mirror of
https://git.dev.opencascade.org/repos/occt.git
synced 2025-04-05 18:16:23 +03:00
Automatic upgrade of OCCT code by command "occt_upgrade . -nocdl": - WOK-generated header files from inc and sources from drv are moved to src - CDL files removed - All packages are converted to nocdlpack
592 lines
16 KiB
C++
592 lines
16 KiB
C++
// Created on: 1993-12-02
|
|
// Created by: Jacques GOUSSARD
|
|
// Copyright (c) 1993-1999 Matra Datavision
|
|
// Copyright (c) 1999-2014 OPEN CASCADE SAS
|
|
//
|
|
// This file is part of Open CASCADE Technology software library.
|
|
//
|
|
// This library is free software; you can redistribute it and/or modify it under
|
|
// the terms of the GNU Lesser General Public License version 2.1 as published
|
|
// by the Free Software Foundation, with special exception defined in the file
|
|
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
|
|
// distribution for complete text of the license and disclaimer of any warranty.
|
|
//
|
|
// Alternatively, this file may be used under the terms of Open CASCADE
|
|
// commercial license or contractual agreement.
|
|
|
|
|
|
#include <Adaptor2d_HCurve2d.hxx>
|
|
#include <Adaptor3d_HCurve.hxx>
|
|
#include <Adaptor3d_HSurface.hxx>
|
|
#include <BlendFunc.hxx>
|
|
#include <BlendFunc_ConstRadInv.hxx>
|
|
#include <math_Matrix.hxx>
|
|
#include <Precision.hxx>
|
|
|
|
#define Eps 1.e-15
|
|
|
|
|
|
BlendFunc_ConstRadInv::BlendFunc_ConstRadInv(const Handle(Adaptor3d_HSurface)& S1,
|
|
const Handle(Adaptor3d_HSurface)& S2,
|
|
const Handle(Adaptor3d_HCurve)& C):
|
|
surf1(S1),surf2(S2),curv(C)
|
|
{}
|
|
|
|
void BlendFunc_ConstRadInv::Set(const Standard_Real R,
|
|
const Standard_Integer Choix)
|
|
|
|
{
|
|
choix = Choix;
|
|
switch (choix) {
|
|
case 1:
|
|
case 2:
|
|
{
|
|
ray1 = -R;
|
|
ray2 = -R;
|
|
}
|
|
break;
|
|
case 3:
|
|
case 4:
|
|
{
|
|
ray1 = R;
|
|
ray2 = -R;
|
|
}
|
|
break;
|
|
case 5:
|
|
case 6:
|
|
{
|
|
ray1 = R;
|
|
ray2 = R;
|
|
}
|
|
break;
|
|
case 7:
|
|
case 8:
|
|
{
|
|
ray1 = -R;
|
|
ray2 = R;
|
|
}
|
|
break;
|
|
default:
|
|
ray1 = ray2 = -R;
|
|
}
|
|
}
|
|
|
|
void BlendFunc_ConstRadInv::Set(const Standard_Boolean OnFirst,
|
|
const Handle(Adaptor2d_HCurve2d)& C)
|
|
{
|
|
first = OnFirst;
|
|
csurf = C;
|
|
}
|
|
|
|
Standard_Integer BlendFunc_ConstRadInv::NbEquations () const
|
|
{
|
|
return 4;
|
|
}
|
|
|
|
|
|
void BlendFunc_ConstRadInv::GetTolerance(math_Vector& Tolerance,
|
|
const Standard_Real Tol) const
|
|
{
|
|
Tolerance(1) = csurf->Resolution(Tol);
|
|
Tolerance(2) = curv->Resolution(Tol);
|
|
if (first) {
|
|
Tolerance(3) = surf2->UResolution(Tol);
|
|
Tolerance(4) = surf2->VResolution(Tol);
|
|
}
|
|
else {
|
|
Tolerance(3) = surf1->UResolution(Tol);
|
|
Tolerance(4) = surf1->VResolution(Tol);
|
|
}
|
|
}
|
|
|
|
|
|
void BlendFunc_ConstRadInv::GetBounds(math_Vector& InfBound,
|
|
math_Vector& SupBound) const
|
|
{
|
|
InfBound(1) = csurf->FirstParameter();
|
|
InfBound(2) = curv->FirstParameter();
|
|
SupBound(1) = csurf->LastParameter();
|
|
SupBound(2) = curv->LastParameter();
|
|
|
|
if (first) {
|
|
InfBound(3) = surf2->FirstUParameter();
|
|
InfBound(4) = surf2->FirstVParameter();
|
|
SupBound(3) = surf2->LastUParameter();
|
|
SupBound(4) = surf2->LastVParameter();
|
|
if(!Precision::IsInfinite(InfBound(3)) &&
|
|
!Precision::IsInfinite(SupBound(3))) {
|
|
Standard_Real range = (SupBound(3) - InfBound(3));
|
|
InfBound(3) -= range;
|
|
SupBound(3) += range;
|
|
}
|
|
if(!Precision::IsInfinite(InfBound(4)) &&
|
|
!Precision::IsInfinite(SupBound(4))) {
|
|
Standard_Real range = (SupBound(4) - InfBound(4));
|
|
InfBound(4) -= range;
|
|
SupBound(4) += range;
|
|
}
|
|
}
|
|
else {
|
|
InfBound(3) = surf1->FirstUParameter();
|
|
InfBound(4) = surf1->FirstVParameter();
|
|
SupBound(3) = surf1->LastUParameter();
|
|
SupBound(4) = surf1->LastVParameter();
|
|
if(!Precision::IsInfinite(InfBound(3)) &&
|
|
!Precision::IsInfinite(SupBound(3))) {
|
|
Standard_Real range = (SupBound(3) - InfBound(3));
|
|
InfBound(3) -= range;
|
|
SupBound(3) += range;
|
|
}
|
|
if(!Precision::IsInfinite(InfBound(4)) &&
|
|
!Precision::IsInfinite(SupBound(4))) {
|
|
Standard_Real range = (SupBound(4) - InfBound(4));
|
|
InfBound(4) -= range;
|
|
SupBound(4) += range;
|
|
}
|
|
}
|
|
}
|
|
|
|
Standard_Boolean BlendFunc_ConstRadInv::IsSolution(const math_Vector& Sol,
|
|
const Standard_Real Tol)
|
|
{
|
|
math_Vector valsol(1,4);
|
|
Value(Sol,valsol);
|
|
if (Abs(valsol(1)) <= Tol &&
|
|
valsol(2)*valsol(2) + valsol(3)*valsol(3) +
|
|
valsol(4)*valsol(4) <= Tol*Tol) {
|
|
return Standard_True;
|
|
}
|
|
return Standard_False;
|
|
|
|
}
|
|
|
|
|
|
Standard_Boolean BlendFunc_ConstRadInv::Value(const math_Vector& X,
|
|
math_Vector& F)
|
|
{
|
|
gp_Pnt ptcur;
|
|
gp_Vec d1cur;
|
|
curv->D1(X(2),ptcur,d1cur);
|
|
|
|
const gp_Vec nplan = d1cur.Normalized();
|
|
const Standard_Real theD = -(nplan.XYZ().Dot(ptcur.XYZ()));
|
|
|
|
const gp_Pnt2d pt2d(csurf->Value(X(1)));
|
|
|
|
gp_Pnt pts1,pts2;
|
|
gp_Vec d1u1,d1v1,d1u2,d1v2;
|
|
if (first)
|
|
{
|
|
surf1->D1(pt2d.X(),pt2d.Y(),pts1,d1u1,d1v1);
|
|
surf2->D1(X(3),X(4),pts2,d1u2,d1v2);
|
|
}
|
|
else
|
|
{
|
|
surf1->D1(X(3),X(4),pts1,d1u1,d1v1);
|
|
surf2->D1(pt2d.X(),pt2d.Y(),pts2,d1u2,d1v2);
|
|
}
|
|
|
|
F(1) = (nplan.X() * (pts1.X() + pts2.X()) +
|
|
nplan.Y() * (pts1.Y() + pts2.Y()) +
|
|
nplan.Z() * (pts1.Z() + pts2.Z())) /2. + theD;
|
|
|
|
gp_Vec ns1 = d1u1.Crossed(d1v1);
|
|
if (ns1.Magnitude() < Eps) {
|
|
if (first) BlendFunc::ComputeNormal(surf1, pt2d, ns1);
|
|
else {
|
|
gp_Pnt2d P(X(3), X(4));
|
|
BlendFunc::ComputeNormal(surf1, P, ns1);
|
|
}
|
|
}
|
|
|
|
gp_Vec ns2 = d1u2.Crossed(d1v2);
|
|
if (ns2.Magnitude() < Eps) {
|
|
if (!first) BlendFunc::ComputeNormal(surf2, pt2d, ns2);
|
|
else {
|
|
gp_Pnt2d P(X(3), X(4));
|
|
BlendFunc::ComputeNormal(surf2, P, ns2);
|
|
}
|
|
}
|
|
|
|
Standard_Real norm1 = nplan.Crossed(ns1).Magnitude();
|
|
Standard_Real norm2 = nplan.Crossed(ns2).Magnitude();
|
|
if (norm1 < Eps) {
|
|
norm1 = 1;
|
|
}
|
|
if (norm2 < Eps) {
|
|
norm2 = 1; // Unsatisfactory, but it is not necessary to stop
|
|
}
|
|
|
|
gp_Vec resul;
|
|
ns1.SetLinearForm(nplan.Dot(ns1)/norm1,nplan, -1./norm1,ns1);
|
|
ns2.SetLinearForm(nplan.Dot(ns2)/norm2,nplan, -1./norm2,ns2);
|
|
resul.SetLinearForm(ray1,ns1,-1.,pts2.XYZ(),-ray2,ns2,pts1.XYZ());
|
|
F(2) = resul.X();
|
|
F(3) = resul.Y();
|
|
F(4) = resul.Z();
|
|
|
|
return Standard_True;
|
|
}
|
|
|
|
|
|
Standard_Boolean BlendFunc_ConstRadInv::Derivatives(const math_Vector& X,
|
|
math_Matrix& D)
|
|
{
|
|
gp_Vec d1u1,d1v1,d1u2,d1v2;
|
|
gp_Vec d2u1,d2v1,d2uv1,d2u2,d2v2,d2uv2;
|
|
gp_Vec d1cur,d2cur;
|
|
gp_Vec ns1,ns2,nplan,dnplan,ncrossns1,ncrossns2,resul1,resul2,temp;
|
|
gp_Pnt pts1,pts2,ptcur;
|
|
gp_Pnt2d p2d;
|
|
gp_Vec2d v2d;
|
|
Standard_Real norm1,norm2,ndotns1,ndotns2,normtgcur;
|
|
Standard_Real grosterme,theD;
|
|
|
|
curv->D2(X(2),ptcur,d1cur,d2cur);
|
|
normtgcur = d1cur.Magnitude();
|
|
nplan = d1cur.Normalized();
|
|
theD = -(nplan.XYZ().Dot(ptcur.XYZ()));
|
|
|
|
dnplan.SetLinearForm(theD, nplan, d2cur);
|
|
dnplan /= normtgcur;
|
|
|
|
csurf->D1(X(1),p2d,v2d);
|
|
if (first)
|
|
{
|
|
surf1->D2(p2d.X(),p2d.Y(),pts1,d1u1,d1v1,d2u1,d2v1,d2uv1);
|
|
surf2->D2(X(3),X(4),pts2,d1u2,d1v2,d2u2,d2v2,d2uv2);
|
|
temp.SetLinearForm(v2d.X(),d1u1,v2d.Y(),d1v1);
|
|
D(1,1) = nplan.Dot(temp)/2.;
|
|
temp.SetXYZ(0.5*(pts1.XYZ()+pts2.XYZ()) - ptcur.XYZ());
|
|
D(1,2) = dnplan.Dot(temp) - normtgcur;
|
|
D(1,3) = nplan.Dot(d1u2)/2.;
|
|
D(1,4) = nplan.Dot(d1v2)/2.;
|
|
}
|
|
else
|
|
{
|
|
surf1->D2(X(3),X(4),pts1,d1u1,d1v1,d2u1,d2v1,d2uv1);
|
|
surf2->D2(p2d.X(),p2d.Y(),pts2,d1u2,d1v2,d2u2,d2v2,d2uv2);
|
|
temp.SetLinearForm(v2d.X(),d1u2,v2d.Y(),d1v2);
|
|
D(1,1) = nplan.Dot(temp)/2.;
|
|
temp.SetXYZ(0.5*(pts1.XYZ()+pts2.XYZ()) - ptcur.XYZ());
|
|
D(1,2) = dnplan.Dot(temp) - normtgcur;
|
|
D(1,3) = nplan.Dot(d1u1)/2.;
|
|
D(1,4) = nplan.Dot(d1v1)/2.;
|
|
}
|
|
|
|
ns1 = d1u1.Crossed(d1v1);
|
|
if (ns1.Magnitude() < Eps) {
|
|
if (first) BlendFunc::ComputeNormal(surf1, p2d, ns1);
|
|
else {
|
|
gp_Pnt2d P(X(3), X(4));
|
|
BlendFunc::ComputeNormal(surf1, P, ns1);
|
|
}
|
|
}
|
|
|
|
ns2 = d1u2.Crossed(d1v2);
|
|
if (ns2.Magnitude() < Eps) {
|
|
if (!first) BlendFunc::ComputeNormal(surf2, p2d, ns2);
|
|
else {
|
|
gp_Pnt2d P(X(3), X(4));
|
|
BlendFunc::ComputeNormal(surf2, P, ns2);
|
|
}
|
|
}
|
|
|
|
ncrossns1 = nplan.Crossed(ns1);
|
|
ncrossns2 = nplan.Crossed(ns2);
|
|
norm1 = ncrossns1.Magnitude();
|
|
norm2 = ncrossns2.Magnitude();
|
|
if (norm1 < Eps) {
|
|
norm1 = 1; // Unsatisfactory, but it is not necessary to stop
|
|
#ifdef OCCT_DEBUG
|
|
cout << " ConstRadInv : Surface singuliere " << endl;
|
|
#endif
|
|
}
|
|
if (norm2 < Eps) {
|
|
norm2 = 1; // Unsatisfactory, but it is not necessary to stop
|
|
#ifdef OCCT_DEBUG
|
|
cout << " ConstRadInv : Surface singuliere " << endl;
|
|
#endif
|
|
}
|
|
|
|
ndotns1 = nplan.Dot(ns1);
|
|
ndotns2 = nplan.Dot(ns2);
|
|
|
|
// Derived compared to u1
|
|
|
|
temp = d2u1.Crossed(d1v1).Added(d1u1.Crossed(d2uv1));
|
|
grosterme = ncrossns1.Dot(nplan.Crossed(temp))/norm1/norm1;
|
|
resul1.SetLinearForm(-ray1/norm1*(grosterme*ndotns1-nplan.Dot(temp)),nplan,
|
|
ray1*grosterme/norm1,ns1,
|
|
-ray1/norm1,temp,
|
|
d1u1);
|
|
|
|
|
|
// Derived compared to v1
|
|
|
|
temp = d2uv1.Crossed(d1v1).Added(d1u1.Crossed(d2v1));
|
|
grosterme = ncrossns1.Dot(nplan.Crossed(temp))/norm1/norm1;
|
|
resul2.SetLinearForm(-ray1/norm1*(grosterme*ndotns1-nplan.Dot(temp)),nplan,
|
|
ray1*grosterme/norm1,ns1,
|
|
-ray1/norm1,temp,
|
|
d1v1);
|
|
|
|
if (first) {
|
|
D(2,1) = v2d.X()*resul1.X() + v2d.Y()*resul2.X();
|
|
D(3,1) = v2d.X()*resul1.Y() + v2d.Y()*resul2.Y();
|
|
D(4,1) = v2d.X()*resul1.Z() + v2d.Y()*resul2.Z();
|
|
}
|
|
else {
|
|
D(2,3) = resul1.X();
|
|
D(3,3) = resul1.Y();
|
|
D(4,3) = resul1.Z();
|
|
|
|
D(2,4) = resul2.X();
|
|
D(3,4) = resul2.Y();
|
|
D(4,4) = resul2.Z();
|
|
}
|
|
|
|
|
|
// derived compared to w (parameter on guideline)
|
|
// It is assumed that the radius is constant
|
|
|
|
grosterme = ncrossns1.Dot(dnplan.Crossed(ns1))/norm1/norm1;
|
|
resul1.SetLinearForm(-ray1/norm1*(grosterme*ndotns1-dnplan.Dot(ns1)),nplan,
|
|
ray1*ndotns1/norm1,dnplan,
|
|
ray1*grosterme/norm1,ns1);
|
|
|
|
|
|
grosterme = ncrossns2.Dot(dnplan.Crossed(ns2))/norm2/norm2;
|
|
resul2.SetLinearForm(ray2/norm2*(grosterme*ndotns2-dnplan.Dot(ns2)),nplan,
|
|
-ray2*ndotns2/norm2,dnplan,
|
|
-ray2*grosterme/norm2,ns2);
|
|
|
|
|
|
D(2,2) = resul1.X() + resul2.X();
|
|
D(3,2) = resul1.Y() + resul2.Y();
|
|
D(4,2) = resul1.Z() + resul2.Z();
|
|
|
|
|
|
|
|
// Derived compared to u2
|
|
temp = d2u2.Crossed(d1v2).Added(d1u2.Crossed(d2uv2));
|
|
grosterme = ncrossns2.Dot(nplan.Crossed(temp))/norm2/norm2;
|
|
resul1.SetLinearForm(ray2/norm2*(grosterme*ndotns2-nplan.Dot(temp)),nplan,
|
|
-ray2*grosterme/norm2,ns2,
|
|
ray2/norm2,temp);
|
|
resul1.Subtract(d1u2);
|
|
|
|
// Derived compared to v2
|
|
temp = d2uv2.Crossed(d1v2).Added(d1u2.Crossed(d2v2));
|
|
grosterme = ncrossns2.Dot(nplan.Crossed(temp))/norm2/norm2;
|
|
resul2.SetLinearForm(ray2/norm2*(grosterme*ndotns2-nplan.Dot(temp)),nplan,
|
|
-ray2*grosterme/norm2,ns2,
|
|
ray2/norm2,temp);
|
|
resul2.Subtract(d1v2);
|
|
|
|
if (!first) {
|
|
D(2,1) = v2d.X()*resul1.X() + v2d.Y()*resul2.X();
|
|
D(3,1) = v2d.X()*resul1.Y() + v2d.Y()*resul2.Y();
|
|
D(4,1) = v2d.X()*resul1.Z() + v2d.Y()*resul2.Z();
|
|
}
|
|
else {
|
|
D(2,3) = resul1.X();
|
|
D(3,3) = resul1.Y();
|
|
D(4,3) = resul1.Z();
|
|
|
|
D(2,4) = resul2.X();
|
|
D(3,4) = resul2.Y();
|
|
D(4,4) = resul2.Z();
|
|
}
|
|
|
|
|
|
return Standard_True;
|
|
}
|
|
|
|
Standard_Boolean BlendFunc_ConstRadInv::Values(const math_Vector& X,
|
|
math_Vector& F,
|
|
math_Matrix& D)
|
|
{
|
|
gp_Vec d1u1,d1v1,d1u2,d1v2,d1cur;
|
|
gp_Vec d2u1,d2v1,d2uv1,d2u2,d2v2,d2uv2,d2cur;
|
|
gp_Vec ns1,ns2,nplan,dnplan,ncrossns1,ncrossns2,resul1,resul2,temp;
|
|
gp_Pnt ptcur,pts1,pts2;
|
|
gp_Pnt2d p2d;
|
|
gp_Vec2d v2d;
|
|
Standard_Real norm1,norm2,ndotns1,ndotns2,normtgcur;
|
|
Standard_Real grosterme,theD;
|
|
|
|
curv->D2(X(2),ptcur,d1cur,d2cur);
|
|
normtgcur = d1cur.Magnitude();
|
|
nplan = d1cur.Normalized();
|
|
theD = -(nplan.XYZ().Dot(ptcur.XYZ()));
|
|
dnplan.SetLinearForm(-nplan.Dot(d2cur),nplan,d2cur);
|
|
dnplan /= normtgcur;
|
|
|
|
csurf->D1(X(1),p2d,v2d);
|
|
|
|
if (first)
|
|
{
|
|
surf1->D2(p2d.X(),p2d.Y(),pts1,d1u1,d1v1,d2u1,d2v1,d2uv1);
|
|
surf2->D2(X(3),X(4),pts2,d1u2,d1v2,d2u2,d2v2,d2uv2);
|
|
|
|
temp.SetLinearForm(v2d.X(),d1u1,v2d.Y(),d1v1);
|
|
D(1,1) = nplan.Dot(temp)/2.;
|
|
temp.SetXYZ(0.5*(pts1.XYZ()+pts2.XYZ())-ptcur.XYZ());
|
|
D(1,2) = dnplan.Dot(temp) - normtgcur;
|
|
D(1,3) = nplan.Dot(d1u2)/2.;
|
|
D(1,4) = nplan.Dot(d1v2)/2.;
|
|
}
|
|
else
|
|
{
|
|
surf1->D2(X(3),X(4),pts1,d1u1,d1v1,d2u1,d2v1,d2uv1);
|
|
surf2->D2(p2d.X(),p2d.Y(),pts2,d1u2,d1v2,d2u2,d2v2,d2uv2);
|
|
|
|
temp.SetLinearForm(v2d.X(),d1u2,v2d.Y(),d1v2);
|
|
D(1,1) = nplan.Dot(temp)/2.;
|
|
temp.SetXYZ(0.5*(pts1.XYZ()+pts2.XYZ())-ptcur.XYZ());
|
|
D(1,2) = dnplan.Dot(temp) - normtgcur;
|
|
D(1,3) = nplan.Dot(d1u1)/2.;
|
|
D(1,4) = nplan.Dot(d1v1)/2.;
|
|
}
|
|
|
|
F(1) = (nplan.X()* (pts1.X() + pts2.X()) +
|
|
nplan.Y()* (pts1.Y() + pts2.Y()) +
|
|
nplan.Z()* (pts1.Z() + pts2.Z())) /2. + theD;
|
|
|
|
|
|
ns1 = d1u1.Crossed(d1v1);
|
|
if (ns1.Magnitude() < Eps) {
|
|
if (first) BlendFunc::ComputeNormal(surf1, p2d, ns1);
|
|
else {
|
|
gp_Pnt2d P(X(3), X(4));
|
|
BlendFunc::ComputeNormal(surf1, P, ns1);
|
|
}
|
|
}
|
|
|
|
ns2 = d1u2.Crossed(d1v2);
|
|
if (ns2.Magnitude() < Eps) {
|
|
if (!first) BlendFunc::ComputeNormal(surf2, p2d, ns2);
|
|
else {
|
|
gp_Pnt2d P(X(3), X(4));
|
|
BlendFunc::ComputeNormal(surf2, P, ns2);
|
|
}
|
|
}
|
|
|
|
ncrossns1 = nplan.Crossed(ns1);
|
|
ncrossns2 = nplan.Crossed(ns2);
|
|
norm1 = ncrossns1.Magnitude();
|
|
norm2 = ncrossns2.Magnitude();
|
|
if (norm1 < Eps) {
|
|
norm1 = 1; // Unsatisfactory, but it is not necessary to stop
|
|
#ifdef OCCT_DEBUG
|
|
cout << " ConstRadInv : Surface singuliere " << endl;
|
|
#endif
|
|
}
|
|
if (norm2 < Eps) {
|
|
norm2 = 1; // Unsatisfactory, but it is not necessary to stop
|
|
#ifdef OCCT_DEBUG
|
|
cout << " ConstRadInv : Surface singuliere " << endl;
|
|
#endif
|
|
}
|
|
|
|
ndotns1 = nplan.Dot(ns1);
|
|
ndotns2 = nplan.Dot(ns2);
|
|
|
|
temp.SetLinearForm(ndotns1/norm1,nplan, -1./norm1,ns1);
|
|
resul1.SetLinearForm(ray1,temp,gp_Vec(pts2,pts1));
|
|
temp.SetLinearForm(ndotns2/norm2,nplan,-1./norm2,ns2);
|
|
resul1.Subtract(ray2*temp);
|
|
|
|
F(2) = resul1.X();
|
|
F(3) = resul1.Y();
|
|
F(4) = resul1.Z();
|
|
|
|
// Derived compared to u1
|
|
|
|
temp = d2u1.Crossed(d1v1).Added(d1u1.Crossed(d2uv1));
|
|
grosterme = ncrossns1.Dot(nplan.Crossed(temp))/norm1/norm1;
|
|
resul1.SetLinearForm(-ray1/norm1*(grosterme*ndotns1-nplan.Dot(temp)),nplan,
|
|
ray1*grosterme/norm1,ns1,
|
|
-ray1/norm1,temp,
|
|
d1u1);
|
|
|
|
|
|
// Derived compared to v1
|
|
|
|
temp = d2uv1.Crossed(d1v1).Added(d1u1.Crossed(d2v1));
|
|
grosterme = ncrossns1.Dot(nplan.Crossed(temp))/norm1/norm1;
|
|
resul2.SetLinearForm(-ray1/norm1*(grosterme*ndotns1-nplan.Dot(temp)),nplan,
|
|
ray1*grosterme/norm1,ns1,
|
|
-ray1/norm1,temp,
|
|
d1v1);
|
|
|
|
if (first) {
|
|
D(2,1) = v2d.X()*resul1.X() + v2d.Y()*resul2.X();
|
|
D(3,1) = v2d.X()*resul1.Y() + v2d.Y()*resul2.Y();
|
|
D(4,1) = v2d.X()*resul1.Z() + v2d.Y()*resul2.Z();
|
|
}
|
|
else {
|
|
D(2,3) = resul1.X();
|
|
D(3,3) = resul1.Y();
|
|
D(4,3) = resul1.Z();
|
|
|
|
D(2,4) = resul2.X();
|
|
D(3,4) = resul2.Y();
|
|
D(4,4) = resul2.Z();
|
|
}
|
|
|
|
// derived compared to w (parameter on guideline)
|
|
// It is assumed that the raduis is constant
|
|
|
|
grosterme = ncrossns1.Dot(dnplan.Crossed(ns1))/norm1/norm1;
|
|
resul1.SetLinearForm(-ray1/norm1*(grosterme*ndotns1-dnplan.Dot(ns1)),nplan,
|
|
ray1*ndotns1/norm1,dnplan,
|
|
ray1*grosterme/norm1,ns1);
|
|
|
|
|
|
grosterme = ncrossns2.Dot(dnplan.Crossed(ns2))/norm2/norm2;
|
|
resul2.SetLinearForm(ray2/norm2*(grosterme*ndotns2-dnplan.Dot(ns2)),nplan,
|
|
-ray2*ndotns2/norm2,dnplan,
|
|
-ray2*grosterme/norm2,ns2);
|
|
|
|
|
|
D(2,2) = resul1.X() + resul2.X();
|
|
D(3,2) = resul1.Y() + resul2.Y();
|
|
D(4,2) = resul1.Z() + resul2.Z();
|
|
|
|
|
|
|
|
// Derived compared to u2
|
|
temp = d2u2.Crossed(d1v2).Added(d1u2.Crossed(d2uv2));
|
|
grosterme = ncrossns2.Dot(nplan.Crossed(temp))/norm2/norm2;
|
|
resul1.SetLinearForm(ray2/norm2*(grosterme*ndotns2-nplan.Dot(temp)),nplan,
|
|
-ray2*grosterme/norm2,ns2,
|
|
ray2/norm2,temp);
|
|
resul1.Subtract(d1u2);
|
|
|
|
// Derived compared to v2
|
|
temp = d2uv2.Crossed(d1v2).Added(d1u2.Crossed(d2v2));
|
|
grosterme = ncrossns2.Dot(nplan.Crossed(temp))/norm2/norm2;
|
|
resul2.SetLinearForm(ray2/norm2*(grosterme*ndotns2-nplan.Dot(temp)),nplan,
|
|
-ray2*grosterme/norm2,ns2,
|
|
ray2/norm2,temp);
|
|
resul2.Subtract(d1v2);
|
|
|
|
if (!first) {
|
|
D(2,1) = v2d.X()*resul1.X() + v2d.Y()*resul2.X();
|
|
D(3,1) = v2d.X()*resul1.Y() + v2d.Y()*resul2.Y();
|
|
D(4,1) = v2d.X()*resul1.Z() + v2d.Y()*resul2.Z();
|
|
}
|
|
else {
|
|
D(2,3) = resul1.X();
|
|
D(3,3) = resul1.Y();
|
|
D(4,3) = resul1.Z();
|
|
|
|
D(2,4) = resul2.X();
|
|
D(3,4) = resul2.Y();
|
|
D(4,4) = resul2.Z();
|
|
}
|
|
return Standard_True;
|
|
}
|