
|
|
Abs(P2d1.Y() - theP2d.Y()) <= tolerance(2))
|
|
return Standard_True;
|
|
if (i < aLine->NbPoints())
|
|
{
|
|
gp_Pnt2d P2d2 = aLine->Value(i+1).ValueOnSurface(reversed);
|
|
gp_Vec2d PP1(theP2d, P2d1);
|
|
gp_Vec2d PP2(theP2d, P2d2);
|
|
if (PP1 * PP2 < 0)
|
|
return Standard_True;
|
|
}
|
|
}
|
|
return Standard_False;
|
|
}
|
|
|
|
//==================================================================================
|
|
//function : IsPointOnLine
|
|
//purpose : Projects thePOn2S on the nearest segment of the already computed line.
|
|
// The retrieved projection point (aPa) is refined using theSolver.
|
|
// After the refinement, we will obtain a point aPb.
|
|
// If thePOn2S is quite far from aPb then thePOn2S is not
|
|
// in the line.
|
|
// Every already computed line is checked.
|
|
//==================================================================================
|
|
Standard_Boolean IntWalk_IWalking::IsPointOnLine(const IntSurf_PntOn2S& thePOn2S,
|
|
const math_Vector& theInfBounds,
|
|
const math_Vector& theSupBounds,
|
|
math_FunctionSetRoot& theSolver,
|
|
TheIWFunction& theFunc)
|
|
{
|
|
const Standard_Real eps = Epsilon(1.);
|
|
const gp_Pnt &aP3d = thePOn2S.Value();
|
|
|
|
for (Standard_Integer aLIdx = 1; aLIdx <= lines.Length(); aLIdx++)
|
|
{
|
|
const Handle(IntSurf_LineOn2S) &aL = lines(aLIdx)->Line();
|
|
|
|
if (aL->IsOutBox(aP3d))
|
|
continue;
|
|
|
|
//Look for the nearest segment
|
|
Standard_Real aUMin = 0.0, aVMin = 0.0;
|
|
Standard_Real aMinSqDist = RealLast();
|
|
for (Standard_Integer aPtIdx = 1; aPtIdx < aL->NbPoints(); aPtIdx++)
|
|
{
|
|
const gp_Pnt &aP1 = aL->Value(aPtIdx).Value();
|
|
const gp_Pnt &aP2 = aL->Value(aPtIdx + 1).Value();
|
|
|
|
const gp_XYZ aP1P(aP3d.XYZ() - aP1.XYZ());
|
|
const gp_XYZ aP1P2(aP2.XYZ() - aP1.XYZ());
|
|
|
|
const Standard_Real aSq12 = aP1P2.SquareModulus();
|
|
|
|
if (aSq12 < gp::Resolution())
|
|
continue;
|
|
|
|
const Standard_Real aDP = aP1P.Dot(aP1P2);
|
|
|
|
Standard_Real aSqD = RealLast();
|
|
if (aDP < 0.0)
|
|
{
|
|
continue;
|
|
}
|
|
else if (aDP > aSq12)
|
|
{
|
|
continue;
|
|
}
|
|
else
|
|
{
|
|
aSqD = aP1P.CrossSquareMagnitude(aP1P2) / aSq12;
|
|
}
|
|
|
|
if (aSqD < aMinSqDist)
|
|
{
|
|
aMinSqDist = aSqD;
|
|
|
|
const Standard_Real aL1 = aDP / aSq12;
|
|
const Standard_Real aL2 = 1.0 - aL1;
|
|
|
|
if (aL1 < eps || aL2 < eps)
|
|
{
|
|
return Standard_True;
|
|
}
|
|
|
|
Standard_Real aU1, aV1, aU2, aV2;
|
|
aL->Value(aPtIdx).ParametersOnSurface(reversed, aU1, aV1);
|
|
aL->Value(aPtIdx + 1).ParametersOnSurface(reversed, aU2, aV2);
|
|
|
|
aUMin = aL1*aU2 + aL2*aU1;
|
|
aVMin = aL1*aV2 + aL2*aV1;
|
|
}
|
|
}
|
|
|
|
if (aMinSqDist > Precision::Infinite())
|
|
continue;
|
|
|
|
math_Vector aVecPrms(1, 2);
|
|
aVecPrms(1) = aUMin;
|
|
aVecPrms(2) = aVMin;
|
|
theSolver.Perform(theFunc, aVecPrms, theInfBounds, theSupBounds);
|
|
if (!theSolver.IsDone())
|
|
continue;
|
|
|
|
theSolver.Root(aVecPrms);
|
|
|
|
const gp_Pnt aPa(theFunc.PSurface()->Value(aUMin, aVMin)),
|
|
aPb(theFunc.PSurface()->Value(aVecPrms(1), aVecPrms(2)));
|
|
const Standard_Real aSqD1 = aPb.SquareDistance(aP3d);
|
|
const Standard_Real aSqD2 = aPa.SquareDistance(aPb);
|
|
|
|
if (aSqD1 < 4.0*aSqD2)
|
|
{
|
|
return Standard_True;
|
|
}
|
|
}
|
|
|
|
return Standard_False;
|
|
}
|