mirror of
https://git.dev.opencascade.org/repos/occt.git
synced 2025-04-03 17:56:21 +03:00
Macro NO_CXX_EXCEPTION was removed from code. Method Raise() was replaced by explicit throw statement. Method Standard_Failure::Caught() was replaced by normal C++mechanism of exception transfer. Method Standard_Failure::Caught() is deprecated now. Eliminated empty constructors. Updated samples. Eliminate empty method ChangeValue from NCollection_Map class. Removed not operable methods from NCollection classes.
1696 lines
48 KiB
Plaintext
1696 lines
48 KiB
Plaintext
// Copyright (c) 1995-1999 Matra Datavision
|
|
// Copyright (c) 1999-2014 OPEN CASCADE SAS
|
|
//
|
|
// This file is part of Open CASCADE Technology software library.
|
|
//
|
|
// This library is free software; you can redistribute it and/or modify it under
|
|
// the terms of the GNU Lesser General Public License version 2.1 as published
|
|
// by the Free Software Foundation, with special exception defined in the file
|
|
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
|
|
// distribution for complete text of the license and disclaimer of any warranty.
|
|
//
|
|
// Alternatively, this file may be used under the terms of Open CASCADE
|
|
// commercial license or contractual agreement.
|
|
|
|
// lpa, le 27/07/91
|
|
// pmn, 30/10/98 : Protection dans les cas surcontraint -> "isready"
|
|
|
|
// Approximation d une MultiLine de points decrite par le tool MLineTool.
|
|
// Ce programme utilise les moindres carres pour le cas suivant:
|
|
// passage et tangences aux extremites.
|
|
|
|
|
|
#define No_Standard_RangeError
|
|
#define No_Standard_OutOfRange
|
|
#define No_Standard_DimensionError
|
|
|
|
#include <math_Householder.hxx>
|
|
#include <math_Crout.hxx>
|
|
#include <AppParCurves.hxx>
|
|
#include <gp_Pnt.hxx>
|
|
#include <gp_Pnt2d.hxx>
|
|
#include <gp_Vec.hxx>
|
|
#include <gp_Vec2d.hxx>
|
|
#include <TColgp_Array1OfPnt.hxx>
|
|
#include <TColgp_Array1OfPnt2d.hxx>
|
|
#include <TColgp_Array1OfVec.hxx>
|
|
#include <TColgp_Array1OfVec2d.hxx>
|
|
#include <TColStd_Array1OfInteger.hxx>
|
|
#include <TColStd_Array1OfReal.hxx>
|
|
#include <AppParCurves_Constraint.hxx>
|
|
#include <AppParCurves_MultiPoint.hxx>
|
|
#include <StdFail_NotDone.hxx>
|
|
#include <Standard_NoSuchObject.hxx>
|
|
#include <TColStd_Array1OfReal.hxx>
|
|
#include <math_Recipes.hxx>
|
|
#include <math_Crout.hxx>
|
|
|
|
|
|
|
|
static int FlatLength(const TColStd_Array1OfInteger& Mults) {
|
|
|
|
Standard_Integer sum = 0;
|
|
for (Standard_Integer i = Mults.Lower(); i <= Mults.Upper(); i++) {
|
|
sum += Mults.Value(i);
|
|
}
|
|
return sum;
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : CheckTangents
|
|
//purpose : Checks if theArrTg3d and theArrTg2d have direction
|
|
// corresponded to the direction between theArrPt1 and theArrPt2.
|
|
// If it is not then reverses tangent vectors.
|
|
// theArrPt1 (as same as theArrPt2) is sub-set of all 3D-points in
|
|
// one multy-point (multy-point is union of sets of 2D- and 3D-points).
|
|
//
|
|
//ATTENTION!!!
|
|
// The property of correlation between Tg3d and Tg2d is used here.
|
|
// Therefore, only 3D-coinciding is checked.
|
|
//=======================================================================
|
|
static void CheckTangents(const TColgp_Array1OfPnt& theArrPt1,
|
|
const TColgp_Array1OfPnt& theArrPt2,
|
|
TColgp_Array1OfVec& theArrTg3d,
|
|
TColgp_Array1OfVec2d& theArrTg2d)
|
|
{
|
|
if(theArrPt1.Lower() != theArrPt2.Lower())
|
|
return;
|
|
|
|
if(theArrPt1.Upper() != theArrPt2.Upper())
|
|
return;
|
|
|
|
if(theArrTg3d.Length() != theArrPt1.Length())
|
|
return;
|
|
|
|
Standard_Boolean isToChangeDir = Standard_False;
|
|
|
|
for(Standard_Integer i = theArrPt1.Lower(); i <= theArrPt1.Upper(); i++)
|
|
{
|
|
const gp_Vec aV1(theArrPt1(i), theArrPt2(i));
|
|
const gp_Vec& aV2 = theArrTg3d(i);
|
|
|
|
if(aV1.Dot(aV2) < 0.0)
|
|
{
|
|
isToChangeDir = Standard_True;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if(!isToChangeDir)
|
|
return;
|
|
|
|
//Change directions for every 2D- and 3D-tangents
|
|
|
|
for(Standard_Integer i = theArrTg3d.Lower(); i <= theArrTg3d.Upper(); i++)
|
|
{
|
|
theArrTg3d(i).Reverse();
|
|
}
|
|
|
|
for(Standard_Integer i = theArrTg2d.Lower(); i <= theArrTg2d.Upper(); i++)
|
|
{
|
|
theArrTg2d(i).Reverse();
|
|
}
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : CheckTangents
|
|
//purpose : Checks if theArrTg2d have direction
|
|
// corresponded to the direction between theArrPt1 and theArrPt2.
|
|
// If it is not then reverses tangent vector.
|
|
// theArrPt1 (as same as theArrPt2) is sub-set of all 2D-points in
|
|
// one multy-point (multy-point is union of sets of 2D- and 3D-points).
|
|
//=======================================================================
|
|
static void CheckTangents(const TColgp_Array1OfPnt2d& theArrPt1,
|
|
const TColgp_Array1OfPnt2d& theArrPt2,
|
|
TColgp_Array1OfVec2d& theArrTg2d)
|
|
{
|
|
if(theArrPt1.Lower() != theArrPt2.Lower())
|
|
return;
|
|
|
|
if(theArrPt1.Upper() != theArrPt2.Upper())
|
|
return;
|
|
|
|
for(Standard_Integer i = theArrPt1.Lower(); i <= theArrPt1.Upper(); i++)
|
|
{
|
|
const gp_Vec2d aV1(theArrPt1(i), theArrPt2(i));
|
|
const gp_Vec2d& aV2 = theArrTg2d(i);
|
|
|
|
if(aV1.Dot(aV2) < 0.0)
|
|
{
|
|
theArrTg2d(i).Reverse();
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
AppParCurves_LeastSquare::
|
|
AppParCurves_LeastSquare(const MultiLine& SSP,
|
|
const Standard_Integer FirstPoint,
|
|
const Standard_Integer LastPoint,
|
|
const AppParCurves_Constraint FirstCons,
|
|
const AppParCurves_Constraint LastCons,
|
|
const math_Vector& Parameters,
|
|
const Standard_Integer NbPol):
|
|
SCU(NbPol),
|
|
mypoles(1, NbPol,
|
|
1, NbBColumns(SSP)),
|
|
A(FirstPoint, LastPoint, 1, NbPol),
|
|
DA(FirstPoint, LastPoint, 1, NbPol),
|
|
B2(TheFirstPoint(FirstCons, FirstPoint),
|
|
Max(TheFirstPoint(FirstCons, FirstPoint),
|
|
TheLastPoint(LastCons, LastPoint)),
|
|
1, NbBColumns(SSP)),
|
|
mypoints(FirstPoint, LastPoint, 1, NbBColumns(SSP)),
|
|
Vflatknots(1, 1),
|
|
Vec1t(1, NbBColumns(SSP)),
|
|
Vec1c(1, NbBColumns(SSP)),
|
|
Vec2t(1, NbBColumns(SSP)),
|
|
Vec2c(1, NbBColumns(SSP)),
|
|
theError(FirstPoint, LastPoint,
|
|
1, ToolLine::NbP3d(SSP)+ToolLine::NbP2d(SSP), 0.0),
|
|
myindex(FirstPoint, LastPoint, 0),
|
|
nbpoles(NbPol)
|
|
{
|
|
FirstConstraint = FirstCons;
|
|
LastConstraint = LastCons;
|
|
Init(SSP, FirstPoint, LastPoint);
|
|
Perform(Parameters);
|
|
}
|
|
|
|
|
|
|
|
AppParCurves_LeastSquare::
|
|
AppParCurves_LeastSquare(const MultiLine& SSP,
|
|
const Standard_Integer FirstPoint,
|
|
const Standard_Integer LastPoint,
|
|
const AppParCurves_Constraint FirstCons,
|
|
const AppParCurves_Constraint LastCons,
|
|
const Standard_Integer NbPol):
|
|
SCU(NbPol),
|
|
mypoles(1, NbPol,
|
|
1, NbBColumns(SSP)),
|
|
A(FirstPoint, LastPoint, 1, NbPol),
|
|
DA(FirstPoint, LastPoint, 1, NbPol),
|
|
B2(TheFirstPoint(FirstCons, FirstPoint),
|
|
Max(TheFirstPoint(FirstCons, FirstPoint),
|
|
TheLastPoint(LastCons, LastPoint)),
|
|
1, NbBColumns(SSP)),
|
|
mypoints(FirstPoint, LastPoint, 1, NbBColumns(SSP)),
|
|
Vflatknots(1, 1),
|
|
Vec1t(1, NbBColumns(SSP)),
|
|
Vec1c(1, NbBColumns(SSP)),
|
|
Vec2t(1, NbBColumns(SSP)),
|
|
Vec2c(1, NbBColumns(SSP)),
|
|
theError(FirstPoint, LastPoint,
|
|
1, ToolLine::NbP3d(SSP)+ToolLine::NbP2d(SSP), 0.0),
|
|
myindex(FirstPoint, LastPoint, 0),
|
|
nbpoles(NbPol)
|
|
{
|
|
FirstConstraint = FirstCons;
|
|
LastConstraint = LastCons;
|
|
Init(SSP, FirstPoint, LastPoint);
|
|
}
|
|
|
|
|
|
AppParCurves_LeastSquare::
|
|
AppParCurves_LeastSquare(const MultiLine& SSP,
|
|
const TColStd_Array1OfReal& Knots,
|
|
const TColStd_Array1OfInteger& Mults,
|
|
const Standard_Integer FirstPoint,
|
|
const Standard_Integer LastPoint,
|
|
const AppParCurves_Constraint FirstCons,
|
|
const AppParCurves_Constraint LastCons,
|
|
const math_Vector& Parameters,
|
|
const Standard_Integer NbPol):
|
|
SCU(NbPol),
|
|
mypoles(1, NbPol,
|
|
1, NbBColumns(SSP)),
|
|
A(FirstPoint, LastPoint, 1, NbPol),
|
|
DA(FirstPoint, LastPoint, 1, NbPol),
|
|
B2(TheFirstPoint(FirstCons, FirstPoint),
|
|
Max(TheFirstPoint(FirstCons, FirstPoint),
|
|
TheLastPoint(LastCons, LastPoint)),
|
|
1, NbBColumns(SSP)),
|
|
mypoints(FirstPoint, LastPoint, 1, NbBColumns(SSP)),
|
|
Vflatknots(1, FlatLength(Mults)),
|
|
Vec1t(1, NbBColumns(SSP)),
|
|
Vec1c(1, NbBColumns(SSP)),
|
|
Vec2t(1, NbBColumns(SSP)),
|
|
Vec2c(1, NbBColumns(SSP)),
|
|
theError(FirstPoint, LastPoint,
|
|
1, ToolLine::NbP3d(SSP)+ToolLine::NbP2d(SSP), 0.0),
|
|
myindex(FirstPoint, LastPoint, 0),
|
|
nbpoles(NbPol)
|
|
{
|
|
FirstConstraint = FirstCons;
|
|
LastConstraint = LastCons;
|
|
myknots = new TColStd_HArray1OfReal(Knots.Lower(), Knots.Upper());
|
|
myknots->ChangeArray1() = Knots;
|
|
mymults = new TColStd_HArray1OfInteger(Mults.Lower(), Mults.Upper());
|
|
mymults->ChangeArray1() = Mults;
|
|
SCU.SetKnots(Knots);
|
|
SCU.SetMultiplicities(Mults);
|
|
Init(SSP, FirstPoint, LastPoint);
|
|
Perform(Parameters);
|
|
}
|
|
|
|
|
|
|
|
AppParCurves_LeastSquare::
|
|
AppParCurves_LeastSquare(const MultiLine& SSP,
|
|
const TColStd_Array1OfReal& Knots,
|
|
const TColStd_Array1OfInteger& Mults,
|
|
const Standard_Integer FirstPoint,
|
|
const Standard_Integer LastPoint,
|
|
const AppParCurves_Constraint FirstCons,
|
|
const AppParCurves_Constraint LastCons,
|
|
const Standard_Integer NbPol):
|
|
SCU(NbPol),
|
|
mypoles(1, NbPol,
|
|
1, NbBColumns(SSP)),
|
|
A(FirstPoint, LastPoint, 1, NbPol),
|
|
DA(FirstPoint, LastPoint, 1, NbPol),
|
|
B2(TheFirstPoint(FirstCons, FirstPoint),
|
|
Max(TheFirstPoint(FirstCons, FirstPoint),
|
|
TheLastPoint(LastCons, LastPoint)),
|
|
1, NbBColumns(SSP)),
|
|
mypoints(FirstPoint, LastPoint, 1, NbBColumns(SSP)),
|
|
Vflatknots(1, FlatLength(Mults)),
|
|
Vec1t(1, NbBColumns(SSP)),
|
|
Vec1c(1, NbBColumns(SSP)),
|
|
Vec2t(1, NbBColumns(SSP)),
|
|
Vec2c(1, NbBColumns(SSP)),
|
|
theError(FirstPoint, LastPoint,
|
|
1, ToolLine::NbP3d(SSP)+ToolLine::NbP2d(SSP), 0.0),
|
|
myindex(FirstPoint, LastPoint, 0),
|
|
nbpoles(NbPol)
|
|
{
|
|
myknots = new TColStd_HArray1OfReal(Knots.Lower(), Knots.Upper());
|
|
myknots->ChangeArray1() = Knots;
|
|
mymults = new TColStd_HArray1OfInteger(Mults.Lower(), Mults.Upper());
|
|
mymults->ChangeArray1() = Mults;
|
|
SCU.SetKnots(Knots);
|
|
SCU.SetMultiplicities(Mults);
|
|
FirstConstraint = FirstCons;
|
|
LastConstraint = LastCons;
|
|
Init(SSP, FirstPoint, LastPoint);
|
|
}
|
|
|
|
|
|
|
|
void AppParCurves_LeastSquare::Init(const MultiLine& SSP,
|
|
const Standard_Integer FirstPoint,
|
|
const Standard_Integer LastPoint)
|
|
{
|
|
// Variable de controle
|
|
iscalculated = Standard_False;
|
|
isready = Standard_True;
|
|
|
|
myfirstp = FirstPoint;
|
|
mylastp = LastPoint;
|
|
FirstP = TheFirstPoint(FirstConstraint, myfirstp);
|
|
LastP = TheLastPoint(LastConstraint, mylastp);
|
|
|
|
// Reperage des contraintes aux extremites:
|
|
// ========================================
|
|
Standard_Integer i, j, k, i2;
|
|
|
|
nbP2d = ToolLine::NbP2d(SSP);
|
|
nbP = ToolLine::NbP3d(SSP);
|
|
gp_Pnt Poi;
|
|
gp_Pnt2d Poi2d;
|
|
// gp_Vec V3d;
|
|
// gp_Vec2d V2d;
|
|
Standard_Integer mynbP2d = nbP2d, mynbP = nbP;
|
|
if (nbP2d == 0) mynbP2d = 1;
|
|
if (nbP == 0) mynbP = 1;
|
|
TColgp_Array1OfPnt TabP(1, mynbP);
|
|
TColgp_Array1OfPnt2d TabP2d(1, mynbP2d);
|
|
TColgp_Array1OfVec TabV(1, mynbP);
|
|
TColgp_Array1OfVec2d TabV2d(1, mynbP2d);
|
|
|
|
|
|
deg = nbpoles-1;
|
|
|
|
if (!mymults.IsNull()) {
|
|
Standard_Integer sum = 0;
|
|
for (i = mymults->Lower(); i <= mymults->Upper(); i++) {
|
|
sum += mymults->Value(i);
|
|
}
|
|
deg = sum -nbpoles-1;
|
|
k = 1;
|
|
Standard_Real val;
|
|
for (i = myknots->Lower(); i <= myknots->Upper(); i++) {
|
|
for (j = 1; j <= mymults->Value(i); j++) {
|
|
val = myknots->Value(i);
|
|
Vflatknots(k) = val;
|
|
k++;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
Affect(SSP, FirstPoint, FirstConstraint, Vec1t, Vec1c);
|
|
|
|
Affect(SSP, LastPoint, LastConstraint, Vec2t, Vec2c);
|
|
|
|
for (j = myfirstp; j <= mylastp; j++) {
|
|
i2 = 1;
|
|
if (nbP != 0 && nbP2d != 0) ToolLine::Value(SSP, j, TabP,TabP2d);
|
|
else if (nbP2d != 0) ToolLine::Value(SSP, j, TabP2d);
|
|
else ToolLine::Value(SSP, j, TabP);
|
|
for (i = 1; i <= nbP; i++) {
|
|
(TabP(i)).Coord(mypoints(j,i2),mypoints(j,i2+1),mypoints(j,i2+2));
|
|
i2 += 3;
|
|
}
|
|
for (i = 1;i <= nbP2d; i++) {
|
|
(TabP2d(i)).Coord(mypoints(j, i2), mypoints(j, i2+1));
|
|
i2 += 2;
|
|
}
|
|
}
|
|
|
|
AppParCurves_MultiPoint Pole1(nbP, nbP2d), PoleN(nbP, nbP2d);
|
|
|
|
if (FirstConstraint == AppParCurves_PassPoint ||
|
|
FirstConstraint == AppParCurves_TangencyPoint ||
|
|
FirstConstraint == AppParCurves_CurvaturePoint) {
|
|
i2 = 1;
|
|
for (i = 1; i <= nbP; i++) {
|
|
Poi.SetCoord(mypoints(myfirstp, i2),
|
|
mypoints(myfirstp, i2+1),
|
|
mypoints(myfirstp, i2+2));
|
|
Pole1.SetPoint(i, Poi);
|
|
i2 += 3;
|
|
}
|
|
for (i = 1; i <= nbP2d; i++) {
|
|
Poi2d.SetCoord(mypoints(myfirstp, i2), mypoints(myfirstp, i2+1));
|
|
Pole1.SetPoint2d(i+nbP, Poi2d);
|
|
i2 += 2;
|
|
}
|
|
for (i = 1; i <= mypoles.ColNumber(); i++)
|
|
mypoles(1, i) = mypoints(myfirstp, i);
|
|
}
|
|
|
|
|
|
|
|
if (LastConstraint == AppParCurves_PassPoint ||
|
|
LastConstraint == AppParCurves_TangencyPoint ||
|
|
FirstConstraint == AppParCurves_CurvaturePoint) {
|
|
i2 = 1;
|
|
for (i = 1; i <= nbP; i++) {
|
|
Poi.SetCoord(mypoints(mylastp, i2),
|
|
mypoints(mylastp, i2+1),
|
|
mypoints(mylastp, i2+2));
|
|
PoleN.SetPoint(i, Poi);
|
|
i2 += 3;
|
|
}
|
|
for (i = 1; i <= nbP2d; i++) {
|
|
Poi2d.SetCoord(mypoints(mylastp, i2),
|
|
mypoints(mylastp, i2+1));
|
|
PoleN.SetPoint2d(i+nbP, Poi2d);
|
|
i2 += 2;
|
|
}
|
|
|
|
for (i = 1; i <= mypoles.ColNumber(); i++)
|
|
mypoles(nbpoles, i) = mypoints(mylastp, i);
|
|
}
|
|
|
|
|
|
if (FirstConstraint == AppParCurves_NoConstraint) {
|
|
resinit = 1;
|
|
SCU.SetValue(1, Pole1);
|
|
if (LastConstraint == AppParCurves_NoConstraint) {
|
|
resfin = nbpoles;
|
|
}
|
|
else if (LastConstraint == AppParCurves_PassPoint) {
|
|
resfin = nbpoles-1;
|
|
SCU.SetValue(nbpoles, PoleN);
|
|
}
|
|
else if (LastConstraint == AppParCurves_TangencyPoint) {
|
|
resfin = nbpoles-2;
|
|
SCU.SetValue(nbpoles, PoleN);
|
|
}
|
|
else if (LastConstraint == AppParCurves_CurvaturePoint) {
|
|
resfin = nbpoles-3;
|
|
SCU.SetValue(nbpoles, PoleN);
|
|
}
|
|
}
|
|
else if (FirstConstraint == AppParCurves_PassPoint) {
|
|
resinit = 2;
|
|
SCU.SetValue(1, Pole1);
|
|
if (LastConstraint == AppParCurves_NoConstraint) {
|
|
resfin = nbpoles;
|
|
}
|
|
else if (LastConstraint == AppParCurves_PassPoint) {
|
|
resfin = nbpoles-1;
|
|
SCU.SetValue(nbpoles, PoleN);
|
|
}
|
|
else if (LastConstraint == AppParCurves_TangencyPoint) {
|
|
resfin = nbpoles-2;
|
|
SCU.SetValue(nbpoles, PoleN);
|
|
}
|
|
else if (LastConstraint == AppParCurves_CurvaturePoint) {
|
|
resfin = nbpoles-3;
|
|
SCU.SetValue(nbpoles, PoleN);
|
|
}
|
|
}
|
|
else if (FirstConstraint == AppParCurves_TangencyPoint) {
|
|
resinit = 3;
|
|
SCU.SetValue(1, Pole1);
|
|
if (LastConstraint == AppParCurves_NoConstraint) {
|
|
resfin = nbpoles;
|
|
}
|
|
if (LastConstraint == AppParCurves_PassPoint) {
|
|
resfin = nbpoles-1;
|
|
SCU.SetValue(nbpoles, PoleN);
|
|
}
|
|
if (LastConstraint == AppParCurves_TangencyPoint) {
|
|
resfin = nbpoles-2;
|
|
SCU.SetValue(nbpoles, PoleN);
|
|
}
|
|
else if (LastConstraint == AppParCurves_CurvaturePoint) {
|
|
resfin = nbpoles-3;
|
|
SCU.SetValue(nbpoles, PoleN);
|
|
}
|
|
}
|
|
else if (FirstConstraint == AppParCurves_CurvaturePoint) {
|
|
resinit = 4;
|
|
SCU.SetValue(1, Pole1);
|
|
if (LastConstraint == AppParCurves_NoConstraint) {
|
|
resfin = nbpoles;
|
|
}
|
|
if (LastConstraint == AppParCurves_PassPoint) {
|
|
resfin = nbpoles-1;
|
|
SCU.SetValue(nbpoles, PoleN);
|
|
}
|
|
if (LastConstraint == AppParCurves_TangencyPoint) {
|
|
resfin = nbpoles-2;
|
|
SCU.SetValue(nbpoles, PoleN);
|
|
}
|
|
else if (LastConstraint == AppParCurves_CurvaturePoint) {
|
|
resfin = nbpoles-3;
|
|
SCU.SetValue(nbpoles, PoleN);
|
|
}
|
|
}
|
|
|
|
Standard_Integer Nincx = resfin-resinit+1;
|
|
if (Nincx<1) { //Impossible d'aller plus loin
|
|
isready = Standard_False;
|
|
return;
|
|
}
|
|
Standard_Integer Neq = LastP-FirstP+1;
|
|
|
|
NA = 3*nbP+2*nbP2d;
|
|
Nlignes = NA*Neq;
|
|
Ninc = NA*Nincx;
|
|
if (FirstConstraint >= AppParCurves_TangencyPoint) Ninc++;
|
|
if (LastConstraint >= AppParCurves_TangencyPoint) Ninc++;
|
|
}
|
|
|
|
|
|
|
|
|
|
void AppParCurves_LeastSquare::Perform(const math_Vector& Parameters) {
|
|
|
|
done = Standard_False;
|
|
if (!isready) {
|
|
return;
|
|
}
|
|
Standard_Integer i, j, k, Ci, i2, k1, k2;
|
|
Standard_Integer nbpol1 = nbpoles-1, Ninc1 = Ninc-1;
|
|
Standard_Real AD1, A0;
|
|
// gp_Pnt Pt;
|
|
// gp_Pnt2d Pt2d;
|
|
iscalculated = Standard_False;
|
|
|
|
// calcul de la matrice A et DA des fonctions d approximation:
|
|
ComputeFunction(Parameters);
|
|
|
|
if (FirstConstraint != AppParCurves_TangencyPoint &&
|
|
LastConstraint != AppParCurves_TangencyPoint) {
|
|
if (FirstConstraint == AppParCurves_NoConstraint) {
|
|
if (LastConstraint == AppParCurves_NoConstraint ) {
|
|
|
|
math_Householder HouResol(A, mypoints);
|
|
if (!(HouResol.IsDone())) {
|
|
done = Standard_False;
|
|
return;
|
|
}
|
|
done = Standard_True;
|
|
mypoles = HouResol.AllValues();
|
|
return;
|
|
|
|
}
|
|
else {
|
|
for (j = FirstP; j <= LastP; j++) {
|
|
AD1 = A(j, nbpoles);
|
|
for (i = 1; i <= B2.ColNumber(); i++) {
|
|
B2(j, i) = mypoints(j,i) - AD1*mypoles(nbpoles, i);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else if (FirstConstraint == AppParCurves_PassPoint) {
|
|
if (LastConstraint == AppParCurves_NoConstraint) {
|
|
for (j = FirstP; j <= LastP; j++) {
|
|
A0 = A(j, 1);
|
|
for (i = 1; i <= B2.ColNumber(); i++) {
|
|
B2(j, i) = mypoints(j, i)- A0*mypoles(1, i);
|
|
}
|
|
}
|
|
}
|
|
else if (LastConstraint == AppParCurves_PassPoint) {
|
|
for (j = FirstP; j <= LastP; j++) {
|
|
A0 = A(j, 1);
|
|
AD1 = A(j, nbpoles);
|
|
for (i = 1; i <= B2.ColNumber(); i++) {
|
|
B2(j, i) = mypoints(j, i) - A0 * mypoles(1, i)
|
|
- AD1* mypoles(nbpoles, i);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// resolution:
|
|
|
|
Standard_Integer Nincx = resfin-resinit+1;
|
|
if (Nincx < 1) {
|
|
done = Standard_True;
|
|
return;
|
|
}
|
|
math_IntegerVector Index(1, Nincx);
|
|
SearchIndex(Index);
|
|
math_Matrix mytab(resinit, resfin, 1, B2.ColNumber(),0.0);
|
|
math_Vector TheAA(1, Index(Nincx), 0.0);
|
|
math_Vector myTABB(1, Nincx, 0.0);
|
|
|
|
MakeTAA(TheAA, mytab);
|
|
DACTCL_Decompose(TheAA, Index);
|
|
|
|
Standard_Integer kk2;
|
|
for (j = 1; j <= B2.ColNumber(); j++) {
|
|
kk2 = 1;
|
|
for (i = resinit; i <= resfin; i++) {
|
|
myTABB(kk2) = mytab(i, j);
|
|
kk2++;
|
|
}
|
|
DACTCL_Solve(TheAA, myTABB, Index);
|
|
|
|
i2 = 1;
|
|
for (k = resinit; k <= resfin; k++) {
|
|
mypoles(k, j) = myTABB.Value(i2);
|
|
i2++;
|
|
}
|
|
}
|
|
done = Standard_True;
|
|
}
|
|
|
|
// ===========================================================
|
|
// cas de tangence:
|
|
// ===========================================================
|
|
|
|
Standard_Integer Nincx = resfin-resinit+1;
|
|
Standard_Integer deport = 0, Nincx2 = 2*Nincx;
|
|
|
|
math_IntegerVector InternalIndex(1, Nincx);
|
|
SearchIndex(InternalIndex);
|
|
math_IntegerVector Index(1, Ninc);
|
|
|
|
Standard_Integer l = 1;
|
|
if (resinit <= resfin) {
|
|
for (j = 0; j <= NA-1; j++) {
|
|
deport = j*InternalIndex(Nincx);
|
|
for (i = 1; i <= Nincx; i++) {
|
|
Index(l) = InternalIndex(i) + deport;
|
|
l++;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (resinit > resfin) Index(1) = 1;
|
|
if (Ninc1 > 1) {
|
|
if (FirstConstraint >= AppParCurves_TangencyPoint &&
|
|
LastConstraint >= AppParCurves_TangencyPoint)
|
|
Index(Ninc1) = Index(Ninc1 - 1) + Ninc1;
|
|
}
|
|
if (FirstConstraint >= AppParCurves_TangencyPoint ||
|
|
LastConstraint >= AppParCurves_TangencyPoint)
|
|
Index(Ninc) = Index(Ninc-1) + Ninc;
|
|
|
|
|
|
math_Vector TheA(1, Index(Ninc), 0.0);
|
|
math_Vector myTAB(1, Ninc, 0.0);
|
|
|
|
MakeTAA(TheA, myTAB);
|
|
|
|
Standard_Integer Error = DACTCL_Decompose(TheA, Index);
|
|
Error = DACTCL_Solve(TheA, myTAB, Index);
|
|
|
|
if (!Error) done = Standard_True;
|
|
|
|
if (FirstConstraint >= AppParCurves_TangencyPoint &&
|
|
LastConstraint >= AppParCurves_TangencyPoint) {
|
|
lambda1 = myTAB.Value(Ninc1);
|
|
lambda2 = myTAB.Value(Ninc);
|
|
}
|
|
else if (FirstConstraint >= AppParCurves_TangencyPoint)
|
|
lambda1 = myTAB.Value(Ninc);
|
|
else if (LastConstraint >= AppParCurves_TangencyPoint)
|
|
lambda2 = myTAB.Value(Ninc);
|
|
|
|
|
|
|
|
// Les resultats sont stockes dans mypoles.
|
|
//=========================================
|
|
k = 1;
|
|
i2 = 1;
|
|
for (Ci = 1; Ci <= nbP; Ci++) {
|
|
k1 = k+1; k2 = k+2;
|
|
for (j = resinit; j <= resfin; j++) {
|
|
mypoles(j, k) = myTAB.Value(i2);
|
|
mypoles(j, k1) = myTAB.Value(i2+Nincx);
|
|
mypoles(j, k2) = myTAB.Value(i2+Nincx2);
|
|
i2++;
|
|
}
|
|
|
|
if (FirstConstraint >= AppParCurves_TangencyPoint) {
|
|
mypoles(2, k) = mypoints(myfirstp, k) + lambda1*Vec1t(k);
|
|
mypoles(2, k1) = mypoints(myfirstp, k1) + lambda1*Vec1t(k1);
|
|
mypoles(2, k2) = mypoints(myfirstp, k2) + lambda1*Vec1t(k2);
|
|
}
|
|
if (LastConstraint >= AppParCurves_TangencyPoint) {
|
|
mypoles(nbpol1, k) = mypoints(mylastp, k) - lambda2*Vec2t(k);
|
|
mypoles(nbpol1, k1) = mypoints(mylastp, k1) - lambda2*Vec2t(k1);
|
|
mypoles(nbpol1, k2) = mypoints(mylastp, k2) - lambda2*Vec2t(k2);
|
|
}
|
|
k += 3; i2 += Nincx2;
|
|
}
|
|
|
|
for (Ci = 1; Ci <= nbP2d; Ci++) {
|
|
k1 = k+1; k2 = k+2;
|
|
for (j = resinit; j <= resfin; j++) {
|
|
mypoles(j, k) = myTAB.Value(i2);
|
|
mypoles(j, k1) = myTAB.Value(i2+Nincx);
|
|
i2++;
|
|
}
|
|
if (FirstConstraint >= AppParCurves_TangencyPoint) {
|
|
mypoles(2, k) = mypoints(myfirstp, k) + lambda1*Vec1t(k);
|
|
mypoles(2, k1) = mypoints(myfirstp, k1) + lambda1*Vec1t(k1);
|
|
}
|
|
if (LastConstraint >= AppParCurves_TangencyPoint) {
|
|
mypoles(nbpol1, k) = mypoints(mylastp, k) - lambda2*Vec2t(k);
|
|
mypoles(nbpol1, k1) = mypoints(mylastp, k1) - lambda2*Vec2t(k1);
|
|
}
|
|
k += 2; i2 += Nincx;
|
|
}
|
|
|
|
}
|
|
|
|
void AppParCurves_LeastSquare::Perform(const math_Vector& Parameters,
|
|
const math_Vector& V1t,
|
|
const math_Vector& V2t,
|
|
const Standard_Real l1,
|
|
const Standard_Real l2)
|
|
{
|
|
done = Standard_False;
|
|
if (!isready) {
|
|
return;
|
|
}
|
|
Standard_Integer i, lower1 = V1t.Lower(), lower2 = V2t.Lower();
|
|
resinit = 3; resfin = nbpoles-2;
|
|
Standard_Integer Nincx = resfin-resinit+1;
|
|
Ninc = NA*Nincx + 2;
|
|
FirstConstraint = AppParCurves_TangencyPoint;
|
|
LastConstraint = AppParCurves_TangencyPoint;
|
|
for (i = 1; i <= Vec1t.Upper(); i++) {
|
|
Vec1t(i) = V1t(i+lower1-1);
|
|
Vec2t(i) = V2t(i+lower2-1);
|
|
}
|
|
Perform (Parameters, l1, l2);
|
|
}
|
|
|
|
|
|
void AppParCurves_LeastSquare::Perform(const math_Vector& Parameters,
|
|
const math_Vector& V1t,
|
|
const math_Vector& V2t,
|
|
const math_Vector& V1c,
|
|
const math_Vector& V2c,
|
|
const Standard_Real l1,
|
|
const Standard_Real l2) {
|
|
done = Standard_False;
|
|
if (!isready) {
|
|
return;
|
|
}
|
|
Standard_Integer i, lower1 = V1t.Lower(), lower2 = V2t.Lower();
|
|
Standard_Integer lowc1 = V1c.Lower(), lowc2 = V2c.Lower();
|
|
resinit = 4; resfin = nbpoles-3;
|
|
Standard_Integer Nincx = resfin-resinit+1;
|
|
Ninc = NA*Nincx + 2;
|
|
FirstConstraint = AppParCurves_CurvaturePoint;
|
|
LastConstraint = AppParCurves_CurvaturePoint;
|
|
|
|
for (i = 1; i <= Vec1t.Upper(); i++) {
|
|
Vec1t(i) = V1t(i+lower1-1);
|
|
Vec2t(i) = V2t(i+lower2-1);
|
|
Vec1c(i) = V1c(i+lowc1-1);
|
|
Vec2c(i) = V2c(i+lowc2-1);
|
|
}
|
|
Perform (Parameters, l1, l2);
|
|
}
|
|
|
|
|
|
|
|
void AppParCurves_LeastSquare::Perform(const math_Vector& Parameters,
|
|
const Standard_Real l1,
|
|
const Standard_Real l2) {
|
|
done = Standard_False;
|
|
if (!isready) {
|
|
return;
|
|
}
|
|
if (FirstConstraint < AppParCurves_TangencyPoint &&
|
|
LastConstraint < AppParCurves_TangencyPoint) {
|
|
Perform(Parameters);
|
|
return;
|
|
}
|
|
iscalculated = Standard_False;
|
|
|
|
lambda1 = l1;
|
|
lambda2 = l2;
|
|
Standard_Integer i, j, k, i2;
|
|
Standard_Real AD0, AD1, AD2, A0, A1, A2;
|
|
// gp_Pnt Pt, P1, P2;
|
|
// gp_Pnt2d Pt2d, P12d, P22d;
|
|
Standard_Real l11 = deg*l1, l22 = deg*l2;
|
|
|
|
ComputeFunction(Parameters);
|
|
|
|
if (FirstConstraint >= AppParCurves_TangencyPoint) {
|
|
for (i = 1; i <= mypoles.ColNumber(); i++)
|
|
mypoles(2, i) = mypoints(myfirstp, i) + l1*Vec1t(i);
|
|
}
|
|
|
|
|
|
if (FirstConstraint == AppParCurves_CurvaturePoint) {
|
|
for (i = 1; i <= mypoles.ColNumber(); i++)
|
|
mypoles(3, i) = 2*mypoles(2, i)-mypoles(1, i)
|
|
+ l11*l11*Vec1c(i)/(deg*(deg-1));
|
|
}
|
|
|
|
|
|
if (LastConstraint >= AppParCurves_TangencyPoint) {
|
|
for (i = 1; i <= mypoles.ColNumber(); i++)
|
|
mypoles(nbpoles-1, i) = mypoints(mylastp, i) - l2*Vec2t(i);
|
|
}
|
|
|
|
|
|
if (LastConstraint == AppParCurves_CurvaturePoint) {
|
|
for (i = 1; i <= mypoles.ColNumber(); i++)
|
|
mypoles(nbpoles-2, i) = 2*mypoles(nbpoles-1, i) - mypoles(nbpoles, i)
|
|
+ l22*l22*Vec2c(i)/(deg*(deg-1));
|
|
}
|
|
|
|
if (resinit > resfin) {
|
|
done = Standard_True;
|
|
return;
|
|
}
|
|
|
|
if (FirstConstraint == AppParCurves_NoConstraint) {
|
|
if (LastConstraint == AppParCurves_TangencyPoint) {
|
|
for (j = FirstP; j <= LastP; j++) {
|
|
AD0 = A(j, nbpoles); AD1 = A(j, nbpoles-1);
|
|
for (i = 1; i <= B2.ColNumber(); i++) {
|
|
B2(j, i) = mypoints(j, i) - AD0 * mypoles(nbpoles, i)
|
|
- AD1 * mypoles(nbpoles-1, i);
|
|
}
|
|
}
|
|
}
|
|
if (LastConstraint == AppParCurves_CurvaturePoint) {
|
|
for (j = FirstP; j <= LastP; j++) {
|
|
AD0 = A(j, nbpoles); AD1 = A(j, nbpoles-1); AD2 = A(j, nbpoles-2);
|
|
for (i = 1; i <= B2.ColNumber(); i++) {
|
|
B2(j, i) = mypoints(j, i) - AD0 * mypoles(nbpoles, i)
|
|
- AD1 * mypoles(nbpoles-1, i)
|
|
- AD2 * mypoles(nbpoles-2, i);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else if (FirstConstraint == AppParCurves_PassPoint) {
|
|
if (LastConstraint == AppParCurves_TangencyPoint) {
|
|
for (j = FirstP; j <= LastP; j++) {
|
|
A0 = A(j, 1);
|
|
AD0 = A(j, nbpoles); AD1 = A(j, nbpoles-1);
|
|
for (i = 1; i <= B2.ColNumber(); i++) {
|
|
B2(j, i) = mypoints(j, i) - A0 * mypoles(1, i)
|
|
- AD0 * mypoles(nbpoles, i)
|
|
- AD1 * mypoles(nbpoles-1, i);
|
|
}
|
|
}
|
|
}
|
|
if (LastConstraint == AppParCurves_CurvaturePoint) {
|
|
for (j = FirstP; j <= LastP; j++) {
|
|
A0 = A(j, 1);
|
|
AD0 = A(j, nbpoles); AD1 = A(j, nbpoles-1); AD2 = A(j, nbpoles-2);
|
|
for (i = 1; i <= B2.ColNumber(); i++) {
|
|
B2(j, i) = mypoints(j, i) - A0 * mypoles(1, i)
|
|
- AD0 * mypoles(nbpoles, i)
|
|
- AD1 * mypoles(nbpoles-1, i)
|
|
- AD2 * mypoles(nbpoles-2, i);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else if (FirstConstraint == AppParCurves_TangencyPoint) {
|
|
if (LastConstraint == AppParCurves_NoConstraint) {
|
|
for (j = FirstP; j <= LastP; j++) {
|
|
A0 = A(j, 1); A1 = A(j, 2);
|
|
for (i = 1; i <= B2.ColNumber(); i++) {
|
|
B2(j, i) = mypoints(j, i) - A0 * mypoles(1, i)
|
|
- A1 * mypoles(2, i);
|
|
}
|
|
}
|
|
}
|
|
else if (LastConstraint == AppParCurves_PassPoint) {
|
|
for (j = FirstP; j <= LastP; j++) {
|
|
A0 = A(j, 1); AD0 = A(j, nbpoles); A1 = A(j, 2);
|
|
for (i = 1; i <= B2.ColNumber(); i++) {
|
|
B2(j, i) = mypoints(j, i) - A0 * mypoles(1, i)
|
|
- AD0 * mypoles(nbpoles, i)
|
|
- A1 * mypoles(2, i);
|
|
}
|
|
}
|
|
}
|
|
else if (LastConstraint == AppParCurves_TangencyPoint) {
|
|
for (j = FirstP; j <= LastP; j++) {
|
|
A0 = A(j, 1); AD0 = A(j, nbpoles); A1 = A(j, 2); AD1 = A(j, nbpoles-1);
|
|
for (i = 1; i <= B2.ColNumber(); i++) {
|
|
B2(j, i) = mypoints(j, i) - A0 * mypoles(1, i)
|
|
- AD0 * mypoles(nbpoles, i)
|
|
- A1 * mypoles(2, i)
|
|
- AD1 * mypoles(nbpoles-1, i);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else if (FirstConstraint == AppParCurves_CurvaturePoint) {
|
|
if (LastConstraint == AppParCurves_NoConstraint) {
|
|
for (j = FirstP; j <= LastP; j++) {
|
|
A0 = A(j, 1); A1 = A(j, 2); A2 = A(j, 3);
|
|
for (i = 1; i <= B2.ColNumber(); i++) {
|
|
B2(j, i) = mypoints(j, i) - A0 * mypoles(1, i)
|
|
- A1 * mypoles(2, i)
|
|
- A2 * mypoles(3, i);
|
|
}
|
|
}
|
|
}
|
|
else if (LastConstraint == AppParCurves_PassPoint) {
|
|
for (j = FirstP; j <= LastP; j++) {
|
|
A0 = A(j, 1); A1 = A(j, 2); A2 = A(j, 3); AD0 = A(j, nbpoles);
|
|
for (i = 1; i <= B2.ColNumber(); i++) {
|
|
B2(j, i) = mypoints(j, i) - A0 * mypoles(1, i)
|
|
- A1 * mypoles(2, i)
|
|
- A2 * mypoles(3, i)
|
|
- AD0 * mypoles(nbpoles, i);
|
|
}
|
|
}
|
|
}
|
|
else if (LastConstraint == AppParCurves_TangencyPoint) {
|
|
for (j = FirstP; j <= LastP; j++) {
|
|
A0 = A(j, 1); A1 = A(j, 2); A2 = A(j, 3);
|
|
AD0 = A(j, nbpoles); AD1 = A(j, nbpoles-1);
|
|
for (i = 1; i <= B2.ColNumber(); i++) {
|
|
B2(j, i) = mypoints(j, i) - A0 * mypoles(1, i)
|
|
- A1 * mypoles(2, i)
|
|
- A2 * mypoles(3, i)
|
|
- AD0 * mypoles(nbpoles, i)
|
|
- AD1 * mypoles(nbpoles-1, i);
|
|
}
|
|
}
|
|
}
|
|
else if (LastConstraint == AppParCurves_CurvaturePoint) {
|
|
for (j = FirstP; j <= LastP; j++) {
|
|
A0 = A(j, 1); A1 = A(j, 2); A2 = A(j, 3);
|
|
AD0 = A(j, nbpoles); AD1 = A(j, nbpoles-1); AD2 = A(j, nbpoles-2);
|
|
for (i = 1; i <= B2.ColNumber(); i++) {
|
|
B2(j, i) = mypoints(j, i) - A0 * mypoles(1, i)
|
|
- A1 * mypoles(2, i)
|
|
- A2 * mypoles(3, i)
|
|
- AD0 * mypoles(nbpoles, i)
|
|
- AD1 * mypoles(nbpoles-1, i)
|
|
- AD2 * mypoles(nbpoles-2, i);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
Standard_Integer Nincx = resfin-resinit+1;
|
|
|
|
math_Matrix mytab(resinit, resfin, 1, B2.ColNumber(),0.0);
|
|
math_IntegerVector Index(1, Nincx);
|
|
SearchIndex(Index);
|
|
math_Vector AA(1, Index(Nincx), 0.0);
|
|
MakeTAA(AA, mytab);
|
|
|
|
math_Vector myTABB(1, Nincx, 0.0);
|
|
|
|
DACTCL_Decompose(AA, Index);
|
|
|
|
Standard_Integer kk2;
|
|
for (j = 1; j <= B2.ColNumber(); j++) {
|
|
kk2 = 1;
|
|
for (i = resinit; i <= resfin; i++) {
|
|
myTABB(kk2) = mytab(i, j);
|
|
kk2++;
|
|
}
|
|
|
|
DACTCL_Solve(AA, myTABB, Index);
|
|
|
|
i2 = 1;
|
|
for (k = resinit; k <= resfin; k++) {
|
|
mypoles(k, j) = myTABB.Value(i2);
|
|
i2++;
|
|
}
|
|
|
|
}
|
|
|
|
done = Standard_True;
|
|
|
|
}
|
|
|
|
|
|
|
|
//=======================================================================
|
|
//function : Affect
|
|
//purpose : Index is an ID of the point in MultiLine. Every point is set of
|
|
// several 3D- and 2D-points. E.g. every points of Walking-line,
|
|
// obtained in intersection algorithm, is set of one 3D points
|
|
// (nbP == 1) and two 2D-points (nbP2d == 2).
|
|
//=======================================================================
|
|
void AppParCurves_LeastSquare::Affect(const MultiLine& SSP,
|
|
const Standard_Integer Index,
|
|
AppParCurves_Constraint& Cons,
|
|
math_Vector& Vt,
|
|
math_Vector& Vc)
|
|
{
|
|
// Vt: vector of tangent, Vc: vector of curvature.
|
|
|
|
if (Cons >= AppParCurves_TangencyPoint) {
|
|
Standard_Integer i, i2 = 1;
|
|
Standard_Boolean Ok;
|
|
Standard_Integer mynbP2d = nbP2d, mynbP = nbP;
|
|
if (nbP2d == 0) mynbP2d = 1;
|
|
if (nbP == 0) mynbP = 1;
|
|
TColgp_Array1OfVec TabV(1, mynbP);
|
|
TColgp_Array1OfVec2d TabV2d(1, mynbP2d);
|
|
|
|
if (Cons == AppParCurves_CurvaturePoint)
|
|
{
|
|
if (nbP != 0 && nbP2d != 0)
|
|
{
|
|
Ok = ToolLine::Curvature(SSP, Index,TabV,TabV2d);
|
|
if (!Ok) { Cons = AppParCurves_TangencyPoint;}
|
|
}
|
|
else if (nbP2d != 0)
|
|
{
|
|
Ok = ToolLine::Curvature(SSP, Index, TabV2d);
|
|
if (!Ok) { Cons = AppParCurves_TangencyPoint;}
|
|
}
|
|
else {
|
|
Ok = ToolLine::Curvature(SSP, Index, TabV);
|
|
if (!Ok) { Cons = AppParCurves_TangencyPoint;}
|
|
}
|
|
if (Ok) {
|
|
for (i = 1; i <= nbP; i++) {
|
|
(TabV(i)).Coord(Vc(i2), Vc(i2+1), Vc(i2+2));
|
|
i2 += 3;
|
|
}
|
|
|
|
for (i = 1; i <= nbP2d; i++) {
|
|
(TabV2d(i)).Coord(Vc(i2), Vc(i2+1));
|
|
i2 += 2;
|
|
}
|
|
}
|
|
}
|
|
|
|
i2 = 1;
|
|
if (Cons >= AppParCurves_TangencyPoint) {
|
|
if (nbP != 0 && nbP2d != 0) {
|
|
Ok = ToolLine::Tangency(SSP, Index, TabV, TabV2d);
|
|
if (!Ok) { Cons = AppParCurves_PassPoint;}
|
|
}
|
|
else if (nbP2d != 0) {
|
|
Ok = ToolLine::Tangency(SSP, Index, TabV2d);
|
|
if (!Ok) { Cons = AppParCurves_PassPoint;}
|
|
}
|
|
else {
|
|
Ok = ToolLine::Tangency(SSP, Index, TabV);
|
|
if (!Ok) { Cons = AppParCurves_PassPoint;}
|
|
}
|
|
|
|
if (Ok)
|
|
{
|
|
TColgp_Array1OfPnt anArrPts3d1(1, mynbP), anArrPts3d2(1, mynbP);
|
|
|
|
if(nbP != 0)
|
|
{
|
|
if(Index < ToolLine::LastPoint(SSP))
|
|
{
|
|
ToolLine::Value(SSP, Index, anArrPts3d1);
|
|
ToolLine::Value(SSP, Index+1, anArrPts3d2);
|
|
}
|
|
else
|
|
{// (Index == ToolLine::LastPoint(theML))
|
|
ToolLine::Value(SSP, Index-1, anArrPts3d1);
|
|
ToolLine::Value(SSP, Index, anArrPts3d2);
|
|
}
|
|
|
|
CheckTangents(anArrPts3d1, anArrPts3d2, TabV, TabV2d);
|
|
}
|
|
else if(nbP2d != 0)
|
|
{
|
|
TColgp_Array1OfPnt2d anArrPts2d1(1, mynbP2d), anArrPts2d2(1, mynbP2d);
|
|
|
|
if(Index < ToolLine::LastPoint(SSP))
|
|
{
|
|
ToolLine::Value(SSP, Index, anArrPts3d1, anArrPts2d1);
|
|
ToolLine::Value(SSP, Index+1, anArrPts3d2, anArrPts2d2);
|
|
}
|
|
else
|
|
{// (Index == ToolLine::LastPoint(theML))
|
|
ToolLine::Value(SSP, Index-1, anArrPts3d1, anArrPts2d1);
|
|
ToolLine::Value(SSP, Index, anArrPts3d2, anArrPts2d2);
|
|
}
|
|
|
|
CheckTangents(anArrPts2d1, anArrPts2d2, TabV2d);
|
|
}
|
|
|
|
for (i = 1; i <= nbP; i++) {
|
|
(TabV(i)).Coord(Vt(i2), Vt(i2+1), Vt(i2+2));
|
|
i2 += 3;
|
|
}
|
|
|
|
for (i = 1; i <= nbP2d; i++) {
|
|
(TabV2d(i)).Coord(Vt(i2), Vt(i2+1));
|
|
i2 += 2;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
Standard_Integer AppParCurves_LeastSquare::NbBColumns(
|
|
const MultiLine& SSP) const
|
|
{
|
|
Standard_Integer BCol;
|
|
BCol = (ToolLine::NbP3d(SSP))*3 +
|
|
(ToolLine::NbP2d(SSP))*2;
|
|
return BCol;
|
|
}
|
|
|
|
|
|
void AppParCurves_LeastSquare::Error(Standard_Real& F,
|
|
Standard_Real& MaxE3d,
|
|
Standard_Real& MaxE2d)
|
|
{
|
|
|
|
if (!done) {throw StdFail_NotDone();}
|
|
Standard_Integer i, j, k, i2, indexdeb, indexfin;
|
|
Standard_Integer i21, i22;
|
|
Standard_Real AA, BB, CC, Fi, FX, FY, FZ, AIJ;
|
|
MaxE3d = MaxE2d = 0.0;
|
|
F = 0.0;
|
|
i2 = 1;
|
|
math_Vector Px(1, nbpoles), Py(1, nbpoles), Pz(1, nbpoles);
|
|
|
|
for (k = 1 ; k <= nbP+nbP2d; k++) {
|
|
i21 = i2+1; i22 = i2+2;
|
|
for (i = 1; i <= nbpoles; i++) {
|
|
Px(i) = mypoles(i, i2);
|
|
Py(i) = mypoles(i, i21);
|
|
if (k <= nbP) Pz(i) = mypoles(i, i22);
|
|
}
|
|
for (i = FirstP; i <= LastP; i++) {
|
|
AA = 0.0; BB = 0.0; CC = 0.0;
|
|
indexdeb = myindex(i) + 1;
|
|
indexfin = indexdeb + deg;
|
|
for (j = indexdeb; j <= indexfin; j++) {
|
|
AIJ = A(i, j);
|
|
AA += AIJ*Px(j);
|
|
BB += AIJ*Py(j);
|
|
if (k <= nbP) CC += AIJ*Pz(j);
|
|
}
|
|
FX = AA-mypoints(i, i2);
|
|
FY = BB-mypoints(i, i21);
|
|
Fi= FX*FX + FY*FY;
|
|
if (k <= nbP) {
|
|
FZ = CC-mypoints(i, i22);
|
|
Fi += FZ*FZ;
|
|
if (Fi > MaxE3d) MaxE3d = Fi;
|
|
}
|
|
else {
|
|
if (Fi > MaxE2d) MaxE2d = Fi;
|
|
}
|
|
theError(i, k) = Fi;
|
|
F += Fi;
|
|
}
|
|
if (k <= nbP) i2 += 3;
|
|
else i2 += 2;
|
|
}
|
|
MaxE3d = Sqrt(MaxE3d);
|
|
MaxE2d = Sqrt(MaxE2d);
|
|
}
|
|
|
|
|
|
void AppParCurves_LeastSquare::ErrorGradient(math_Vector& Grad,
|
|
Standard_Real& F,
|
|
Standard_Real& MaxE3d,
|
|
Standard_Real& MaxE2d)
|
|
{
|
|
if (!done) {throw StdFail_NotDone();}
|
|
Standard_Integer i, j, k, i2, indexdeb, indexfin;
|
|
Standard_Real AA, BB, CC, Fi, FX, FY, FZ, AIJ;
|
|
// Standard_Real DAIJ, DAA, DBB, DCC, Gr, gr1= 0.0, gr2= 0.0;
|
|
Standard_Real DAIJ, DAA, DBB, DCC, Gr;
|
|
MaxE3d = MaxE2d = 0.0;
|
|
// Standard_Integer i21, i22, diff = (deg-1);
|
|
Standard_Integer i21, i22;
|
|
F = 0.0;
|
|
i2 = 1;
|
|
math_Vector Px(1, nbpoles), Py(1, nbpoles), Pz(1, nbpoles);
|
|
|
|
for (k = Grad.Lower(); k <= Grad.Upper(); k++) Grad(k) = 0.0;
|
|
|
|
for (k = 1 ; k <= nbP+nbP2d; k++) {
|
|
i21 = i2+1; i22 = i2+2;
|
|
for (i = 1; i <= nbpoles; i++) {
|
|
Px(i) = mypoles(i, i2);
|
|
Py(i) = mypoles(i, i21);
|
|
if (k <= nbP) Pz(i) = mypoles(i, i22);
|
|
}
|
|
for (i = FirstP; i <= LastP; i++) {
|
|
AA = 0.0; BB = 0.0; CC = 0.0; DAA = 0.0; DBB = 0.0; DCC = 0.0;
|
|
indexdeb = myindex(i) + 1;
|
|
indexfin = indexdeb + deg;
|
|
for (j = indexdeb; j <= indexfin; j++) {
|
|
AIJ = A(i, j); DAIJ = DA(i, j);
|
|
AA += AIJ*Px(j); DAA += DAIJ*Px(j);
|
|
BB += AIJ*Py(j); DBB += DAIJ*Py(j);
|
|
if (k <= nbP) {
|
|
CC += AIJ*Pz(j);
|
|
DCC += DAIJ*Pz(j);
|
|
}
|
|
}
|
|
FX = AA-mypoints(i, i2);
|
|
FY = BB-mypoints(i, i2+1);
|
|
Fi = FX*FX + FY*FY;
|
|
Gr = 2.0*(DAA*FX + DBB*FY);
|
|
|
|
if (k <= nbP) {
|
|
FZ = CC-mypoints(i, i2+2);
|
|
Fi += FZ*FZ;
|
|
Gr += 2.0*DCC*FZ;
|
|
if (Fi > MaxE3d) MaxE3d = Fi;
|
|
}
|
|
else {
|
|
if (Fi > MaxE2d) MaxE2d = Fi;
|
|
}
|
|
theError(i, k) = Fi;
|
|
Grad(i) += Gr;
|
|
F += Fi;
|
|
}
|
|
if (k <= nbP) i2 += 3;
|
|
else i2 += 2;
|
|
}
|
|
MaxE3d = Sqrt(MaxE3d);
|
|
MaxE2d = Sqrt(MaxE2d);
|
|
|
|
}
|
|
|
|
|
|
const math_Matrix& AppParCurves_LeastSquare::Distance()
|
|
{
|
|
if (!iscalculated) {
|
|
for (Standard_Integer i = myfirstp; i <= mylastp; i++) {
|
|
for (Standard_Integer j = 1; j <= nbP+nbP2d; j++) {
|
|
theError(i, j) = Sqrt(theError(i, j));
|
|
}
|
|
}
|
|
iscalculated = Standard_True;
|
|
}
|
|
return theError;
|
|
}
|
|
|
|
|
|
Standard_Real AppParCurves_LeastSquare::FirstLambda() const
|
|
{
|
|
return lambda1;
|
|
}
|
|
|
|
Standard_Real AppParCurves_LeastSquare::LastLambda() const
|
|
{
|
|
return lambda2;
|
|
}
|
|
|
|
|
|
|
|
Standard_Boolean AppParCurves_LeastSquare::IsDone() const
|
|
{
|
|
return done;
|
|
}
|
|
|
|
|
|
AppParCurves_MultiCurve AppParCurves_LeastSquare::BezierValue()
|
|
{
|
|
if (!myknots.IsNull()) throw Standard_NoSuchObject();
|
|
return (AppParCurves_MultiCurve)(BSplineValue());
|
|
}
|
|
|
|
|
|
const AppParCurves_MultiBSpCurve& AppParCurves_LeastSquare::BSplineValue()
|
|
{
|
|
if (!done) {throw StdFail_NotDone();}
|
|
|
|
Standard_Integer i, j, j2, npoints = nbP+nbP2d;;
|
|
gp_Pnt Pt;
|
|
gp_Pnt2d Pt2d;
|
|
Standard_Integer ideb = resinit, ifin = resfin;
|
|
if (ideb >= 2) ideb = 2;
|
|
if (ifin <= nbpoles-1) ifin = nbpoles-1;
|
|
|
|
// On met le resultat dans les curves correspondantes
|
|
for (i = ideb; i <= ifin; i++) {
|
|
j2 = 1;
|
|
AppParCurves_MultiPoint MPole(nbP, nbP2d);
|
|
for (j = 1; j <= nbP; j++) {
|
|
Pt.SetCoord(mypoles(i, j2), mypoles(i, j2+1), mypoles(i,j2+2));
|
|
MPole.SetPoint(j, Pt);
|
|
j2 += 3;
|
|
}
|
|
for (j = nbP+1;j <= npoints; j++) {
|
|
Pt2d.SetCoord(mypoles(i, j2), mypoles(i, j2+1));
|
|
MPole.SetPoint2d(j, Pt2d);
|
|
j2 += 2;
|
|
}
|
|
SCU.SetValue(i, MPole);
|
|
}
|
|
return SCU;
|
|
}
|
|
|
|
|
|
|
|
const math_Matrix& AppParCurves_LeastSquare::FunctionMatrix() const
|
|
{
|
|
if (!done) {throw StdFail_NotDone();}
|
|
return A;
|
|
}
|
|
|
|
|
|
const math_Matrix& AppParCurves_LeastSquare::DerivativeFunctionMatrix() const
|
|
{
|
|
if (!done) {throw StdFail_NotDone();}
|
|
return DA;
|
|
}
|
|
|
|
|
|
|
|
|
|
Standard_Integer AppParCurves_LeastSquare::
|
|
TheFirstPoint(const AppParCurves_Constraint FirstCons,
|
|
const Standard_Integer FirstPoint) const
|
|
{
|
|
if (FirstCons == AppParCurves_NoConstraint)
|
|
return FirstPoint;
|
|
else
|
|
return FirstPoint + 1;
|
|
}
|
|
|
|
|
|
|
|
Standard_Integer AppParCurves_LeastSquare::
|
|
TheLastPoint(const AppParCurves_Constraint LastCons,
|
|
const Standard_Integer LastPoint) const
|
|
{
|
|
if (LastCons == AppParCurves_NoConstraint)
|
|
return LastPoint;
|
|
else
|
|
return LastPoint - 1;
|
|
}
|
|
|
|
|
|
void AppParCurves_LeastSquare::ComputeFunction(const math_Vector& Parameters)
|
|
{
|
|
if (myknots.IsNull()) {
|
|
AppParCurves::Bernstein(nbpoles, Parameters, A, DA);
|
|
}
|
|
else {
|
|
AppParCurves::SplineFunction(nbpoles, deg, Parameters,
|
|
Vflatknots, A, DA, myindex);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
const math_Matrix& AppParCurves_LeastSquare::Points() const
|
|
{
|
|
return mypoints;
|
|
}
|
|
|
|
const math_Matrix& AppParCurves_LeastSquare::Poles() const
|
|
{
|
|
return mypoles;
|
|
}
|
|
|
|
|
|
|
|
const math_IntegerVector& AppParCurves_LeastSquare::KIndex() const
|
|
{
|
|
return myindex;
|
|
}
|
|
|
|
|
|
|
|
|
|
void AppParCurves_LeastSquare::MakeTAA(math_Vector& TheA,
|
|
math_Vector& myTAB)
|
|
{
|
|
Standard_Integer i, j, k, Ci, i2, i21, i22;
|
|
Standard_Real xx = 0.0, yy = 0.0;
|
|
|
|
Standard_Integer Nincx = resfin-resinit+1;
|
|
Standard_Integer Nrow, Neq = LastP-FirstP+1;
|
|
|
|
Standard_Integer Ninc1;
|
|
|
|
if (FirstConstraint >= AppParCurves_TangencyPoint &&
|
|
LastConstraint >= AppParCurves_TangencyPoint) {
|
|
Ninc1 = Ninc-1;
|
|
}
|
|
else Ninc1 = Ninc;
|
|
|
|
Standard_Integer myfirst = A.LowerRow();
|
|
Standard_Integer ix, iy, iz;
|
|
Standard_Integer mylast = myfirst+Nlignes-1;
|
|
Standard_Integer k1;
|
|
Standard_Real taf1 = 0.0, taf2 = 0.0, taf3 = 0.0,
|
|
tab1 = 0.0, tab2 = 0.0;
|
|
Standard_Integer nb, inc, jinit, jfin, u;
|
|
Standard_Integer indexdeb, indexfin;
|
|
Standard_Integer NA1 = NA-1;
|
|
Standard_Real v1=0, v2=0, b;
|
|
Standard_Real Ai2, Aid, Akj;
|
|
math_Vector myB(myfirst, mylast, 0.0),
|
|
myV1(myfirst, mylast, 0.0),
|
|
myV2(myfirst, mylast, 0.0);
|
|
math_Vector TheV1(1, Ninc, 0.0), TheV2(1, Ninc, 0.0);
|
|
|
|
|
|
for (i = FirstP; i <= LastP; i++) {
|
|
Ai2 = A(i, 2);
|
|
Aid = A(i, nbpoles-1);
|
|
if (FirstConstraint >= AppParCurves_PassPoint) xx = A(i, 1);
|
|
if (FirstConstraint >= AppParCurves_TangencyPoint) xx += Ai2;
|
|
if (LastConstraint >= AppParCurves_PassPoint) yy = A(i, nbpoles);
|
|
if (LastConstraint >= AppParCurves_TangencyPoint) yy += Aid;
|
|
i2 = 1;
|
|
Nrow = myfirst-FirstP;
|
|
for (Ci = 1; Ci <= nbP; Ci++) {
|
|
i21 = i2+1; i22 = i2+2;
|
|
ix = i+Nrow; iy = ix+Neq; iz = iy+Neq;
|
|
if (FirstConstraint >= AppParCurves_TangencyPoint) {
|
|
myV1(ix) = Ai2*Vec1t(i2);
|
|
myV1(iy) = Ai2*Vec1t(i21);
|
|
myV1(iz) = Ai2*Vec1t(i22);
|
|
}
|
|
if (LastConstraint >= AppParCurves_TangencyPoint) {
|
|
myV2(ix) = -Aid*Vec2t(i2);
|
|
myV2(iy) = -Aid*Vec2t(i21);
|
|
myV2(iz) = -Aid*Vec2t(i22);
|
|
}
|
|
myB(ix) = mypoints(i, i2) - xx*mypoints(myfirstp, i2)
|
|
- yy*mypoints(mylastp, i2);
|
|
myB(iy) = mypoints(i, i21) - xx*mypoints(myfirstp, i21)
|
|
- yy*mypoints(mylastp, i21);
|
|
myB(iz) = mypoints(i, i22) - xx*mypoints(myfirstp, i22)
|
|
- yy*mypoints(mylastp, i22);
|
|
i2 += 3;
|
|
Nrow = Nrow + 3*Neq;
|
|
}
|
|
|
|
for (Ci = 1; Ci <= nbP2d; Ci++) {
|
|
i21 = i2+1; i22 = i2+2;
|
|
ix = i+Nrow; iy = ix+Neq;
|
|
if (FirstConstraint >= AppParCurves_TangencyPoint) {
|
|
myV1(ix) = Ai2*Vec1t(i2);
|
|
myV1(iy) = Ai2*Vec1t(i21);
|
|
}
|
|
if (LastConstraint >= AppParCurves_TangencyPoint) {
|
|
myV2(ix) = -Aid*Vec2t(i2);
|
|
myV2(iy) = -Aid*Vec2t(i21);
|
|
}
|
|
myB(ix) = mypoints(i, i2) - xx*mypoints(myfirstp, i2)
|
|
- yy*mypoints(mylastp, i2);
|
|
myB(iy) = mypoints(i, i21) - xx*mypoints(myfirstp, i21)
|
|
- yy*mypoints(mylastp, i21);
|
|
Nrow = Nrow + 2*Neq;
|
|
i2 += 2;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
// Construction de TA*A et TA*B:
|
|
|
|
for (k = FirstP; k <= LastP; k++) {
|
|
indexdeb = myindex(k)+1;
|
|
indexfin = indexdeb + deg;
|
|
jinit = Max(resinit, indexdeb);
|
|
jfin = Min(resfin, indexfin);
|
|
k1 = k + myfirst - FirstP;
|
|
for (i = 0; i <= NA1; i++) {
|
|
nb = i*Neq + k1;
|
|
if (FirstConstraint >= AppParCurves_TangencyPoint)
|
|
v1 = myV1(nb);
|
|
if (LastConstraint >= AppParCurves_TangencyPoint)
|
|
v2 = myV2(nb);
|
|
b = myB(nb);
|
|
inc = i*Nincx-resinit+1;
|
|
for (j = jinit; j <= jfin; j++) {
|
|
Akj = A(k, j);
|
|
u = j+inc;
|
|
if (FirstConstraint >= AppParCurves_TangencyPoint)
|
|
TheV1(u) += Akj*v1;
|
|
if (LastConstraint >= AppParCurves_TangencyPoint)
|
|
TheV2(u) += Akj*v2;
|
|
myTAB(u) += Akj*b;
|
|
}
|
|
if (FirstConstraint >= AppParCurves_TangencyPoint) {
|
|
taf1 += v1*v1;
|
|
tab1 += v1*b;
|
|
}
|
|
if (LastConstraint >= AppParCurves_TangencyPoint) {
|
|
taf2 += v2*v2;
|
|
tab2 += v2*b;
|
|
}
|
|
if (FirstConstraint >= AppParCurves_TangencyPoint &&
|
|
LastConstraint >= AppParCurves_TangencyPoint) {
|
|
taf3 += v1*v2;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
if (FirstConstraint >= AppParCurves_TangencyPoint) {
|
|
TheV1(Ninc1) = taf1;
|
|
myTAB(Ninc1) = tab1;
|
|
}
|
|
if (LastConstraint >= AppParCurves_TangencyPoint) {
|
|
TheV2(Ninc) = taf2;
|
|
myTAB(Ninc) = tab2;
|
|
}
|
|
if (FirstConstraint >= AppParCurves_TangencyPoint &&
|
|
LastConstraint >= AppParCurves_TangencyPoint) {
|
|
TheV2(Ninc1) = taf3;
|
|
}
|
|
|
|
|
|
if (resinit <= resfin) {
|
|
math_IntegerVector Index(1, Nincx);
|
|
SearchIndex(Index);
|
|
math_Vector AA(1, Index(Nincx));
|
|
MakeTAA(AA);
|
|
|
|
Standard_Integer kk = 1;
|
|
for (k = 1; k <= NA; k++) {
|
|
for(i = 1; i <= AA.Length(); i++) {
|
|
TheA(kk) = AA(i);
|
|
kk++;
|
|
}
|
|
}
|
|
}
|
|
|
|
Standard_Integer length = TheA.Length();
|
|
|
|
if (FirstConstraint >= AppParCurves_TangencyPoint &&
|
|
LastConstraint >= AppParCurves_TangencyPoint) {
|
|
for (j = 1; j <= Ninc1; j++)
|
|
TheA(length- 2*Ninc+j+1) = TheV1(j);
|
|
for (j = 1; j <= Ninc; j++)
|
|
TheA(length- Ninc+j) = TheV2(j);
|
|
}
|
|
|
|
|
|
else if (FirstConstraint >= AppParCurves_TangencyPoint) {
|
|
for (j = 1; j <= Ninc; j++)
|
|
TheA(length- Ninc+j) = TheV1(j);
|
|
}
|
|
|
|
else if (LastConstraint >= AppParCurves_TangencyPoint) {
|
|
for (j = 1; j <= Ninc; j++)
|
|
TheA(length- Ninc+j) = TheV2(j);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
void AppParCurves_LeastSquare::MakeTAA(math_Vector& AA,
|
|
math_Matrix& myTAB)
|
|
{
|
|
Standard_Integer i, j, k;
|
|
Standard_Integer indexdeb, indexfin, jinit, jfin;
|
|
Standard_Integer iinit, ifin;
|
|
Standard_Real Akj;
|
|
math_Matrix TheA(resinit, resfin, resinit, resfin);
|
|
TheA.Init(0.0);
|
|
|
|
for (k = FirstP ; k <= LastP; k++) {
|
|
indexdeb = myindex(k)+1;
|
|
indexfin = indexdeb + deg;
|
|
jinit = Max(resinit, indexdeb);
|
|
jfin = Min(resfin, indexfin);
|
|
for (i = jinit; i <= jfin; i++) {
|
|
Akj = A(k, i);
|
|
for (j = jinit; j <= i; j++) {
|
|
TheA(i, j) += A(k, j) * Akj;
|
|
}
|
|
for (j = 1; j <= B2.ColNumber(); j++) {
|
|
myTAB(i, j) += Akj*B2(k, j);
|
|
}
|
|
}
|
|
}
|
|
|
|
Standard_Integer len;
|
|
if (!myknots.IsNull()) len = myknots->Length();
|
|
else len = 2;
|
|
Standard_Integer d, i2 = 1;
|
|
iinit = resinit;
|
|
jinit = resinit;
|
|
ifin = Min(resfin, deg+1);
|
|
for (k = 2; k <= len; k++) {
|
|
for (i = iinit; i <= ifin; i++) {
|
|
for (j = jinit; j <= i; j++) {
|
|
AA(i2) = TheA(i, j);
|
|
i2++;
|
|
}
|
|
}
|
|
if (!mymults.IsNull()) {
|
|
iinit = ifin+1;
|
|
d = ifin + mymults->Value(k);
|
|
ifin = Min(d, resfin);
|
|
jinit = Max(resinit, d - deg);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void AppParCurves_LeastSquare::MakeTAA(math_Vector& AA)
|
|
{
|
|
Standard_Integer i, j, k;
|
|
Standard_Integer indexdeb, indexfin, jinit, jfin;
|
|
Standard_Integer iinit, ifin;
|
|
Standard_Real Akj;
|
|
math_Matrix TheA(resinit, resfin, resinit, resfin, 0.0);
|
|
|
|
|
|
for (k = FirstP ; k <= LastP; k++) {
|
|
indexdeb = myindex(k)+1;
|
|
indexfin = indexdeb + deg;
|
|
jinit = Max(resinit, indexdeb);
|
|
jfin = Min(resfin, indexfin);
|
|
for (i = jinit; i <= jfin; i++) {
|
|
Akj = A(k, i);
|
|
for (j = jinit; j <= i; j++) {
|
|
TheA(i, j) += A(k, j) * Akj;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
Standard_Integer i2 = 1;
|
|
iinit = resinit;
|
|
jinit = resinit;
|
|
ifin = Min(resfin, deg+1);
|
|
Standard_Integer len, d;
|
|
if (!myknots.IsNull()) len = myknots->Length();
|
|
else len = 2;
|
|
for (k = 2; k <= len; k++) {
|
|
for (i = iinit; i <= ifin; i++) {
|
|
for (j = jinit; j <= i; j++) {
|
|
AA(i2) = TheA(i, j);
|
|
i2++;
|
|
}
|
|
}
|
|
if (!mymults.IsNull()) {
|
|
iinit = ifin+1;
|
|
d = ifin + mymults->Value(k);
|
|
ifin = Min(d, resfin);
|
|
jinit = Max(resinit, d - deg);
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void AppParCurves_LeastSquare::SearchIndex(math_IntegerVector& Index)
|
|
{
|
|
Standard_Integer iinit, jinit, ifin;
|
|
Standard_Integer i, j, k, d, i2 = 1;
|
|
Standard_Integer len;
|
|
Standard_Integer Nincx = resfin-resinit+1;
|
|
Index(1) = 1;
|
|
|
|
if (myknots.IsNull()) {
|
|
if (resinit <= resfin) {
|
|
Standard_Integer l = 1;
|
|
for (i = 2; i <= Nincx; i++) {
|
|
l++;
|
|
Index(l) = Index(l-1)+i;
|
|
}
|
|
}
|
|
|
|
}
|
|
else {
|
|
iinit = resinit;
|
|
jinit = resinit;
|
|
ifin = Min(resfin, deg+1);
|
|
len = myknots->Length();
|
|
|
|
for (k = 2; k <= len; k++) {
|
|
for (i = iinit; i <= ifin; i++) {
|
|
for (j = jinit; j <= i; j++) {
|
|
if (i2 != 1)
|
|
Index(i2) = Index(i2-1) + i-jinit+1;
|
|
}
|
|
i2++;
|
|
}
|
|
iinit = ifin+1;
|
|
d = ifin + mymults->Value(k);
|
|
ifin = Min(d, resfin);
|
|
jinit = Max(resinit, d - deg);
|
|
}
|
|
}
|
|
}
|