1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-04-10 18:51:21 +03:00
occt/src/AppDef/AppDef_LinearCriteria.cxx
kgv 99ee8f1a83 0031671: Coding Rules - eliminate warnings issued by clang 11
Fixed -Wdeprecated-copy warning by removing trivial operator=.
Fixed formatting issues in places producing -Wmisleading-indentation warning.
2020-07-23 16:08:17 +03:00

789 lines
22 KiB
C++

// Created on: 1998-11-30
// Created by: Igor FEOKTISTOV
// Copyright (c) 1998-1999 Matra Datavision
// Copyright (c) 1999-2014 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
#include <AppDef_LinearCriteria.hxx>
#include <AppDef_MultiLine.hxx>
#include <AppDef_MyLineTool.hxx>
#include <FEmTool_Curve.hxx>
#include <FEmTool_ElementaryCriterion.hxx>
#include <FEmTool_LinearFlexion.hxx>
#include <FEmTool_LinearJerk.hxx>
#include <FEmTool_LinearTension.hxx>
#include <GeomAbs_Shape.hxx>
#include <gp_Pnt.hxx>
#include <gp_Pnt2d.hxx>
#include <math_Gauss.hxx>
#include <math_Matrix.hxx>
#include <PLib_Base.hxx>
#include <PLib_HermitJacobi.hxx>
#include <PLib_JacobiPolynomial.hxx>
#include <Standard_DomainError.hxx>
#include <Standard_NotImplemented.hxx>
#include <Standard_Type.hxx>
#include <TColgp_Array1OfPnt.hxx>
#include <TColgp_Array1OfPnt2d.hxx>
#include <TColStd_HArray2OfReal.hxx>
IMPLEMENT_STANDARD_RTTIEXT(AppDef_LinearCriteria,AppDef_SmoothCriterion)
static Standard_Integer order(const Handle(PLib_Base)& B)
{
return (*( Handle(PLib_HermitJacobi)*)&B)->NivConstr();
}
//=======================================================================
//function :
//purpose :
//=======================================================================
AppDef_LinearCriteria::AppDef_LinearCriteria(const AppDef_MultiLine& SSP,
const Standard_Integer FirstPoint,
const Standard_Integer LastPoint):
mySSP(SSP),
myPntWeight(FirstPoint, LastPoint),
myE(0)
{
myPntWeight.Init(1.);
}
//=======================================================================
//function :
//purpose :
//=======================================================================
void AppDef_LinearCriteria::SetParameters(const Handle(TColStd_HArray1OfReal)& Parameters)
{
myParameters = Parameters;
myE = 0; // Cache become invalid.
}
//=======================================================================
//function : SetCurve
//purpose :
//=======================================================================
void AppDef_LinearCriteria::SetCurve(const Handle(FEmTool_Curve)& C)
{
if(myCurve.IsNull()) {
myCurve = C;
Standard_Integer MxDeg = myCurve->Base()->WorkDegree(),
NbDim = myCurve->Dimension(),
Order = order(myCurve->Base());
GeomAbs_Shape ConstraintOrder=GeomAbs_C0;
switch (Order) {
case 0 : ConstraintOrder = GeomAbs_C0;
break;
case 1 : ConstraintOrder = GeomAbs_C1;
break;
case 2 : ConstraintOrder = GeomAbs_C2;
}
myCriteria[0] = new FEmTool_LinearTension(MxDeg, ConstraintOrder);
myCriteria[1] = new FEmTool_LinearFlexion(MxDeg, ConstraintOrder);
myCriteria[2] = new FEmTool_LinearJerk (MxDeg, ConstraintOrder);
Handle(TColStd_HArray2OfReal) Coeff = new TColStd_HArray2OfReal(0, 0, 1, NbDim);
myCriteria[0]->Set(Coeff);
myCriteria[1]->Set(Coeff);
myCriteria[2]->Set(Coeff);
}
else if (myCurve != C) {
Standard_Integer OldMxDeg = myCurve->Base()->WorkDegree(),
OldNbDim = myCurve->Dimension(),
OldOrder = order(myCurve->Base());
myCurve = C;
Standard_Integer MxDeg = myCurve->Base()->WorkDegree(),
NbDim = myCurve->Dimension(),
Order = order(myCurve->Base());
if(MxDeg != OldMxDeg || Order != OldOrder) {
GeomAbs_Shape ConstraintOrder=GeomAbs_C0;
switch (Order) {
case 0 : ConstraintOrder = GeomAbs_C0;
break;
case 1 : ConstraintOrder = GeomAbs_C1;
break;
case 2 : ConstraintOrder = GeomAbs_C2;
}
myCriteria[0] = new FEmTool_LinearTension(MxDeg, ConstraintOrder);
myCriteria[1] = new FEmTool_LinearFlexion(MxDeg, ConstraintOrder);
myCriteria[2] = new FEmTool_LinearJerk (MxDeg, ConstraintOrder);
Handle(TColStd_HArray2OfReal) Coeff = new TColStd_HArray2OfReal(0, 0, 1, NbDim);
myCriteria[0]->Set(Coeff);
myCriteria[1]->Set(Coeff);
myCriteria[2]->Set(Coeff);
}
else if(NbDim != OldNbDim) {
Handle(TColStd_HArray2OfReal) Coeff = new TColStd_HArray2OfReal(0, 0, 1, NbDim);
myCriteria[0]->Set(Coeff);
myCriteria[1]->Set(Coeff);
myCriteria[2]->Set(Coeff);
}
}
}
//=======================================================================
//function : GetCurve
//purpose :
//=======================================================================
void AppDef_LinearCriteria::GetCurve(Handle(FEmTool_Curve)& C) const
{
C = myCurve;
}
//=======================================================================
//function : SetEstimation
//purpose :
//=======================================================================
void AppDef_LinearCriteria::SetEstimation(const Standard_Real E1,
const Standard_Real E2,
const Standard_Real E3)
{
myEstimation[0] = E1;
myEstimation[1] = E2;
myEstimation[2] = E3;
}
Standard_Real& AppDef_LinearCriteria::EstLength()
{
return myLength;
}
//=======================================================================
//function : GetEstimation
//purpose :
//=======================================================================
void AppDef_LinearCriteria::GetEstimation(Standard_Real& E1,
Standard_Real& E2,
Standard_Real& E3) const
{
E1 = myEstimation[0];
E2 = myEstimation[1];
E3 = myEstimation[2];
}
//=======================================================================
//function : AssemblyTable
//purpose :
//=======================================================================
Handle(FEmTool_HAssemblyTable) AppDef_LinearCriteria::AssemblyTable() const
{
if(myCurve.IsNull()) throw Standard_DomainError("AppDef_LinearCriteria::AssemblyTable");
Standard_Integer NbDim = myCurve->Dimension(),
NbElm = myCurve->NbElements(),
nc1 = order(myCurve->Base()) + 1;
Standard_Integer MxDeg = myCurve->Base()->WorkDegree() ;
Handle(FEmTool_HAssemblyTable) AssTable = new FEmTool_HAssemblyTable(1, NbDim, 1, NbElm);
Handle(TColStd_HArray1OfInteger) GlobIndex, Aux;
Standard_Integer i, el = 1, dim = 1, NbGlobVar = 0, gi0;
// For dim = 1
// For first element (el = 1)
GlobIndex = new TColStd_HArray1OfInteger(0, MxDeg);
for(i = 0; i < nc1; i++) {
NbGlobVar++;
GlobIndex->SetValue(i, NbGlobVar);
}
gi0 = MxDeg - 2 * nc1 + 1;
for(i = nc1; i < 2*nc1; i++) {
NbGlobVar++;
GlobIndex->SetValue(i, NbGlobVar + gi0);
}
for(i = 2*nc1; i <= MxDeg; i++) {
NbGlobVar++;
GlobIndex->SetValue(i, NbGlobVar - nc1);
}
gi0 = NbGlobVar - nc1 + 1;
AssTable->SetValue(dim, el, GlobIndex);
// For rest elements
for(el = 2; el <= NbElm; el++) {
GlobIndex = new TColStd_HArray1OfInteger(0, MxDeg);
for(i = 0; i < nc1; i++) GlobIndex->SetValue(i, gi0 + i);
gi0 = MxDeg - 2 * nc1 + 1;
for(i = nc1; i < 2*nc1; i++) {
NbGlobVar++;
GlobIndex->SetValue(i, NbGlobVar + gi0);
}
for(i = 2*nc1; i <= MxDeg; i++) {
NbGlobVar++;
GlobIndex->SetValue(i, NbGlobVar - nc1);
}
gi0 = NbGlobVar - nc1 + 1;
AssTable->SetValue(dim, el, GlobIndex);
}
// For other dimensions
gi0 = NbGlobVar;
for(dim = 2; dim <= NbDim; dim++) {
for(el = 1; el <= NbElm; el++) {
Aux = AssTable->Value(1, el);
GlobIndex = new TColStd_HArray1OfInteger(0, MxDeg);
for(i = 0; i <= MxDeg; i++) GlobIndex->SetValue(i, Aux->Value(i) + NbGlobVar);
AssTable->SetValue(dim, el, GlobIndex);
}
NbGlobVar += gi0;
}
return AssTable;
}
//=======================================================================
//function :
//purpose :
//=======================================================================
Handle(TColStd_HArray2OfInteger) AppDef_LinearCriteria::DependenceTable() const
{
if(myCurve.IsNull()) throw Standard_DomainError("AppDef_LinearCriteria::DependenceTable");
Standard_Integer Dim = myCurve->Dimension();
Handle(TColStd_HArray2OfInteger) DepTab =
new TColStd_HArray2OfInteger(1, Dim, 1, Dim, 0);
Standard_Integer i;
for(i=1; i <= Dim; i++) DepTab->SetValue(i,i,1);
return DepTab;
}
//=======================================================================
//function : QualityValues
//purpose :
//=======================================================================
Standard_Integer AppDef_LinearCriteria::QualityValues(const Standard_Real J1min,
const Standard_Real J2min,
const Standard_Real J3min,
Standard_Real& J1,
Standard_Real& J2,
Standard_Real& J3)
{
if(myCurve.IsNull()) throw Standard_DomainError("AppDef_LinearCriteria::QualityValues");
Standard_Integer NbDim = myCurve->Dimension(),
NbElm = myCurve->NbElements();
TColStd_Array1OfReal& Knots = myCurve->Knots();
Handle(TColStd_HArray2OfReal) Coeff;
Standard_Integer el, deg = 0, curdeg, i;
Standard_Real UFirst, ULast;
J1 = J2 = J3 = 0.;
for(el = 1; el <= NbElm; el++) {
curdeg = myCurve->Degree(el);
if(deg != curdeg) {
deg = curdeg;
Coeff = new TColStd_HArray2OfReal(0, deg, 1, NbDim);
}
myCurve->GetElement(el, Coeff->ChangeArray2());
UFirst = Knots(el); ULast = Knots(el + 1);
myCriteria[0]->Set(Coeff);
myCriteria[0]->Set(UFirst, ULast);
J1 = J1 + myCriteria[0]->Value();
myCriteria[1]->Set(Coeff);
myCriteria[1]->Set(UFirst, ULast);
J2 = J2 + myCriteria[1]->Value();
myCriteria[2]->Set(Coeff);
myCriteria[2]->Set(UFirst, ULast);
J3 = J3 + myCriteria[2]->Value();
}
// Calculation of ICDANA - see MOTEST.f
// Standard_Real JEsMin[3] = {.01, .001, .001}; // from MOTLIS.f
Standard_Real JEsMin[3]; JEsMin[0] = J1min; JEsMin[1] = J2min; JEsMin[2] = J3min;
Standard_Real ValCri[3]; ValCri[0] = J1; ValCri[1] = J2; ValCri[2] = J3;
Standard_Integer ICDANA = 0;
// (2) Test l'amelioration des estimations
// (critere sureleve => Non minimisation )
for(i = 0; i <= 2; i++)
{
if((ValCri[i] < 0.8 * myEstimation[i]) && (myEstimation[i] > JEsMin[i])) {
if(ICDANA < 1) ICDANA = 1;
if(ValCri[i] < 0.1 * myEstimation[i]) ICDANA = 2;
myEstimation[i] = Max(1.05*ValCri[i], JEsMin[i]);
}
}
// (3) Mise a jours des Estimation
// (critere sous-estimer => mauvais conditionement)
if (ValCri[0] > myEstimation[0] * 2)
{
myEstimation[0] += ValCri[0] * .1;
if (ICDANA == 0)
{
if (ValCri[0] > myEstimation[0] * 10)
{
ICDANA = 2;
}
else
{
ICDANA = 1;
}
}
else
{
ICDANA = 2;
}
}
if (ValCri[1] > myEstimation[1] * 20)
{
myEstimation[1] += ValCri[1] * .1;
if (ICDANA == 0)
{
if (ValCri[1] > myEstimation[1] * 100)
{
ICDANA = 2;
}
else
{
ICDANA = 1;
}
}
else
{
ICDANA = 2;
}
}
if (ValCri[2] > myEstimation[2] * 20)
{
myEstimation[2] += ValCri[2] * .05;
if (ICDANA == 0)
{
if (ValCri[2] > myEstimation[2] * 100)
{
ICDANA = 2;
}
else
{
ICDANA = 1;
}
}
else
{
ICDANA = 2;
}
}
return ICDANA;
}
//=======================================================================
//function : ErrorValues
//purpose :
//=======================================================================
void AppDef_LinearCriteria::ErrorValues(Standard_Real& MaxError,
Standard_Real& QuadraticError,
Standard_Real& AverageError)
{
if(myCurve.IsNull()) throw Standard_DomainError("AppDef_LinearCriteria::ErrorValues");
Standard_Integer NbDim = myCurve->Dimension();
Standard_Integer myNbP2d = AppDef_MyLineTool::NbP2d(mySSP), myNbP3d = AppDef_MyLineTool::NbP3d(mySSP);
if(NbDim != (2*myNbP2d + 3*myNbP3d)) throw Standard_DomainError("AppDef_LinearCriteria::ErrorValues");
TColgp_Array1OfPnt TabP3d(1, Max(1,myNbP3d));
TColgp_Array1OfPnt2d TabP2d(1, Max(1,myNbP2d));
TColStd_Array1OfReal BasePoint(1,NbDim);
gp_Pnt2d P2d;
gp_Pnt P3d;
Standard_Integer i, ipnt, c0 = 0;
Standard_Real SqrDist, Dist;
MaxError = QuadraticError = AverageError = 0.;
for(i = myParameters->Lower(); i <= myParameters->Upper(); i++) {
myCurve->D0(myParameters->Value(i), BasePoint);
c0 = 0;
AppDef_MyLineTool::Value(mySSP, i, TabP3d);
for(ipnt = 1; ipnt <= myNbP3d; ipnt++) {
P3d.SetCoord(BasePoint(c0+1), BasePoint(c0+2), BasePoint(c0+3));
SqrDist = P3d.SquareDistance(TabP3d(ipnt)); Dist = Sqrt(SqrDist);
MaxError = Max(MaxError, Dist);
QuadraticError += SqrDist;
AverageError += Dist;
c0 += 3;
}
if(myNbP3d == 0) AppDef_MyLineTool::Value(mySSP, i, TabP2d);
else AppDef_MyLineTool::Value(mySSP, i, TabP3d, TabP2d);
for(ipnt = 1; ipnt <= myNbP2d; ipnt++) {
P2d.SetCoord(BasePoint(c0+1), BasePoint(c0+2));
SqrDist = P2d.SquareDistance(TabP2d(ipnt)); Dist = Sqrt(SqrDist);
MaxError = Max(MaxError, Dist);
QuadraticError += SqrDist;
AverageError += Dist;
c0 += 2;
}
}
}
//=======================================================================
//function : Hessian
//purpose :
//=======================================================================
void AppDef_LinearCriteria::Hessian(const Standard_Integer Element,
const Standard_Integer Dimension1,
const Standard_Integer Dimension2,
math_Matrix& H)
{
if(myCurve.IsNull()) throw Standard_DomainError("AppDef_LinearCriteria::Hessian");
if(DependenceTable()->Value(Dimension1, Dimension2) == 0)
throw Standard_DomainError("AppDef_LinearCriteria::Hessian");
Standard_Integer //NbDim = myCurve->Dimension(),
MxDeg = myCurve->Base()->WorkDegree(),
// Deg = myCurve->Degree(Element),
Order = order(myCurve->Base());
math_Matrix AuxH(0, H.RowNumber()-1, 0, H.ColNumber()-1, 0.);
TColStd_Array1OfReal& Knots = myCurve->Knots();
Standard_Real UFirst, ULast;
UFirst = Knots(Element); ULast = Knots(Element + 1);
Standard_Integer icrit;
// Quality criterion part of Hessian
H.Init(0);
for(icrit = 0; icrit <= 2; icrit++) {
myCriteria[icrit]->Set(UFirst, ULast);
myCriteria[icrit]->Hessian(Dimension1, Dimension2, AuxH);
H += (myQualityWeight*myPercent[icrit]/myEstimation[icrit]) * AuxH;
}
// Least square part of Hessian
AuxH.Init(0.);
Standard_Real coeff = (ULast - UFirst)/2., curcoeff, poid;
Standard_Integer ipnt, ii, degH = 2 * Order+1;
Handle(PLib_Base) myBase = myCurve->Base();
Standard_Integer k1, k2, i, j, i0 = H.LowerRow(), j0 = H.LowerCol(), i1, j1,
di = myPntWeight.Lower() - myParameters->Lower();
//BuilCache
if (myE != Element) BuildCache(Element);
// Compute the least square Hessian
for(ii=1, ipnt = IF; ipnt <= IL; ipnt++, ii+=(MxDeg+1)) {
poid = myPntWeight(di + ipnt) * 2.;
const Standard_Real * BV = &myCache->Value(ii);
// Hermite*Hermite part of matrix
for(i = 0; i <= degH; i++) {
k1 = (i <= Order)? i : i - Order - 1;
curcoeff = Pow(coeff, k1) * poid * BV[i];
// Hermite*Hermite part of matrix
for(j = i; j <= degH; j++) {
k2 = (j <= Order)? j : j - Order - 1;
AuxH(i, j) += curcoeff * Pow(coeff, k2) * BV[j];
}
// Hermite*Jacobi part of matrix
for(j = degH + 1; j <= MxDeg; j++) {
AuxH(i, j) += curcoeff * BV[j];
}
}
// Jacoby*Jacobi part of matrix
for(i = degH+1; i <= MxDeg; i++) {
curcoeff = BV[i] * poid;
for(j = i; j <= MxDeg; j++) {
AuxH(i, j) += curcoeff * BV[j];
}
}
}
i1 = i0;
for(i = 0; i <= MxDeg; i++) {
j1 = j0 + i;
for(j = i; j <= MxDeg; j++) {
H(i1, j1) += myQuadraticWeight * AuxH(i, j);
H(j1, i1) = H(i1, j1);
j1++;
}
i1++;
}
}
//=======================================================================
//function : Gradient
//purpose :
//=======================================================================
void AppDef_LinearCriteria::Gradient(const Standard_Integer Element,
const Standard_Integer Dimension,
math_Vector& G)
{
if(myCurve.IsNull())
throw Standard_DomainError("AppDef_LinearCriteria::ErrorValues");
Standard_Integer myNbP2d = AppDef_MyLineTool::NbP2d(mySSP), myNbP3d = AppDef_MyLineTool::NbP3d(mySSP);
if(Dimension > (2*myNbP2d + 3*myNbP3d))
throw Standard_DomainError("AppDef_LinearCriteria::ErrorValues");
TColgp_Array1OfPnt TabP3d(1, Max(1,myNbP3d));
TColgp_Array1OfPnt2d TabP2d(1, Max(1,myNbP2d));
Standard_Boolean In3d;
Standard_Integer IndPnt, IndCrd;
if(Dimension <= 3*myNbP3d) {
In3d = Standard_True;
IndCrd = Dimension % 3;
IndPnt = Dimension / 3;
if(IndCrd == 0) IndCrd = 3;
else IndPnt++;
}
else {
In3d = Standard_False;
IndCrd = (Dimension - 3*myNbP3d) % 2;
IndPnt = (Dimension - 3*myNbP3d) / 2;
if(IndCrd == 0) IndCrd = 2;
else IndPnt++;
}
TColStd_Array1OfReal& Knots = myCurve->Knots();
Standard_Real UFirst, ULast, Pnt;
UFirst = Knots(Element); ULast = Knots(Element + 1);
Standard_Real coeff = (ULast-UFirst)/2;
Standard_Integer //Deg = myCurve->Degree(Element),
Order = order(myCurve->Base());
Handle(PLib_Base) myBase = myCurve->Base();
Standard_Integer MxDeg = myBase->WorkDegree();
Standard_Real curcoeff;
Standard_Integer degH = 2 * Order + 1;
Standard_Integer ipnt, k, i, ii, i0 = G.Lower(),
di = myPntWeight.Lower() - myParameters->Lower();
if (myE != Element) BuildCache(Element);
const Standard_Real * BV = &myCache->Value(1);
BV--;
G.Init(0.);
for(ii=1,ipnt = IF; ipnt <= IL; ipnt++) {
if(In3d) {
AppDef_MyLineTool::Value(mySSP, ipnt, TabP3d);
Pnt = TabP3d(IndPnt).Coord(IndCrd);
}
else {
if(myNbP3d == 0) AppDef_MyLineTool::Value(mySSP, ipnt, TabP2d);
else AppDef_MyLineTool::Value(mySSP, ipnt, TabP3d, TabP2d);
Pnt = TabP2d(IndPnt).Coord(IndCrd);
}
curcoeff = Pnt * myPntWeight(di + ipnt);
for(i = 0; i <= MxDeg; i++,ii++)
G(i0 + i) += BV[ii] * curcoeff;
}
G *= 2. * myQuadraticWeight;
for(i = 0; i <= degH; i++) {
k = (i <= Order)? i : i - Order - 1;
curcoeff = Pow(coeff, k);
G(i0 + i) *= curcoeff;
}
}
//=======================================================================
//function : InputVector
//purpose :
//=======================================================================
void AppDef_LinearCriteria::InputVector(const math_Vector& X,
const Handle(FEmTool_HAssemblyTable)& AssTable)
{
Standard_Integer NbDim = myCurve->Dimension(),
NbElm = myCurve->NbElements() ;
Standard_Integer MxDeg = 0 ;
MxDeg = myCurve->Base()->WorkDegree();
TColStd_Array2OfReal CoeffEl(0, MxDeg, 1, NbDim);
Handle(TColStd_HArray1OfInteger) GlobIndex;
Standard_Integer el, dim, i, i0 = X.Lower() - 1;
for(el = 1; el <= NbElm; el++) {
for(dim = 1; dim <= NbDim; dim++) {
GlobIndex = AssTable->Value(dim, el);
for(i = 0; i <= MxDeg; i++) CoeffEl(i, dim) = X(i0 + GlobIndex->Value(i));
}
myCurve->SetDegree(el, MxDeg);
myCurve->SetElement(el, CoeffEl);
}
}
//=======================================================================
//function : SetWeight
//purpose :
//=======================================================================
void AppDef_LinearCriteria::SetWeight(const Standard_Real QuadraticWeight,
const Standard_Real QualityWeight,
const Standard_Real percentJ1,
const Standard_Real percentJ2,
const Standard_Real percentJ3)
{
if (QuadraticWeight < 0. || QualityWeight < 0.)
throw Standard_DomainError("AppDef_LinearCriteria::SetWeight");
if (percentJ1 < 0. || percentJ2 < 0. || percentJ3 < 0.)
throw Standard_DomainError("AppDef_LinearCriteria::SetWeight");
myQuadraticWeight = QuadraticWeight; myQualityWeight = QualityWeight;
Standard_Real Total = percentJ1 + percentJ2 + percentJ3;
myPercent[0] = percentJ1 / Total;
myPercent[1] = percentJ2 / Total;
myPercent[2] = percentJ3 / Total;
}
//=======================================================================
//function : GetWeight
//purpose :
//=======================================================================
void AppDef_LinearCriteria::GetWeight(Standard_Real& QuadraticWeight,
Standard_Real& QualityWeight) const
{
QuadraticWeight = myQuadraticWeight; QualityWeight = myQualityWeight;
}
//=======================================================================
//function : SetWeight
//purpose :
//=======================================================================
void AppDef_LinearCriteria::SetWeight(const TColStd_Array1OfReal& Weight)
{
myPntWeight = Weight;
}
//=======================================================================
//function : BuildCache
//purpose :
//=======================================================================
void AppDef_LinearCriteria::BuildCache(const Standard_Integer Element)
{
Standard_Real t;
Standard_Real UFirst, ULast;
Standard_Integer ipnt;
UFirst = myCurve->Knots()(Element);
ULast = myCurve->Knots()(Element + 1);
IF = 0;
for(ipnt = myParameters->Lower(); ipnt <= myParameters->Upper(); ipnt++) {
t = myParameters->Value(ipnt);
if((t > UFirst && t <= ULast) || (Element == 1 && t == UFirst)) {
if (IF == 0) IF=ipnt;
IL = ipnt;
}
else if (t>ULast) break;
}
if (IF != 0) {
Handle(PLib_Base) myBase = myCurve->Base();
Standard_Integer order = myBase->WorkDegree()+1, ii;
myCache = new TColStd_HArray1OfReal (1, (IL-IF+1)*(order));
ii =1;
for(ipnt = IF, ii=1; ipnt <= IL; ipnt++, ii+=order) {
Standard_Real * cache = &myCache->ChangeValue(ii);
TColStd_Array1OfReal BasicValue(cache[0], 0, order-1);
t = myParameters->Value(ipnt);
Standard_Real coeff = 2./(ULast - UFirst), c0 = -(ULast + UFirst)/2., s;
s = (t + c0) * coeff;
myBase->D0(s, BasicValue);
}
}
else { //pas de points dans l'interval.
IF = IL;
IL--;
}
myE = Element;
}