1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-04-03 17:56:21 +03:00
occt/src/AppParCurves/AppParCurves_LeastSquare.gxx
ski 9775fa6110 0026937: Eliminate NO_CXX_EXCEPTION macro support
Macro NO_CXX_EXCEPTION was removed from code.
Method Raise() was replaced by explicit throw statement.
Method Standard_Failure::Caught() was replaced by normal C++mechanism of exception transfer.
Method Standard_Failure::Caught() is deprecated now.
Eliminated empty constructors.
Updated samples.
Eliminate empty method ChangeValue from NCollection_Map class.
Removed not operable methods from NCollection classes.
2017-02-02 16:35:54 +03:00

1696 lines
48 KiB
Plaintext

// Copyright (c) 1995-1999 Matra Datavision
// Copyright (c) 1999-2014 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
// lpa, le 27/07/91
// pmn, 30/10/98 : Protection dans les cas surcontraint -> "isready"
// Approximation d une MultiLine de points decrite par le tool MLineTool.
// Ce programme utilise les moindres carres pour le cas suivant:
// passage et tangences aux extremites.
#define No_Standard_RangeError
#define No_Standard_OutOfRange
#define No_Standard_DimensionError
#include <math_Householder.hxx>
#include <math_Crout.hxx>
#include <AppParCurves.hxx>
#include <gp_Pnt.hxx>
#include <gp_Pnt2d.hxx>
#include <gp_Vec.hxx>
#include <gp_Vec2d.hxx>
#include <TColgp_Array1OfPnt.hxx>
#include <TColgp_Array1OfPnt2d.hxx>
#include <TColgp_Array1OfVec.hxx>
#include <TColgp_Array1OfVec2d.hxx>
#include <TColStd_Array1OfInteger.hxx>
#include <TColStd_Array1OfReal.hxx>
#include <AppParCurves_Constraint.hxx>
#include <AppParCurves_MultiPoint.hxx>
#include <StdFail_NotDone.hxx>
#include <Standard_NoSuchObject.hxx>
#include <TColStd_Array1OfReal.hxx>
#include <math_Recipes.hxx>
#include <math_Crout.hxx>
static int FlatLength(const TColStd_Array1OfInteger& Mults) {
Standard_Integer sum = 0;
for (Standard_Integer i = Mults.Lower(); i <= Mults.Upper(); i++) {
sum += Mults.Value(i);
}
return sum;
}
//=======================================================================
//function : CheckTangents
//purpose : Checks if theArrTg3d and theArrTg2d have direction
// corresponded to the direction between theArrPt1 and theArrPt2.
// If it is not then reverses tangent vectors.
// theArrPt1 (as same as theArrPt2) is sub-set of all 3D-points in
// one multy-point (multy-point is union of sets of 2D- and 3D-points).
//
//ATTENTION!!!
// The property of correlation between Tg3d and Tg2d is used here.
// Therefore, only 3D-coinciding is checked.
//=======================================================================
static void CheckTangents(const TColgp_Array1OfPnt& theArrPt1,
const TColgp_Array1OfPnt& theArrPt2,
TColgp_Array1OfVec& theArrTg3d,
TColgp_Array1OfVec2d& theArrTg2d)
{
if(theArrPt1.Lower() != theArrPt2.Lower())
return;
if(theArrPt1.Upper() != theArrPt2.Upper())
return;
if(theArrTg3d.Length() != theArrPt1.Length())
return;
Standard_Boolean isToChangeDir = Standard_False;
for(Standard_Integer i = theArrPt1.Lower(); i <= theArrPt1.Upper(); i++)
{
const gp_Vec aV1(theArrPt1(i), theArrPt2(i));
const gp_Vec& aV2 = theArrTg3d(i);
if(aV1.Dot(aV2) < 0.0)
{
isToChangeDir = Standard_True;
break;
}
}
if(!isToChangeDir)
return;
//Change directions for every 2D- and 3D-tangents
for(Standard_Integer i = theArrTg3d.Lower(); i <= theArrTg3d.Upper(); i++)
{
theArrTg3d(i).Reverse();
}
for(Standard_Integer i = theArrTg2d.Lower(); i <= theArrTg2d.Upper(); i++)
{
theArrTg2d(i).Reverse();
}
}
//=======================================================================
//function : CheckTangents
//purpose : Checks if theArrTg2d have direction
// corresponded to the direction between theArrPt1 and theArrPt2.
// If it is not then reverses tangent vector.
// theArrPt1 (as same as theArrPt2) is sub-set of all 2D-points in
// one multy-point (multy-point is union of sets of 2D- and 3D-points).
//=======================================================================
static void CheckTangents(const TColgp_Array1OfPnt2d& theArrPt1,
const TColgp_Array1OfPnt2d& theArrPt2,
TColgp_Array1OfVec2d& theArrTg2d)
{
if(theArrPt1.Lower() != theArrPt2.Lower())
return;
if(theArrPt1.Upper() != theArrPt2.Upper())
return;
for(Standard_Integer i = theArrPt1.Lower(); i <= theArrPt1.Upper(); i++)
{
const gp_Vec2d aV1(theArrPt1(i), theArrPt2(i));
const gp_Vec2d& aV2 = theArrTg2d(i);
if(aV1.Dot(aV2) < 0.0)
{
theArrTg2d(i).Reverse();
}
}
}
AppParCurves_LeastSquare::
AppParCurves_LeastSquare(const MultiLine& SSP,
const Standard_Integer FirstPoint,
const Standard_Integer LastPoint,
const AppParCurves_Constraint FirstCons,
const AppParCurves_Constraint LastCons,
const math_Vector& Parameters,
const Standard_Integer NbPol):
SCU(NbPol),
mypoles(1, NbPol,
1, NbBColumns(SSP)),
A(FirstPoint, LastPoint, 1, NbPol),
DA(FirstPoint, LastPoint, 1, NbPol),
B2(TheFirstPoint(FirstCons, FirstPoint),
Max(TheFirstPoint(FirstCons, FirstPoint),
TheLastPoint(LastCons, LastPoint)),
1, NbBColumns(SSP)),
mypoints(FirstPoint, LastPoint, 1, NbBColumns(SSP)),
Vflatknots(1, 1),
Vec1t(1, NbBColumns(SSP)),
Vec1c(1, NbBColumns(SSP)),
Vec2t(1, NbBColumns(SSP)),
Vec2c(1, NbBColumns(SSP)),
theError(FirstPoint, LastPoint,
1, ToolLine::NbP3d(SSP)+ToolLine::NbP2d(SSP), 0.0),
myindex(FirstPoint, LastPoint, 0),
nbpoles(NbPol)
{
FirstConstraint = FirstCons;
LastConstraint = LastCons;
Init(SSP, FirstPoint, LastPoint);
Perform(Parameters);
}
AppParCurves_LeastSquare::
AppParCurves_LeastSquare(const MultiLine& SSP,
const Standard_Integer FirstPoint,
const Standard_Integer LastPoint,
const AppParCurves_Constraint FirstCons,
const AppParCurves_Constraint LastCons,
const Standard_Integer NbPol):
SCU(NbPol),
mypoles(1, NbPol,
1, NbBColumns(SSP)),
A(FirstPoint, LastPoint, 1, NbPol),
DA(FirstPoint, LastPoint, 1, NbPol),
B2(TheFirstPoint(FirstCons, FirstPoint),
Max(TheFirstPoint(FirstCons, FirstPoint),
TheLastPoint(LastCons, LastPoint)),
1, NbBColumns(SSP)),
mypoints(FirstPoint, LastPoint, 1, NbBColumns(SSP)),
Vflatknots(1, 1),
Vec1t(1, NbBColumns(SSP)),
Vec1c(1, NbBColumns(SSP)),
Vec2t(1, NbBColumns(SSP)),
Vec2c(1, NbBColumns(SSP)),
theError(FirstPoint, LastPoint,
1, ToolLine::NbP3d(SSP)+ToolLine::NbP2d(SSP), 0.0),
myindex(FirstPoint, LastPoint, 0),
nbpoles(NbPol)
{
FirstConstraint = FirstCons;
LastConstraint = LastCons;
Init(SSP, FirstPoint, LastPoint);
}
AppParCurves_LeastSquare::
AppParCurves_LeastSquare(const MultiLine& SSP,
const TColStd_Array1OfReal& Knots,
const TColStd_Array1OfInteger& Mults,
const Standard_Integer FirstPoint,
const Standard_Integer LastPoint,
const AppParCurves_Constraint FirstCons,
const AppParCurves_Constraint LastCons,
const math_Vector& Parameters,
const Standard_Integer NbPol):
SCU(NbPol),
mypoles(1, NbPol,
1, NbBColumns(SSP)),
A(FirstPoint, LastPoint, 1, NbPol),
DA(FirstPoint, LastPoint, 1, NbPol),
B2(TheFirstPoint(FirstCons, FirstPoint),
Max(TheFirstPoint(FirstCons, FirstPoint),
TheLastPoint(LastCons, LastPoint)),
1, NbBColumns(SSP)),
mypoints(FirstPoint, LastPoint, 1, NbBColumns(SSP)),
Vflatknots(1, FlatLength(Mults)),
Vec1t(1, NbBColumns(SSP)),
Vec1c(1, NbBColumns(SSP)),
Vec2t(1, NbBColumns(SSP)),
Vec2c(1, NbBColumns(SSP)),
theError(FirstPoint, LastPoint,
1, ToolLine::NbP3d(SSP)+ToolLine::NbP2d(SSP), 0.0),
myindex(FirstPoint, LastPoint, 0),
nbpoles(NbPol)
{
FirstConstraint = FirstCons;
LastConstraint = LastCons;
myknots = new TColStd_HArray1OfReal(Knots.Lower(), Knots.Upper());
myknots->ChangeArray1() = Knots;
mymults = new TColStd_HArray1OfInteger(Mults.Lower(), Mults.Upper());
mymults->ChangeArray1() = Mults;
SCU.SetKnots(Knots);
SCU.SetMultiplicities(Mults);
Init(SSP, FirstPoint, LastPoint);
Perform(Parameters);
}
AppParCurves_LeastSquare::
AppParCurves_LeastSquare(const MultiLine& SSP,
const TColStd_Array1OfReal& Knots,
const TColStd_Array1OfInteger& Mults,
const Standard_Integer FirstPoint,
const Standard_Integer LastPoint,
const AppParCurves_Constraint FirstCons,
const AppParCurves_Constraint LastCons,
const Standard_Integer NbPol):
SCU(NbPol),
mypoles(1, NbPol,
1, NbBColumns(SSP)),
A(FirstPoint, LastPoint, 1, NbPol),
DA(FirstPoint, LastPoint, 1, NbPol),
B2(TheFirstPoint(FirstCons, FirstPoint),
Max(TheFirstPoint(FirstCons, FirstPoint),
TheLastPoint(LastCons, LastPoint)),
1, NbBColumns(SSP)),
mypoints(FirstPoint, LastPoint, 1, NbBColumns(SSP)),
Vflatknots(1, FlatLength(Mults)),
Vec1t(1, NbBColumns(SSP)),
Vec1c(1, NbBColumns(SSP)),
Vec2t(1, NbBColumns(SSP)),
Vec2c(1, NbBColumns(SSP)),
theError(FirstPoint, LastPoint,
1, ToolLine::NbP3d(SSP)+ToolLine::NbP2d(SSP), 0.0),
myindex(FirstPoint, LastPoint, 0),
nbpoles(NbPol)
{
myknots = new TColStd_HArray1OfReal(Knots.Lower(), Knots.Upper());
myknots->ChangeArray1() = Knots;
mymults = new TColStd_HArray1OfInteger(Mults.Lower(), Mults.Upper());
mymults->ChangeArray1() = Mults;
SCU.SetKnots(Knots);
SCU.SetMultiplicities(Mults);
FirstConstraint = FirstCons;
LastConstraint = LastCons;
Init(SSP, FirstPoint, LastPoint);
}
void AppParCurves_LeastSquare::Init(const MultiLine& SSP,
const Standard_Integer FirstPoint,
const Standard_Integer LastPoint)
{
// Variable de controle
iscalculated = Standard_False;
isready = Standard_True;
myfirstp = FirstPoint;
mylastp = LastPoint;
FirstP = TheFirstPoint(FirstConstraint, myfirstp);
LastP = TheLastPoint(LastConstraint, mylastp);
// Reperage des contraintes aux extremites:
// ========================================
Standard_Integer i, j, k, i2;
nbP2d = ToolLine::NbP2d(SSP);
nbP = ToolLine::NbP3d(SSP);
gp_Pnt Poi;
gp_Pnt2d Poi2d;
// gp_Vec V3d;
// gp_Vec2d V2d;
Standard_Integer mynbP2d = nbP2d, mynbP = nbP;
if (nbP2d == 0) mynbP2d = 1;
if (nbP == 0) mynbP = 1;
TColgp_Array1OfPnt TabP(1, mynbP);
TColgp_Array1OfPnt2d TabP2d(1, mynbP2d);
TColgp_Array1OfVec TabV(1, mynbP);
TColgp_Array1OfVec2d TabV2d(1, mynbP2d);
deg = nbpoles-1;
if (!mymults.IsNull()) {
Standard_Integer sum = 0;
for (i = mymults->Lower(); i <= mymults->Upper(); i++) {
sum += mymults->Value(i);
}
deg = sum -nbpoles-1;
k = 1;
Standard_Real val;
for (i = myknots->Lower(); i <= myknots->Upper(); i++) {
for (j = 1; j <= mymults->Value(i); j++) {
val = myknots->Value(i);
Vflatknots(k) = val;
k++;
}
}
}
Affect(SSP, FirstPoint, FirstConstraint, Vec1t, Vec1c);
Affect(SSP, LastPoint, LastConstraint, Vec2t, Vec2c);
for (j = myfirstp; j <= mylastp; j++) {
i2 = 1;
if (nbP != 0 && nbP2d != 0) ToolLine::Value(SSP, j, TabP,TabP2d);
else if (nbP2d != 0) ToolLine::Value(SSP, j, TabP2d);
else ToolLine::Value(SSP, j, TabP);
for (i = 1; i <= nbP; i++) {
(TabP(i)).Coord(mypoints(j,i2),mypoints(j,i2+1),mypoints(j,i2+2));
i2 += 3;
}
for (i = 1;i <= nbP2d; i++) {
(TabP2d(i)).Coord(mypoints(j, i2), mypoints(j, i2+1));
i2 += 2;
}
}
AppParCurves_MultiPoint Pole1(nbP, nbP2d), PoleN(nbP, nbP2d);
if (FirstConstraint == AppParCurves_PassPoint ||
FirstConstraint == AppParCurves_TangencyPoint ||
FirstConstraint == AppParCurves_CurvaturePoint) {
i2 = 1;
for (i = 1; i <= nbP; i++) {
Poi.SetCoord(mypoints(myfirstp, i2),
mypoints(myfirstp, i2+1),
mypoints(myfirstp, i2+2));
Pole1.SetPoint(i, Poi);
i2 += 3;
}
for (i = 1; i <= nbP2d; i++) {
Poi2d.SetCoord(mypoints(myfirstp, i2), mypoints(myfirstp, i2+1));
Pole1.SetPoint2d(i+nbP, Poi2d);
i2 += 2;
}
for (i = 1; i <= mypoles.ColNumber(); i++)
mypoles(1, i) = mypoints(myfirstp, i);
}
if (LastConstraint == AppParCurves_PassPoint ||
LastConstraint == AppParCurves_TangencyPoint ||
FirstConstraint == AppParCurves_CurvaturePoint) {
i2 = 1;
for (i = 1; i <= nbP; i++) {
Poi.SetCoord(mypoints(mylastp, i2),
mypoints(mylastp, i2+1),
mypoints(mylastp, i2+2));
PoleN.SetPoint(i, Poi);
i2 += 3;
}
for (i = 1; i <= nbP2d; i++) {
Poi2d.SetCoord(mypoints(mylastp, i2),
mypoints(mylastp, i2+1));
PoleN.SetPoint2d(i+nbP, Poi2d);
i2 += 2;
}
for (i = 1; i <= mypoles.ColNumber(); i++)
mypoles(nbpoles, i) = mypoints(mylastp, i);
}
if (FirstConstraint == AppParCurves_NoConstraint) {
resinit = 1;
SCU.SetValue(1, Pole1);
if (LastConstraint == AppParCurves_NoConstraint) {
resfin = nbpoles;
}
else if (LastConstraint == AppParCurves_PassPoint) {
resfin = nbpoles-1;
SCU.SetValue(nbpoles, PoleN);
}
else if (LastConstraint == AppParCurves_TangencyPoint) {
resfin = nbpoles-2;
SCU.SetValue(nbpoles, PoleN);
}
else if (LastConstraint == AppParCurves_CurvaturePoint) {
resfin = nbpoles-3;
SCU.SetValue(nbpoles, PoleN);
}
}
else if (FirstConstraint == AppParCurves_PassPoint) {
resinit = 2;
SCU.SetValue(1, Pole1);
if (LastConstraint == AppParCurves_NoConstraint) {
resfin = nbpoles;
}
else if (LastConstraint == AppParCurves_PassPoint) {
resfin = nbpoles-1;
SCU.SetValue(nbpoles, PoleN);
}
else if (LastConstraint == AppParCurves_TangencyPoint) {
resfin = nbpoles-2;
SCU.SetValue(nbpoles, PoleN);
}
else if (LastConstraint == AppParCurves_CurvaturePoint) {
resfin = nbpoles-3;
SCU.SetValue(nbpoles, PoleN);
}
}
else if (FirstConstraint == AppParCurves_TangencyPoint) {
resinit = 3;
SCU.SetValue(1, Pole1);
if (LastConstraint == AppParCurves_NoConstraint) {
resfin = nbpoles;
}
if (LastConstraint == AppParCurves_PassPoint) {
resfin = nbpoles-1;
SCU.SetValue(nbpoles, PoleN);
}
if (LastConstraint == AppParCurves_TangencyPoint) {
resfin = nbpoles-2;
SCU.SetValue(nbpoles, PoleN);
}
else if (LastConstraint == AppParCurves_CurvaturePoint) {
resfin = nbpoles-3;
SCU.SetValue(nbpoles, PoleN);
}
}
else if (FirstConstraint == AppParCurves_CurvaturePoint) {
resinit = 4;
SCU.SetValue(1, Pole1);
if (LastConstraint == AppParCurves_NoConstraint) {
resfin = nbpoles;
}
if (LastConstraint == AppParCurves_PassPoint) {
resfin = nbpoles-1;
SCU.SetValue(nbpoles, PoleN);
}
if (LastConstraint == AppParCurves_TangencyPoint) {
resfin = nbpoles-2;
SCU.SetValue(nbpoles, PoleN);
}
else if (LastConstraint == AppParCurves_CurvaturePoint) {
resfin = nbpoles-3;
SCU.SetValue(nbpoles, PoleN);
}
}
Standard_Integer Nincx = resfin-resinit+1;
if (Nincx<1) { //Impossible d'aller plus loin
isready = Standard_False;
return;
}
Standard_Integer Neq = LastP-FirstP+1;
NA = 3*nbP+2*nbP2d;
Nlignes = NA*Neq;
Ninc = NA*Nincx;
if (FirstConstraint >= AppParCurves_TangencyPoint) Ninc++;
if (LastConstraint >= AppParCurves_TangencyPoint) Ninc++;
}
void AppParCurves_LeastSquare::Perform(const math_Vector& Parameters) {
done = Standard_False;
if (!isready) {
return;
}
Standard_Integer i, j, k, Ci, i2, k1, k2;
Standard_Integer nbpol1 = nbpoles-1, Ninc1 = Ninc-1;
Standard_Real AD1, A0;
// gp_Pnt Pt;
// gp_Pnt2d Pt2d;
iscalculated = Standard_False;
// calcul de la matrice A et DA des fonctions d approximation:
ComputeFunction(Parameters);
if (FirstConstraint != AppParCurves_TangencyPoint &&
LastConstraint != AppParCurves_TangencyPoint) {
if (FirstConstraint == AppParCurves_NoConstraint) {
if (LastConstraint == AppParCurves_NoConstraint ) {
math_Householder HouResol(A, mypoints);
if (!(HouResol.IsDone())) {
done = Standard_False;
return;
}
done = Standard_True;
mypoles = HouResol.AllValues();
return;
}
else {
for (j = FirstP; j <= LastP; j++) {
AD1 = A(j, nbpoles);
for (i = 1; i <= B2.ColNumber(); i++) {
B2(j, i) = mypoints(j,i) - AD1*mypoles(nbpoles, i);
}
}
}
}
else if (FirstConstraint == AppParCurves_PassPoint) {
if (LastConstraint == AppParCurves_NoConstraint) {
for (j = FirstP; j <= LastP; j++) {
A0 = A(j, 1);
for (i = 1; i <= B2.ColNumber(); i++) {
B2(j, i) = mypoints(j, i)- A0*mypoles(1, i);
}
}
}
else if (LastConstraint == AppParCurves_PassPoint) {
for (j = FirstP; j <= LastP; j++) {
A0 = A(j, 1);
AD1 = A(j, nbpoles);
for (i = 1; i <= B2.ColNumber(); i++) {
B2(j, i) = mypoints(j, i) - A0 * mypoles(1, i)
- AD1* mypoles(nbpoles, i);
}
}
}
}
// resolution:
Standard_Integer Nincx = resfin-resinit+1;
if (Nincx < 1) {
done = Standard_True;
return;
}
math_IntegerVector Index(1, Nincx);
SearchIndex(Index);
math_Matrix mytab(resinit, resfin, 1, B2.ColNumber(),0.0);
math_Vector TheAA(1, Index(Nincx), 0.0);
math_Vector myTABB(1, Nincx, 0.0);
MakeTAA(TheAA, mytab);
DACTCL_Decompose(TheAA, Index);
Standard_Integer kk2;
for (j = 1; j <= B2.ColNumber(); j++) {
kk2 = 1;
for (i = resinit; i <= resfin; i++) {
myTABB(kk2) = mytab(i, j);
kk2++;
}
DACTCL_Solve(TheAA, myTABB, Index);
i2 = 1;
for (k = resinit; k <= resfin; k++) {
mypoles(k, j) = myTABB.Value(i2);
i2++;
}
}
done = Standard_True;
}
// ===========================================================
// cas de tangence:
// ===========================================================
Standard_Integer Nincx = resfin-resinit+1;
Standard_Integer deport = 0, Nincx2 = 2*Nincx;
math_IntegerVector InternalIndex(1, Nincx);
SearchIndex(InternalIndex);
math_IntegerVector Index(1, Ninc);
Standard_Integer l = 1;
if (resinit <= resfin) {
for (j = 0; j <= NA-1; j++) {
deport = j*InternalIndex(Nincx);
for (i = 1; i <= Nincx; i++) {
Index(l) = InternalIndex(i) + deport;
l++;
}
}
}
if (resinit > resfin) Index(1) = 1;
if (Ninc1 > 1) {
if (FirstConstraint >= AppParCurves_TangencyPoint &&
LastConstraint >= AppParCurves_TangencyPoint)
Index(Ninc1) = Index(Ninc1 - 1) + Ninc1;
}
if (FirstConstraint >= AppParCurves_TangencyPoint ||
LastConstraint >= AppParCurves_TangencyPoint)
Index(Ninc) = Index(Ninc-1) + Ninc;
math_Vector TheA(1, Index(Ninc), 0.0);
math_Vector myTAB(1, Ninc, 0.0);
MakeTAA(TheA, myTAB);
Standard_Integer Error = DACTCL_Decompose(TheA, Index);
Error = DACTCL_Solve(TheA, myTAB, Index);
if (!Error) done = Standard_True;
if (FirstConstraint >= AppParCurves_TangencyPoint &&
LastConstraint >= AppParCurves_TangencyPoint) {
lambda1 = myTAB.Value(Ninc1);
lambda2 = myTAB.Value(Ninc);
}
else if (FirstConstraint >= AppParCurves_TangencyPoint)
lambda1 = myTAB.Value(Ninc);
else if (LastConstraint >= AppParCurves_TangencyPoint)
lambda2 = myTAB.Value(Ninc);
// Les resultats sont stockes dans mypoles.
//=========================================
k = 1;
i2 = 1;
for (Ci = 1; Ci <= nbP; Ci++) {
k1 = k+1; k2 = k+2;
for (j = resinit; j <= resfin; j++) {
mypoles(j, k) = myTAB.Value(i2);
mypoles(j, k1) = myTAB.Value(i2+Nincx);
mypoles(j, k2) = myTAB.Value(i2+Nincx2);
i2++;
}
if (FirstConstraint >= AppParCurves_TangencyPoint) {
mypoles(2, k) = mypoints(myfirstp, k) + lambda1*Vec1t(k);
mypoles(2, k1) = mypoints(myfirstp, k1) + lambda1*Vec1t(k1);
mypoles(2, k2) = mypoints(myfirstp, k2) + lambda1*Vec1t(k2);
}
if (LastConstraint >= AppParCurves_TangencyPoint) {
mypoles(nbpol1, k) = mypoints(mylastp, k) - lambda2*Vec2t(k);
mypoles(nbpol1, k1) = mypoints(mylastp, k1) - lambda2*Vec2t(k1);
mypoles(nbpol1, k2) = mypoints(mylastp, k2) - lambda2*Vec2t(k2);
}
k += 3; i2 += Nincx2;
}
for (Ci = 1; Ci <= nbP2d; Ci++) {
k1 = k+1; k2 = k+2;
for (j = resinit; j <= resfin; j++) {
mypoles(j, k) = myTAB.Value(i2);
mypoles(j, k1) = myTAB.Value(i2+Nincx);
i2++;
}
if (FirstConstraint >= AppParCurves_TangencyPoint) {
mypoles(2, k) = mypoints(myfirstp, k) + lambda1*Vec1t(k);
mypoles(2, k1) = mypoints(myfirstp, k1) + lambda1*Vec1t(k1);
}
if (LastConstraint >= AppParCurves_TangencyPoint) {
mypoles(nbpol1, k) = mypoints(mylastp, k) - lambda2*Vec2t(k);
mypoles(nbpol1, k1) = mypoints(mylastp, k1) - lambda2*Vec2t(k1);
}
k += 2; i2 += Nincx;
}
}
void AppParCurves_LeastSquare::Perform(const math_Vector& Parameters,
const math_Vector& V1t,
const math_Vector& V2t,
const Standard_Real l1,
const Standard_Real l2)
{
done = Standard_False;
if (!isready) {
return;
}
Standard_Integer i, lower1 = V1t.Lower(), lower2 = V2t.Lower();
resinit = 3; resfin = nbpoles-2;
Standard_Integer Nincx = resfin-resinit+1;
Ninc = NA*Nincx + 2;
FirstConstraint = AppParCurves_TangencyPoint;
LastConstraint = AppParCurves_TangencyPoint;
for (i = 1; i <= Vec1t.Upper(); i++) {
Vec1t(i) = V1t(i+lower1-1);
Vec2t(i) = V2t(i+lower2-1);
}
Perform (Parameters, l1, l2);
}
void AppParCurves_LeastSquare::Perform(const math_Vector& Parameters,
const math_Vector& V1t,
const math_Vector& V2t,
const math_Vector& V1c,
const math_Vector& V2c,
const Standard_Real l1,
const Standard_Real l2) {
done = Standard_False;
if (!isready) {
return;
}
Standard_Integer i, lower1 = V1t.Lower(), lower2 = V2t.Lower();
Standard_Integer lowc1 = V1c.Lower(), lowc2 = V2c.Lower();
resinit = 4; resfin = nbpoles-3;
Standard_Integer Nincx = resfin-resinit+1;
Ninc = NA*Nincx + 2;
FirstConstraint = AppParCurves_CurvaturePoint;
LastConstraint = AppParCurves_CurvaturePoint;
for (i = 1; i <= Vec1t.Upper(); i++) {
Vec1t(i) = V1t(i+lower1-1);
Vec2t(i) = V2t(i+lower2-1);
Vec1c(i) = V1c(i+lowc1-1);
Vec2c(i) = V2c(i+lowc2-1);
}
Perform (Parameters, l1, l2);
}
void AppParCurves_LeastSquare::Perform(const math_Vector& Parameters,
const Standard_Real l1,
const Standard_Real l2) {
done = Standard_False;
if (!isready) {
return;
}
if (FirstConstraint < AppParCurves_TangencyPoint &&
LastConstraint < AppParCurves_TangencyPoint) {
Perform(Parameters);
return;
}
iscalculated = Standard_False;
lambda1 = l1;
lambda2 = l2;
Standard_Integer i, j, k, i2;
Standard_Real AD0, AD1, AD2, A0, A1, A2;
// gp_Pnt Pt, P1, P2;
// gp_Pnt2d Pt2d, P12d, P22d;
Standard_Real l11 = deg*l1, l22 = deg*l2;
ComputeFunction(Parameters);
if (FirstConstraint >= AppParCurves_TangencyPoint) {
for (i = 1; i <= mypoles.ColNumber(); i++)
mypoles(2, i) = mypoints(myfirstp, i) + l1*Vec1t(i);
}
if (FirstConstraint == AppParCurves_CurvaturePoint) {
for (i = 1; i <= mypoles.ColNumber(); i++)
mypoles(3, i) = 2*mypoles(2, i)-mypoles(1, i)
+ l11*l11*Vec1c(i)/(deg*(deg-1));
}
if (LastConstraint >= AppParCurves_TangencyPoint) {
for (i = 1; i <= mypoles.ColNumber(); i++)
mypoles(nbpoles-1, i) = mypoints(mylastp, i) - l2*Vec2t(i);
}
if (LastConstraint == AppParCurves_CurvaturePoint) {
for (i = 1; i <= mypoles.ColNumber(); i++)
mypoles(nbpoles-2, i) = 2*mypoles(nbpoles-1, i) - mypoles(nbpoles, i)
+ l22*l22*Vec2c(i)/(deg*(deg-1));
}
if (resinit > resfin) {
done = Standard_True;
return;
}
if (FirstConstraint == AppParCurves_NoConstraint) {
if (LastConstraint == AppParCurves_TangencyPoint) {
for (j = FirstP; j <= LastP; j++) {
AD0 = A(j, nbpoles); AD1 = A(j, nbpoles-1);
for (i = 1; i <= B2.ColNumber(); i++) {
B2(j, i) = mypoints(j, i) - AD0 * mypoles(nbpoles, i)
- AD1 * mypoles(nbpoles-1, i);
}
}
}
if (LastConstraint == AppParCurves_CurvaturePoint) {
for (j = FirstP; j <= LastP; j++) {
AD0 = A(j, nbpoles); AD1 = A(j, nbpoles-1); AD2 = A(j, nbpoles-2);
for (i = 1; i <= B2.ColNumber(); i++) {
B2(j, i) = mypoints(j, i) - AD0 * mypoles(nbpoles, i)
- AD1 * mypoles(nbpoles-1, i)
- AD2 * mypoles(nbpoles-2, i);
}
}
}
}
else if (FirstConstraint == AppParCurves_PassPoint) {
if (LastConstraint == AppParCurves_TangencyPoint) {
for (j = FirstP; j <= LastP; j++) {
A0 = A(j, 1);
AD0 = A(j, nbpoles); AD1 = A(j, nbpoles-1);
for (i = 1; i <= B2.ColNumber(); i++) {
B2(j, i) = mypoints(j, i) - A0 * mypoles(1, i)
- AD0 * mypoles(nbpoles, i)
- AD1 * mypoles(nbpoles-1, i);
}
}
}
if (LastConstraint == AppParCurves_CurvaturePoint) {
for (j = FirstP; j <= LastP; j++) {
A0 = A(j, 1);
AD0 = A(j, nbpoles); AD1 = A(j, nbpoles-1); AD2 = A(j, nbpoles-2);
for (i = 1; i <= B2.ColNumber(); i++) {
B2(j, i) = mypoints(j, i) - A0 * mypoles(1, i)
- AD0 * mypoles(nbpoles, i)
- AD1 * mypoles(nbpoles-1, i)
- AD2 * mypoles(nbpoles-2, i);
}
}
}
}
else if (FirstConstraint == AppParCurves_TangencyPoint) {
if (LastConstraint == AppParCurves_NoConstraint) {
for (j = FirstP; j <= LastP; j++) {
A0 = A(j, 1); A1 = A(j, 2);
for (i = 1; i <= B2.ColNumber(); i++) {
B2(j, i) = mypoints(j, i) - A0 * mypoles(1, i)
- A1 * mypoles(2, i);
}
}
}
else if (LastConstraint == AppParCurves_PassPoint) {
for (j = FirstP; j <= LastP; j++) {
A0 = A(j, 1); AD0 = A(j, nbpoles); A1 = A(j, 2);
for (i = 1; i <= B2.ColNumber(); i++) {
B2(j, i) = mypoints(j, i) - A0 * mypoles(1, i)
- AD0 * mypoles(nbpoles, i)
- A1 * mypoles(2, i);
}
}
}
else if (LastConstraint == AppParCurves_TangencyPoint) {
for (j = FirstP; j <= LastP; j++) {
A0 = A(j, 1); AD0 = A(j, nbpoles); A1 = A(j, 2); AD1 = A(j, nbpoles-1);
for (i = 1; i <= B2.ColNumber(); i++) {
B2(j, i) = mypoints(j, i) - A0 * mypoles(1, i)
- AD0 * mypoles(nbpoles, i)
- A1 * mypoles(2, i)
- AD1 * mypoles(nbpoles-1, i);
}
}
}
}
else if (FirstConstraint == AppParCurves_CurvaturePoint) {
if (LastConstraint == AppParCurves_NoConstraint) {
for (j = FirstP; j <= LastP; j++) {
A0 = A(j, 1); A1 = A(j, 2); A2 = A(j, 3);
for (i = 1; i <= B2.ColNumber(); i++) {
B2(j, i) = mypoints(j, i) - A0 * mypoles(1, i)
- A1 * mypoles(2, i)
- A2 * mypoles(3, i);
}
}
}
else if (LastConstraint == AppParCurves_PassPoint) {
for (j = FirstP; j <= LastP; j++) {
A0 = A(j, 1); A1 = A(j, 2); A2 = A(j, 3); AD0 = A(j, nbpoles);
for (i = 1; i <= B2.ColNumber(); i++) {
B2(j, i) = mypoints(j, i) - A0 * mypoles(1, i)
- A1 * mypoles(2, i)
- A2 * mypoles(3, i)
- AD0 * mypoles(nbpoles, i);
}
}
}
else if (LastConstraint == AppParCurves_TangencyPoint) {
for (j = FirstP; j <= LastP; j++) {
A0 = A(j, 1); A1 = A(j, 2); A2 = A(j, 3);
AD0 = A(j, nbpoles); AD1 = A(j, nbpoles-1);
for (i = 1; i <= B2.ColNumber(); i++) {
B2(j, i) = mypoints(j, i) - A0 * mypoles(1, i)
- A1 * mypoles(2, i)
- A2 * mypoles(3, i)
- AD0 * mypoles(nbpoles, i)
- AD1 * mypoles(nbpoles-1, i);
}
}
}
else if (LastConstraint == AppParCurves_CurvaturePoint) {
for (j = FirstP; j <= LastP; j++) {
A0 = A(j, 1); A1 = A(j, 2); A2 = A(j, 3);
AD0 = A(j, nbpoles); AD1 = A(j, nbpoles-1); AD2 = A(j, nbpoles-2);
for (i = 1; i <= B2.ColNumber(); i++) {
B2(j, i) = mypoints(j, i) - A0 * mypoles(1, i)
- A1 * mypoles(2, i)
- A2 * mypoles(3, i)
- AD0 * mypoles(nbpoles, i)
- AD1 * mypoles(nbpoles-1, i)
- AD2 * mypoles(nbpoles-2, i);
}
}
}
}
Standard_Integer Nincx = resfin-resinit+1;
math_Matrix mytab(resinit, resfin, 1, B2.ColNumber(),0.0);
math_IntegerVector Index(1, Nincx);
SearchIndex(Index);
math_Vector AA(1, Index(Nincx), 0.0);
MakeTAA(AA, mytab);
math_Vector myTABB(1, Nincx, 0.0);
DACTCL_Decompose(AA, Index);
Standard_Integer kk2;
for (j = 1; j <= B2.ColNumber(); j++) {
kk2 = 1;
for (i = resinit; i <= resfin; i++) {
myTABB(kk2) = mytab(i, j);
kk2++;
}
DACTCL_Solve(AA, myTABB, Index);
i2 = 1;
for (k = resinit; k <= resfin; k++) {
mypoles(k, j) = myTABB.Value(i2);
i2++;
}
}
done = Standard_True;
}
//=======================================================================
//function : Affect
//purpose : Index is an ID of the point in MultiLine. Every point is set of
// several 3D- and 2D-points. E.g. every points of Walking-line,
// obtained in intersection algorithm, is set of one 3D points
// (nbP == 1) and two 2D-points (nbP2d == 2).
//=======================================================================
void AppParCurves_LeastSquare::Affect(const MultiLine& SSP,
const Standard_Integer Index,
AppParCurves_Constraint& Cons,
math_Vector& Vt,
math_Vector& Vc)
{
// Vt: vector of tangent, Vc: vector of curvature.
if (Cons >= AppParCurves_TangencyPoint) {
Standard_Integer i, i2 = 1;
Standard_Boolean Ok;
Standard_Integer mynbP2d = nbP2d, mynbP = nbP;
if (nbP2d == 0) mynbP2d = 1;
if (nbP == 0) mynbP = 1;
TColgp_Array1OfVec TabV(1, mynbP);
TColgp_Array1OfVec2d TabV2d(1, mynbP2d);
if (Cons == AppParCurves_CurvaturePoint)
{
if (nbP != 0 && nbP2d != 0)
{
Ok = ToolLine::Curvature(SSP, Index,TabV,TabV2d);
if (!Ok) { Cons = AppParCurves_TangencyPoint;}
}
else if (nbP2d != 0)
{
Ok = ToolLine::Curvature(SSP, Index, TabV2d);
if (!Ok) { Cons = AppParCurves_TangencyPoint;}
}
else {
Ok = ToolLine::Curvature(SSP, Index, TabV);
if (!Ok) { Cons = AppParCurves_TangencyPoint;}
}
if (Ok) {
for (i = 1; i <= nbP; i++) {
(TabV(i)).Coord(Vc(i2), Vc(i2+1), Vc(i2+2));
i2 += 3;
}
for (i = 1; i <= nbP2d; i++) {
(TabV2d(i)).Coord(Vc(i2), Vc(i2+1));
i2 += 2;
}
}
}
i2 = 1;
if (Cons >= AppParCurves_TangencyPoint) {
if (nbP != 0 && nbP2d != 0) {
Ok = ToolLine::Tangency(SSP, Index, TabV, TabV2d);
if (!Ok) { Cons = AppParCurves_PassPoint;}
}
else if (nbP2d != 0) {
Ok = ToolLine::Tangency(SSP, Index, TabV2d);
if (!Ok) { Cons = AppParCurves_PassPoint;}
}
else {
Ok = ToolLine::Tangency(SSP, Index, TabV);
if (!Ok) { Cons = AppParCurves_PassPoint;}
}
if (Ok)
{
TColgp_Array1OfPnt anArrPts3d1(1, mynbP), anArrPts3d2(1, mynbP);
if(nbP != 0)
{
if(Index < ToolLine::LastPoint(SSP))
{
ToolLine::Value(SSP, Index, anArrPts3d1);
ToolLine::Value(SSP, Index+1, anArrPts3d2);
}
else
{// (Index == ToolLine::LastPoint(theML))
ToolLine::Value(SSP, Index-1, anArrPts3d1);
ToolLine::Value(SSP, Index, anArrPts3d2);
}
CheckTangents(anArrPts3d1, anArrPts3d2, TabV, TabV2d);
}
else if(nbP2d != 0)
{
TColgp_Array1OfPnt2d anArrPts2d1(1, mynbP2d), anArrPts2d2(1, mynbP2d);
if(Index < ToolLine::LastPoint(SSP))
{
ToolLine::Value(SSP, Index, anArrPts3d1, anArrPts2d1);
ToolLine::Value(SSP, Index+1, anArrPts3d2, anArrPts2d2);
}
else
{// (Index == ToolLine::LastPoint(theML))
ToolLine::Value(SSP, Index-1, anArrPts3d1, anArrPts2d1);
ToolLine::Value(SSP, Index, anArrPts3d2, anArrPts2d2);
}
CheckTangents(anArrPts2d1, anArrPts2d2, TabV2d);
}
for (i = 1; i <= nbP; i++) {
(TabV(i)).Coord(Vt(i2), Vt(i2+1), Vt(i2+2));
i2 += 3;
}
for (i = 1; i <= nbP2d; i++) {
(TabV2d(i)).Coord(Vt(i2), Vt(i2+1));
i2 += 2;
}
}
}
}
}
Standard_Integer AppParCurves_LeastSquare::NbBColumns(
const MultiLine& SSP) const
{
Standard_Integer BCol;
BCol = (ToolLine::NbP3d(SSP))*3 +
(ToolLine::NbP2d(SSP))*2;
return BCol;
}
void AppParCurves_LeastSquare::Error(Standard_Real& F,
Standard_Real& MaxE3d,
Standard_Real& MaxE2d)
{
if (!done) {throw StdFail_NotDone();}
Standard_Integer i, j, k, i2, indexdeb, indexfin;
Standard_Integer i21, i22;
Standard_Real AA, BB, CC, Fi, FX, FY, FZ, AIJ;
MaxE3d = MaxE2d = 0.0;
F = 0.0;
i2 = 1;
math_Vector Px(1, nbpoles), Py(1, nbpoles), Pz(1, nbpoles);
for (k = 1 ; k <= nbP+nbP2d; k++) {
i21 = i2+1; i22 = i2+2;
for (i = 1; i <= nbpoles; i++) {
Px(i) = mypoles(i, i2);
Py(i) = mypoles(i, i21);
if (k <= nbP) Pz(i) = mypoles(i, i22);
}
for (i = FirstP; i <= LastP; i++) {
AA = 0.0; BB = 0.0; CC = 0.0;
indexdeb = myindex(i) + 1;
indexfin = indexdeb + deg;
for (j = indexdeb; j <= indexfin; j++) {
AIJ = A(i, j);
AA += AIJ*Px(j);
BB += AIJ*Py(j);
if (k <= nbP) CC += AIJ*Pz(j);
}
FX = AA-mypoints(i, i2);
FY = BB-mypoints(i, i21);
Fi= FX*FX + FY*FY;
if (k <= nbP) {
FZ = CC-mypoints(i, i22);
Fi += FZ*FZ;
if (Fi > MaxE3d) MaxE3d = Fi;
}
else {
if (Fi > MaxE2d) MaxE2d = Fi;
}
theError(i, k) = Fi;
F += Fi;
}
if (k <= nbP) i2 += 3;
else i2 += 2;
}
MaxE3d = Sqrt(MaxE3d);
MaxE2d = Sqrt(MaxE2d);
}
void AppParCurves_LeastSquare::ErrorGradient(math_Vector& Grad,
Standard_Real& F,
Standard_Real& MaxE3d,
Standard_Real& MaxE2d)
{
if (!done) {throw StdFail_NotDone();}
Standard_Integer i, j, k, i2, indexdeb, indexfin;
Standard_Real AA, BB, CC, Fi, FX, FY, FZ, AIJ;
// Standard_Real DAIJ, DAA, DBB, DCC, Gr, gr1= 0.0, gr2= 0.0;
Standard_Real DAIJ, DAA, DBB, DCC, Gr;
MaxE3d = MaxE2d = 0.0;
// Standard_Integer i21, i22, diff = (deg-1);
Standard_Integer i21, i22;
F = 0.0;
i2 = 1;
math_Vector Px(1, nbpoles), Py(1, nbpoles), Pz(1, nbpoles);
for (k = Grad.Lower(); k <= Grad.Upper(); k++) Grad(k) = 0.0;
for (k = 1 ; k <= nbP+nbP2d; k++) {
i21 = i2+1; i22 = i2+2;
for (i = 1; i <= nbpoles; i++) {
Px(i) = mypoles(i, i2);
Py(i) = mypoles(i, i21);
if (k <= nbP) Pz(i) = mypoles(i, i22);
}
for (i = FirstP; i <= LastP; i++) {
AA = 0.0; BB = 0.0; CC = 0.0; DAA = 0.0; DBB = 0.0; DCC = 0.0;
indexdeb = myindex(i) + 1;
indexfin = indexdeb + deg;
for (j = indexdeb; j <= indexfin; j++) {
AIJ = A(i, j); DAIJ = DA(i, j);
AA += AIJ*Px(j); DAA += DAIJ*Px(j);
BB += AIJ*Py(j); DBB += DAIJ*Py(j);
if (k <= nbP) {
CC += AIJ*Pz(j);
DCC += DAIJ*Pz(j);
}
}
FX = AA-mypoints(i, i2);
FY = BB-mypoints(i, i2+1);
Fi = FX*FX + FY*FY;
Gr = 2.0*(DAA*FX + DBB*FY);
if (k <= nbP) {
FZ = CC-mypoints(i, i2+2);
Fi += FZ*FZ;
Gr += 2.0*DCC*FZ;
if (Fi > MaxE3d) MaxE3d = Fi;
}
else {
if (Fi > MaxE2d) MaxE2d = Fi;
}
theError(i, k) = Fi;
Grad(i) += Gr;
F += Fi;
}
if (k <= nbP) i2 += 3;
else i2 += 2;
}
MaxE3d = Sqrt(MaxE3d);
MaxE2d = Sqrt(MaxE2d);
}
const math_Matrix& AppParCurves_LeastSquare::Distance()
{
if (!iscalculated) {
for (Standard_Integer i = myfirstp; i <= mylastp; i++) {
for (Standard_Integer j = 1; j <= nbP+nbP2d; j++) {
theError(i, j) = Sqrt(theError(i, j));
}
}
iscalculated = Standard_True;
}
return theError;
}
Standard_Real AppParCurves_LeastSquare::FirstLambda() const
{
return lambda1;
}
Standard_Real AppParCurves_LeastSquare::LastLambda() const
{
return lambda2;
}
Standard_Boolean AppParCurves_LeastSquare::IsDone() const
{
return done;
}
AppParCurves_MultiCurve AppParCurves_LeastSquare::BezierValue()
{
if (!myknots.IsNull()) throw Standard_NoSuchObject();
return (AppParCurves_MultiCurve)(BSplineValue());
}
const AppParCurves_MultiBSpCurve& AppParCurves_LeastSquare::BSplineValue()
{
if (!done) {throw StdFail_NotDone();}
Standard_Integer i, j, j2, npoints = nbP+nbP2d;;
gp_Pnt Pt;
gp_Pnt2d Pt2d;
Standard_Integer ideb = resinit, ifin = resfin;
if (ideb >= 2) ideb = 2;
if (ifin <= nbpoles-1) ifin = nbpoles-1;
// On met le resultat dans les curves correspondantes
for (i = ideb; i <= ifin; i++) {
j2 = 1;
AppParCurves_MultiPoint MPole(nbP, nbP2d);
for (j = 1; j <= nbP; j++) {
Pt.SetCoord(mypoles(i, j2), mypoles(i, j2+1), mypoles(i,j2+2));
MPole.SetPoint(j, Pt);
j2 += 3;
}
for (j = nbP+1;j <= npoints; j++) {
Pt2d.SetCoord(mypoles(i, j2), mypoles(i, j2+1));
MPole.SetPoint2d(j, Pt2d);
j2 += 2;
}
SCU.SetValue(i, MPole);
}
return SCU;
}
const math_Matrix& AppParCurves_LeastSquare::FunctionMatrix() const
{
if (!done) {throw StdFail_NotDone();}
return A;
}
const math_Matrix& AppParCurves_LeastSquare::DerivativeFunctionMatrix() const
{
if (!done) {throw StdFail_NotDone();}
return DA;
}
Standard_Integer AppParCurves_LeastSquare::
TheFirstPoint(const AppParCurves_Constraint FirstCons,
const Standard_Integer FirstPoint) const
{
if (FirstCons == AppParCurves_NoConstraint)
return FirstPoint;
else
return FirstPoint + 1;
}
Standard_Integer AppParCurves_LeastSquare::
TheLastPoint(const AppParCurves_Constraint LastCons,
const Standard_Integer LastPoint) const
{
if (LastCons == AppParCurves_NoConstraint)
return LastPoint;
else
return LastPoint - 1;
}
void AppParCurves_LeastSquare::ComputeFunction(const math_Vector& Parameters)
{
if (myknots.IsNull()) {
AppParCurves::Bernstein(nbpoles, Parameters, A, DA);
}
else {
AppParCurves::SplineFunction(nbpoles, deg, Parameters,
Vflatknots, A, DA, myindex);
}
}
const math_Matrix& AppParCurves_LeastSquare::Points() const
{
return mypoints;
}
const math_Matrix& AppParCurves_LeastSquare::Poles() const
{
return mypoles;
}
const math_IntegerVector& AppParCurves_LeastSquare::KIndex() const
{
return myindex;
}
void AppParCurves_LeastSquare::MakeTAA(math_Vector& TheA,
math_Vector& myTAB)
{
Standard_Integer i, j, k, Ci, i2, i21, i22;
Standard_Real xx = 0.0, yy = 0.0;
Standard_Integer Nincx = resfin-resinit+1;
Standard_Integer Nrow, Neq = LastP-FirstP+1;
Standard_Integer Ninc1;
if (FirstConstraint >= AppParCurves_TangencyPoint &&
LastConstraint >= AppParCurves_TangencyPoint) {
Ninc1 = Ninc-1;
}
else Ninc1 = Ninc;
Standard_Integer myfirst = A.LowerRow();
Standard_Integer ix, iy, iz;
Standard_Integer mylast = myfirst+Nlignes-1;
Standard_Integer k1;
Standard_Real taf1 = 0.0, taf2 = 0.0, taf3 = 0.0,
tab1 = 0.0, tab2 = 0.0;
Standard_Integer nb, inc, jinit, jfin, u;
Standard_Integer indexdeb, indexfin;
Standard_Integer NA1 = NA-1;
Standard_Real v1=0, v2=0, b;
Standard_Real Ai2, Aid, Akj;
math_Vector myB(myfirst, mylast, 0.0),
myV1(myfirst, mylast, 0.0),
myV2(myfirst, mylast, 0.0);
math_Vector TheV1(1, Ninc, 0.0), TheV2(1, Ninc, 0.0);
for (i = FirstP; i <= LastP; i++) {
Ai2 = A(i, 2);
Aid = A(i, nbpoles-1);
if (FirstConstraint >= AppParCurves_PassPoint) xx = A(i, 1);
if (FirstConstraint >= AppParCurves_TangencyPoint) xx += Ai2;
if (LastConstraint >= AppParCurves_PassPoint) yy = A(i, nbpoles);
if (LastConstraint >= AppParCurves_TangencyPoint) yy += Aid;
i2 = 1;
Nrow = myfirst-FirstP;
for (Ci = 1; Ci <= nbP; Ci++) {
i21 = i2+1; i22 = i2+2;
ix = i+Nrow; iy = ix+Neq; iz = iy+Neq;
if (FirstConstraint >= AppParCurves_TangencyPoint) {
myV1(ix) = Ai2*Vec1t(i2);
myV1(iy) = Ai2*Vec1t(i21);
myV1(iz) = Ai2*Vec1t(i22);
}
if (LastConstraint >= AppParCurves_TangencyPoint) {
myV2(ix) = -Aid*Vec2t(i2);
myV2(iy) = -Aid*Vec2t(i21);
myV2(iz) = -Aid*Vec2t(i22);
}
myB(ix) = mypoints(i, i2) - xx*mypoints(myfirstp, i2)
- yy*mypoints(mylastp, i2);
myB(iy) = mypoints(i, i21) - xx*mypoints(myfirstp, i21)
- yy*mypoints(mylastp, i21);
myB(iz) = mypoints(i, i22) - xx*mypoints(myfirstp, i22)
- yy*mypoints(mylastp, i22);
i2 += 3;
Nrow = Nrow + 3*Neq;
}
for (Ci = 1; Ci <= nbP2d; Ci++) {
i21 = i2+1; i22 = i2+2;
ix = i+Nrow; iy = ix+Neq;
if (FirstConstraint >= AppParCurves_TangencyPoint) {
myV1(ix) = Ai2*Vec1t(i2);
myV1(iy) = Ai2*Vec1t(i21);
}
if (LastConstraint >= AppParCurves_TangencyPoint) {
myV2(ix) = -Aid*Vec2t(i2);
myV2(iy) = -Aid*Vec2t(i21);
}
myB(ix) = mypoints(i, i2) - xx*mypoints(myfirstp, i2)
- yy*mypoints(mylastp, i2);
myB(iy) = mypoints(i, i21) - xx*mypoints(myfirstp, i21)
- yy*mypoints(mylastp, i21);
Nrow = Nrow + 2*Neq;
i2 += 2;
}
}
// Construction de TA*A et TA*B:
for (k = FirstP; k <= LastP; k++) {
indexdeb = myindex(k)+1;
indexfin = indexdeb + deg;
jinit = Max(resinit, indexdeb);
jfin = Min(resfin, indexfin);
k1 = k + myfirst - FirstP;
for (i = 0; i <= NA1; i++) {
nb = i*Neq + k1;
if (FirstConstraint >= AppParCurves_TangencyPoint)
v1 = myV1(nb);
if (LastConstraint >= AppParCurves_TangencyPoint)
v2 = myV2(nb);
b = myB(nb);
inc = i*Nincx-resinit+1;
for (j = jinit; j <= jfin; j++) {
Akj = A(k, j);
u = j+inc;
if (FirstConstraint >= AppParCurves_TangencyPoint)
TheV1(u) += Akj*v1;
if (LastConstraint >= AppParCurves_TangencyPoint)
TheV2(u) += Akj*v2;
myTAB(u) += Akj*b;
}
if (FirstConstraint >= AppParCurves_TangencyPoint) {
taf1 += v1*v1;
tab1 += v1*b;
}
if (LastConstraint >= AppParCurves_TangencyPoint) {
taf2 += v2*v2;
tab2 += v2*b;
}
if (FirstConstraint >= AppParCurves_TangencyPoint &&
LastConstraint >= AppParCurves_TangencyPoint) {
taf3 += v1*v2;
}
}
}
if (FirstConstraint >= AppParCurves_TangencyPoint) {
TheV1(Ninc1) = taf1;
myTAB(Ninc1) = tab1;
}
if (LastConstraint >= AppParCurves_TangencyPoint) {
TheV2(Ninc) = taf2;
myTAB(Ninc) = tab2;
}
if (FirstConstraint >= AppParCurves_TangencyPoint &&
LastConstraint >= AppParCurves_TangencyPoint) {
TheV2(Ninc1) = taf3;
}
if (resinit <= resfin) {
math_IntegerVector Index(1, Nincx);
SearchIndex(Index);
math_Vector AA(1, Index(Nincx));
MakeTAA(AA);
Standard_Integer kk = 1;
for (k = 1; k <= NA; k++) {
for(i = 1; i <= AA.Length(); i++) {
TheA(kk) = AA(i);
kk++;
}
}
}
Standard_Integer length = TheA.Length();
if (FirstConstraint >= AppParCurves_TangencyPoint &&
LastConstraint >= AppParCurves_TangencyPoint) {
for (j = 1; j <= Ninc1; j++)
TheA(length- 2*Ninc+j+1) = TheV1(j);
for (j = 1; j <= Ninc; j++)
TheA(length- Ninc+j) = TheV2(j);
}
else if (FirstConstraint >= AppParCurves_TangencyPoint) {
for (j = 1; j <= Ninc; j++)
TheA(length- Ninc+j) = TheV1(j);
}
else if (LastConstraint >= AppParCurves_TangencyPoint) {
for (j = 1; j <= Ninc; j++)
TheA(length- Ninc+j) = TheV2(j);
}
}
void AppParCurves_LeastSquare::MakeTAA(math_Vector& AA,
math_Matrix& myTAB)
{
Standard_Integer i, j, k;
Standard_Integer indexdeb, indexfin, jinit, jfin;
Standard_Integer iinit, ifin;
Standard_Real Akj;
math_Matrix TheA(resinit, resfin, resinit, resfin);
TheA.Init(0.0);
for (k = FirstP ; k <= LastP; k++) {
indexdeb = myindex(k)+1;
indexfin = indexdeb + deg;
jinit = Max(resinit, indexdeb);
jfin = Min(resfin, indexfin);
for (i = jinit; i <= jfin; i++) {
Akj = A(k, i);
for (j = jinit; j <= i; j++) {
TheA(i, j) += A(k, j) * Akj;
}
for (j = 1; j <= B2.ColNumber(); j++) {
myTAB(i, j) += Akj*B2(k, j);
}
}
}
Standard_Integer len;
if (!myknots.IsNull()) len = myknots->Length();
else len = 2;
Standard_Integer d, i2 = 1;
iinit = resinit;
jinit = resinit;
ifin = Min(resfin, deg+1);
for (k = 2; k <= len; k++) {
for (i = iinit; i <= ifin; i++) {
for (j = jinit; j <= i; j++) {
AA(i2) = TheA(i, j);
i2++;
}
}
if (!mymults.IsNull()) {
iinit = ifin+1;
d = ifin + mymults->Value(k);
ifin = Min(d, resfin);
jinit = Max(resinit, d - deg);
}
}
}
void AppParCurves_LeastSquare::MakeTAA(math_Vector& AA)
{
Standard_Integer i, j, k;
Standard_Integer indexdeb, indexfin, jinit, jfin;
Standard_Integer iinit, ifin;
Standard_Real Akj;
math_Matrix TheA(resinit, resfin, resinit, resfin, 0.0);
for (k = FirstP ; k <= LastP; k++) {
indexdeb = myindex(k)+1;
indexfin = indexdeb + deg;
jinit = Max(resinit, indexdeb);
jfin = Min(resfin, indexfin);
for (i = jinit; i <= jfin; i++) {
Akj = A(k, i);
for (j = jinit; j <= i; j++) {
TheA(i, j) += A(k, j) * Akj;
}
}
}
Standard_Integer i2 = 1;
iinit = resinit;
jinit = resinit;
ifin = Min(resfin, deg+1);
Standard_Integer len, d;
if (!myknots.IsNull()) len = myknots->Length();
else len = 2;
for (k = 2; k <= len; k++) {
for (i = iinit; i <= ifin; i++) {
for (j = jinit; j <= i; j++) {
AA(i2) = TheA(i, j);
i2++;
}
}
if (!mymults.IsNull()) {
iinit = ifin+1;
d = ifin + mymults->Value(k);
ifin = Min(d, resfin);
jinit = Max(resinit, d - deg);
}
}
}
void AppParCurves_LeastSquare::SearchIndex(math_IntegerVector& Index)
{
Standard_Integer iinit, jinit, ifin;
Standard_Integer i, j, k, d, i2 = 1;
Standard_Integer len;
Standard_Integer Nincx = resfin-resinit+1;
Index(1) = 1;
if (myknots.IsNull()) {
if (resinit <= resfin) {
Standard_Integer l = 1;
for (i = 2; i <= Nincx; i++) {
l++;
Index(l) = Index(l-1)+i;
}
}
}
else {
iinit = resinit;
jinit = resinit;
ifin = Min(resfin, deg+1);
len = myknots->Length();
for (k = 2; k <= len; k++) {
for (i = iinit; i <= ifin; i++) {
for (j = jinit; j <= i; j++) {
if (i2 != 1)
Index(i2) = Index(i2-1) + i-jinit+1;
}
i2++;
}
iinit = ifin+1;
d = ifin + mymults->Value(k);
ifin = Min(d, resfin);
jinit = Max(resinit, d - deg);
}
}
}