1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-04-07 18:30:55 +03:00
occt/src/IntTools/IntTools_EdgeFace.cxx
bugmster 973c2be1e1 0024428: Implementation of LGPL license
The copying permission statements at the beginning of source files updated to refer to LGPL.
Copyright dates extended till 2014 in advance.
2013-12-17 12:42:41 +04:00

1557 lines
37 KiB
C++

// Created on: 2001-02-26
// Created by: Peter KURNEV
// Copyright (c) 2001-2014 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and / or modify it
// under the terms of the GNU Lesser General Public version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
#include <IntTools_EdgeFace.ixx>
#include <IntTools_CArray1OfReal.hxx>
#include <IntTools.hxx>
#include <IntTools_CArray1OfInteger.hxx>
#include <IntTools_Range.hxx>
#include <IntTools_Tools.hxx>
#include <IntTools_Array1OfRange.hxx>
#include <IntTools_QuickSortRange.hxx>
#include <IntTools_CompareRange.hxx>
#include <IntTools_CommonPrt.hxx>
#include <IntTools_Root.hxx>
#include <IntTools_BeanFaceIntersector.hxx>
#include <BOPInt_Context.hxx>
#include <BRep_Tool.hxx>
#include <GeomAdaptor_Surface.hxx>
#include <GeomAdaptor_Curve.hxx>
#include <Geom_Surface.hxx>
#include <Geom_Curve.hxx>
#include <GeomAPI_ProjectPointOnSurf.hxx>
#include <Precision.hxx>
#include <Bnd_Box.hxx>
#include <BndLib_AddSurface.hxx>
#include <gp_Cylinder.hxx>
#include <gp_Ax1.hxx>
#include <gp_Lin.hxx>
#include <gp_Cone.hxx>
#include <gp_Torus.hxx>
#include <gp_Circ.hxx>
#include <gp_Pln.hxx>
#include <Extrema_ExtCS.hxx>
#include <Extrema_POnCurv.hxx>
#include <Extrema_POnSurf.hxx>
// modified by NIZHNY-MKK Thu Jul 21 11:35:59 2005
#include <IntCurveSurface_HInter.hxx>
#include <GeomAdaptor_HCurve.hxx>
#include <GeomAdaptor_HSurface.hxx>
#include <IntCurveSurface_IntersectionPoint.hxx>
#ifdef WNT
#pragma warning ( disable : 4101 )
#endif
static
Standard_Boolean IsCoplanar (const BRepAdaptor_Curve& ,
const BRepAdaptor_Surface& );
static
Standard_Boolean IsRadius (const BRepAdaptor_Curve& aCurve ,
const BRepAdaptor_Surface& aSurface);
static
Standard_Integer AdaptiveDiscret (const Standard_Integer iDiscret,
const BRepAdaptor_Curve& aCurve ,
const BRepAdaptor_Surface& aSurface);
//=======================================================================
//function : IntTools_EdgeFace::IntTools_EdgeFace
//purpose :
//=======================================================================
IntTools_EdgeFace::IntTools_EdgeFace()
{
myTolE=1.e-7;
myTolF=1.e-7;
myDiscret=30;
myEpsT =1e-12;
myEpsNull=1e-12;
myDeflection=0.01;
myIsDone=Standard_False;
myErrorStatus=1;
myParallel=Standard_False;
myPar1=0.;
}
//=======================================================================
//function : SetContext
//purpose :
//=======================================================================
void IntTools_EdgeFace::SetContext(const Handle(BOPInt_Context)& theContext)
{
myContext = theContext;
}
//=======================================================================
//function : Context
//purpose :
//=======================================================================
const Handle(BOPInt_Context)& IntTools_EdgeFace::Context()const
{
return myContext;
}
//=======================================================================
//function : SetEdge
//purpose :
//=======================================================================
void IntTools_EdgeFace::SetEdge(const TopoDS_Edge& anEdge)
{
myEdge=anEdge;
}
//=======================================================================
//function : SetFace
//purpose :
//=======================================================================
void IntTools_EdgeFace::SetFace(const TopoDS_Face& aFace)
{
myFace=aFace;
}
//=======================================================================
//function : SetTolE
//purpose :
//=======================================================================
void IntTools_EdgeFace::SetTolE(const Standard_Real aTol)
{
myTolE=aTol;
}
//=======================================================================
//function : SetTolF
//purpose :
//=======================================================================
void IntTools_EdgeFace::SetTolF(const Standard_Real aTol)
{
myTolF=aTol;
}
//=======================================================================
//function : SetDiscretize
//purpose :
//=======================================================================
void IntTools_EdgeFace::SetDiscretize(const Standard_Integer aDiscret)
{
myDiscret=aDiscret;
}
//=======================================================================
//function : SetDeflection
//purpose :
//=======================================================================
void IntTools_EdgeFace::SetDeflection(const Standard_Real aDefl)
{
myDeflection=aDefl;
}
//=======================================================================
//function : SetEpsilonT
//purpose :
//=======================================================================
void IntTools_EdgeFace::SetEpsilonT(const Standard_Real anEpsT)
{
myEpsT=anEpsT;
}
//=======================================================================
//function : SetEpsilonNull
//purpose :
//=======================================================================
void IntTools_EdgeFace::SetEpsilonNull(const Standard_Real anEpsNull)
{
myEpsNull=anEpsNull;
}
//=======================================================================
//function : SetRange
//purpose :
//=======================================================================
void IntTools_EdgeFace::SetRange(const Standard_Real aFirst,
const Standard_Real aLast)
{
myRange.SetFirst (aFirst);
myRange.SetLast (aLast);
}
//=======================================================================
//function : SetRange
//purpose :
//=======================================================================
void IntTools_EdgeFace::SetRange(const IntTools_Range& aRange)
{
myRange.SetFirst (aRange.First());
myRange.SetLast (aRange.Last());
}
//=======================================================================
//function : IsDone
//purpose :
//=======================================================================
Standard_Boolean IntTools_EdgeFace::IsDone()const
{
return myIsDone;
}
//=======================================================================
//function : ErrorStatus
//purpose :
//=======================================================================
Standard_Integer IntTools_EdgeFace::ErrorStatus()const
{
return myErrorStatus;
}
//=======================================================================
//function : CommonParts
//purpose :
//=======================================================================
const IntTools_SequenceOfCommonPrts& IntTools_EdgeFace::CommonParts() const
{
return mySeqOfCommonPrts;
}
//=======================================================================
//function : Range
//purpose :
//=======================================================================
const IntTools_Range& IntTools_EdgeFace::Range() const
{
return myRange;
}
//=======================================================================
//function : CheckData
//purpose :
//=======================================================================
void IntTools_EdgeFace::CheckData()
{
if (BRep_Tool::Degenerated(myEdge)) {
myErrorStatus=2;
}
if (!BRep_Tool::IsGeometric(myEdge)) {
myErrorStatus=3;
}
}
//=======================================================================
//function : Prepare
//purpose :
//=======================================================================
void IntTools_EdgeFace::Prepare()
{
Standard_Integer pri;
IntTools_CArray1OfReal aPars;
//
// 1.Prepare Curve's data and Surface's data
myC.Initialize(myEdge);
GeomAbs_CurveType aCurveType;
aCurveType=myC.GetType();
//
// 2.Prepare myCriteria
if (aCurveType==GeomAbs_BSplineCurve||
aCurveType==GeomAbs_BezierCurve) {
myCriteria=1.5*myTolE+myTolF;
}
else {
myCriteria=myTolE+myTolF;
}
// 2.a myTmin, myTmax
myTmin=myRange.First();
myTmax=myRange.Last();
// 2.b myFClass2d
myS.Initialize (myFace,Standard_True);
myFClass2d.Init(myFace, 1.e-6);
//
// 2.c Prepare adaptive myDiscret
myDiscret=AdaptiveDiscret(myDiscret, myC, myS);
//
//
// 3.Prepare myPars
pri = IntTools::PrepareArgs(myC, myTmax, myTmin, myDiscret, myDeflection, aPars);
if (pri) {
myErrorStatus=6;
return;
}
// 4.
//ProjectableRanges
Standard_Integer i, iProj, aNb, aNbProj, ind0, ind1;
Standard_Real t0, t1, tRoot;
//
// Table of Projection's function values
aNb=aPars.Length();
IntTools_CArray1OfInteger anArrProjectability;
anArrProjectability.Resize(aNb);
for (iProj=0, i=0; i<aNb; i++) {
t0=aPars(i);
aNbProj=IsProjectable (t0);
anArrProjectability(i)=0;
if (aNbProj) {
anArrProjectability(i)=1;
iProj++;
}
}
//
// Checking
if (!iProj ) {
myErrorStatus=7;
return;
}
//
// Projectable Ranges
IntTools_Range aRange;
ind0=anArrProjectability(0);
if (ind0) {
t0=aPars(0);
aRange.SetFirst(t0);
}
for(i=1; i<aNb; i++) {
ind1=anArrProjectability(i);
t0=aPars(i-1);
t1=aPars(i);
if (i==(aNb-1)) {
if (ind1 && ind0) {
aRange.SetLast(t1);
myProjectableRanges.Append(aRange);
}
if (ind1 && !ind0) {
FindProjectableRoot(t0, t1, ind0, ind1, tRoot);
aRange.SetFirst(tRoot);
aRange.SetLast(t1);
myProjectableRanges.Append(aRange);
}
//
if (ind0 && !ind1) {
FindProjectableRoot(t0, t1, ind0, ind1, tRoot);
aRange.SetLast(tRoot);
myProjectableRanges.Append(aRange);
}
//
break;
}
if (ind0 != ind1) {
FindProjectableRoot(t0, t1, ind0, ind1, tRoot);
if (ind0 && !ind1) {
aRange.SetLast(tRoot);
myProjectableRanges.Append(aRange);
}
else {
aRange.SetFirst(tRoot);
}
} // if (ind0 != ind1)
ind0=ind1;
} // for(i=1; i<aNb; i++) {
}
//=======================================================================
//function : FindProjectableRoot
//purpose :
//=======================================================================
void IntTools_EdgeFace::FindProjectableRoot (const Standard_Real tt1,
const Standard_Real tt2,
const Standard_Integer ff1,
const Standard_Integer ff2,
Standard_Real& tRoot)
{
Standard_Real tm, t1, t2, aEpsT;
Standard_Integer anIsProj1, anIsProj2, anIsProjm;
aEpsT=0.5*myEpsT;
//
// Root is inside [tt1, tt2]
t1=tt1;
t2=tt2;
anIsProj1=ff1;
anIsProj2=ff2;
for(;;) {
if (fabs(t1-t2) < aEpsT) {
tRoot=(anIsProj1) ? t1 : t2;
return;
}
tm=.5*(t1+t2);
anIsProjm=IsProjectable(tm);
if (anIsProjm != anIsProj1) {
t2=tm;
anIsProj2=anIsProjm;
}
else {
t1=tm;
anIsProj1=anIsProjm;
}
}
}
//=======================================================================
//function : IsProjectable
//purpose :
//=======================================================================
Standard_Boolean IntTools_EdgeFace::IsProjectable(const Standard_Real aT) const
{
Standard_Boolean bFlag;
gp_Pnt aPC;
//
myC.D0(aT, aPC);
bFlag=myContext->IsValidPointForFace(aPC, myFace, myCriteria);
//
return bFlag;
}
//=======================================================================
//function : DistanceFunction
//purpose :
//=======================================================================
Standard_Real IntTools_EdgeFace::DistanceFunction(const Standard_Real t)
{
Standard_Real Umin, Usup, Vmin, Vsup, aD;
//
gp_Pnt P;
myC.D0(t, P);
//
Standard_Boolean bIsEqDistance;
bIsEqDistance= IntTools_EdgeFace::IsEqDistance(P, myS, 1.e-7, aD);
if (bIsEqDistance) {
aD=aD-myCriteria;
return aD;
}
Umin=myS.FirstUParameter();
Usup=myS.LastUParameter();
Vmin=myS.FirstVParameter();
Vsup=myS.LastVParameter ();
//
Standard_Boolean bFlag = Standard_False;
GeomAPI_ProjectPointOnSurf& aLocProj = myContext->ProjPS(myFace);
aLocProj.Perform(P);
bFlag = aLocProj.IsDone();
if(bFlag) {
aD = aLocProj.LowerDistance();
}
//
if (!bFlag) {
myErrorStatus=11;
return 99.;
}
//
// aD=aProjector.LowerDistance();
//
aD=aD-myCriteria;
return aD;
}
//
//=======================================================================
//function : IsEqDistance
//purpose :
//=======================================================================
Standard_Boolean IntTools_EdgeFace::IsEqDistance(const gp_Pnt& aP,
const BRepAdaptor_Surface& aBAS,
const Standard_Real aTol,
Standard_Real& aD)
{
Standard_Boolean bRetFlag=Standard_True;
GeomAbs_SurfaceType aSurfType=aBAS.GetType();
if (aSurfType==GeomAbs_Cylinder) {
gp_Cylinder aCyl=aBAS.Cylinder();
const gp_Ax1& anAx1 =aCyl.Axis();
gp_Lin aLinAxis(anAx1);
Standard_Real aDC, aRadius=aCyl.Radius();
aDC=aLinAxis.Distance(aP);
if (aDC < aTol) {
aD=aRadius;
return bRetFlag;
}
}
if (aSurfType==GeomAbs_Cone) {
gp_Cone aCone=aBAS.Cone();
const gp_Ax1& anAx1 =aCone.Axis();
gp_Lin aLinAxis(anAx1);
Standard_Real aDC, aRadius, aDS, aSemiAngle;
aDC=aLinAxis.Distance(aP);
if (aDC < aTol) {
gp_Pnt anApex=aCone.Apex();
aSemiAngle=aCone.SemiAngle();
aDS=aP.Distance(anApex);
aRadius=aDS*tan(aSemiAngle);
aD=aRadius;
return bRetFlag;
}
}
if (aSurfType==GeomAbs_Torus) {
Standard_Real aMajorRadius, aMinorRadius, aDC;
gp_Torus aTorus=aBAS.Torus();
gp_Pnt aPLoc=aTorus.Location();
aMajorRadius=aTorus.MajorRadius();
aDC=fabs(aPLoc.Distance(aP)-aMajorRadius);
if (aDC < aTol) {
aMinorRadius=aTorus.MinorRadius();
aD=aMinorRadius;
return bRetFlag;
}
}
return !bRetFlag;
}
//
//=======================================================================
//function : PrepareArgsFuncArrays
//purpose : Obtain
// myFuncArray and myArgsArray for the interval [ta, tb]
//=======================================================================
void IntTools_EdgeFace::PrepareArgsFuncArrays(const Standard_Real ta,
const Standard_Real tb)
{
IntTools_CArray1OfReal anArgs, aFunc;
Standard_Integer i, aNb, pri;
Standard_Real t, f, f1;
//
// Prepare values of arguments for the interval [ta, tb]
pri=IntTools::PrepareArgs (myC, tb, ta, myDiscret, myDeflection, anArgs);
if (pri) {
myErrorStatus=8;
return;
}
//...
aNb=anArgs.Length();
if (!aNb){
myErrorStatus=9;
return;
}
//
// Prepare values of functions for the interval [ta, tb]
aFunc.Resize(aNb);
for (i=0; i<aNb; i++) {
t=anArgs(i);
f1=DistanceFunction(t);
f=f1+myCriteria;
if (myErrorStatus==11)
return;
if (f1 < myEpsNull) {
f=0.;
}
aFunc(i)=f;
}
//
// Add points where the derivative = 0
AddDerivativePoints(anArgs, aFunc);
}
//=======================================================================
//function : AddDerivativePoints
//purpose :
//=======================================================================
void IntTools_EdgeFace::AddDerivativePoints(const IntTools_CArray1OfReal& t,
const IntTools_CArray1OfReal& f)
{
Standard_Integer i, j, n, k, nn=100;
Standard_Real fr, tr, tr1, dEpsNull=10.*myEpsNull;
IntTools_CArray1OfReal fd;
TColStd_SequenceOfReal aTSeq, aFSeq;
n=t.Length();
fd.Resize(n+1);
//
// Table of derivatives
Standard_Real dfx, tx, tx1, fx, fx1, dt=1.e-6;
// Left limit
tx=t(0);
tx1=tx+dt;
fx=f(0);
fx1=DistanceFunction(tx1);
fx1=fx1+myCriteria;
if (fx1 < myEpsNull) {
fx1=0.;
}
dfx=(fx1-fx)/dt;
fd(0)=dfx;
if (fabs(fd(0)) < dEpsNull){
fd(0)=0.;
}
k=n-1;
for (i=1; i<k; i++) {
Standard_Real ti, ti1;
ti=t(i);
ti1=t(i-1);
fd(i)=.5*(f(i+1)-f(i-1))/(t(i)-t(i-1));
if (fabs(fd(i)) < dEpsNull){
fd(i)=0.;
}
}
// Right limit
tx=t(n-1);
tx1=tx-dt;
fx=f(n-1);
fx1=DistanceFunction(tx1);
fx1=fx1+myCriteria;
if (fx1 < myEpsNull) {
fx1=0.;
}
dfx=(fx-fx1)/dt;
fd(n-1)=dfx;
if (fabs(fd(n-1)) < dEpsNull){
fd(n-1)=0.;
}
//
// Finding the range where the derivatives have different signs
// for neighbouring points
for (i=1; i<n; i++) {
Standard_Real fd1, fd2, t1, t2;
t1 =t(i-1);
t2 =t(i);
fd1=fd(i-1);
fd2=fd(i);
if (fd1*fd2 < 0.) {
if (fabs(fd1) < myEpsNull) {
tr=t1;
fr=DistanceFunction(tr);//fd1;
}
else if (fabs(fd2) < myEpsNull) {
tr=t2;
fr=DistanceFunction(tr);
}
else {
tr=FindSimpleRoot(2, t1, t2, fd1);
fr=DistanceFunction(tr);
}
aTSeq.Append(tr);
aFSeq.Append(fr);
}
} // end of for (i=1; i<n; i++)
//
// remove identical t, f
nn=aTSeq.Length();
if (nn) {
for (i=1; i<=aTSeq.Length(); i++) {
tr=aTSeq(i);
for (j=0; j<n; j++) {
tr1=t(j);
if (fabs (tr1-tr) < myEpsT) {
aTSeq.Remove(i);
aFSeq.Remove(i);
}
}
}
nn=aTSeq.Length();
}
//
// sorting args and funcs in increasing order
if (nn) {
k=nn+n;
IntTools_Array1OfRange anArray1OfRange(1, k);
for (i=1; i<=n; i++) {
anArray1OfRange(i).SetFirst(t(i-1));
anArray1OfRange(i).SetLast (f(i-1));
}
for (i=1; i<=nn; i++) {
anArray1OfRange(n+i).SetFirst(aTSeq(i));
anArray1OfRange(n+i).SetLast (aFSeq(i));
}
IntTools_QuickSortRange aQuickSortRange;
IntTools_CompareRange aComparator;
aQuickSortRange.Sort (anArray1OfRange, aComparator);
// filling the output arrays
myArgsArray.Resize(k);
myFuncArray.Resize(k);
for (i=1; i<=k; i++) {
myArgsArray(i-1)=anArray1OfRange(i).First();
myFuncArray(i-1)=anArray1OfRange(i).Last ();
}
}
else { // nn=0
myArgsArray.Resize(n);
myFuncArray.Resize(n);
for (i=0; i<n; i++) {
myArgsArray(i)=t(i);
myFuncArray(i)=f(i);
}
}
}
//=======================================================================
//function : DerivativeFunction
//purpose :
//=======================================================================
Standard_Real IntTools_EdgeFace::DerivativeFunction(const Standard_Real t2)
{
Standard_Real t1, t3, aD1, aD2, aD3;
Standard_Real dt=1.e-9;
t1=t2-dt;
aD1=DistanceFunction(t1);
t3=t2+dt;
aD3=DistanceFunction(t3);
aD2=.5*(aD3-aD1)/dt;
return aD2;
}
//=======================================================================
//function : FindSimpleRoot
//purpose : [private]
//=======================================================================
Standard_Real IntTools_EdgeFace::FindSimpleRoot (const Standard_Integer IP,
const Standard_Real tA,
const Standard_Real tB,
const Standard_Real fA)
{
Standard_Real r, a, b, y, x0, s;
a=tA; b=tB; r=fA;
for(;;) {
x0=.5*(a+b);
if (IP==1)
y=DistanceFunction(x0);
else
y=DerivativeFunction(x0);
if (fabs(b-a) < myEpsT || y==0.) {
return x0;
}
s=y*r;
if (s<0.) {
b=x0;
continue;
}
if (s>0.) {
a=x0; r=y;
}
}
}
//=======================================================================
//function : FindGoldRoot
//purpose : [private]
//=======================================================================
Standard_Real IntTools_EdgeFace::FindGoldRoot (const Standard_Real tA,
const Standard_Real tB,
const Standard_Real coeff)
{
Standard_Real gs=0.61803399;
Standard_Real a, b, xp, xl, yp, yl;
a=tA; b=tB;
xp=a+(b-a)*gs;
xl=b-(b-a)*gs;
yp=coeff*DistanceFunction(xp);
yl=coeff*DistanceFunction(xl);
for(;;) {
if (fabs(b-a) < myEpsT) {
return .5*(b+a);
}
if (yp < yl) {
a=xl;
xl=xp;
xp=a+(b-a)*gs;
yp=coeff*DistanceFunction(xp);
}
else {
b=xp;
xp=xl;
yp=yl;
xl=b-(b-a)*gs;
yl=coeff*DistanceFunction(xl);
}
}
}
//=======================================================================
//function : MakeType
//purpose :
//=======================================================================
Standard_Integer IntTools_EdgeFace::MakeType(IntTools_CommonPrt& aCommonPrt)
{
Standard_Real af1, al1;
Standard_Real df1, tm;
Standard_Boolean bAllNullFlag;
//
bAllNullFlag=aCommonPrt.AllNullFlag();
if (bAllNullFlag) {
aCommonPrt.SetType(TopAbs_EDGE);
return 0;
}
//
aCommonPrt.Range1(af1, al1);
{
gp_Pnt aPF, aPL;
myC.D0(af1, aPF);
myC.D0(al1, aPL);
df1=aPF.Distance(aPL);
Standard_Boolean isWholeRange = Standard_False;
if((Abs(af1 - myRange.First()) < myC.Resolution(myCriteria)) &&
(Abs(al1 - myRange.Last()) < myC.Resolution(myCriteria)))
isWholeRange = Standard_True;
if ((df1 > myCriteria * 2.) && isWholeRange) {
aCommonPrt.SetType(TopAbs_EDGE);
}
else {
if(isWholeRange) {
tm = (af1 + al1) * 0.5;
if(aPF.Distance(myC.Value(tm)) > myCriteria * 2.) {
aCommonPrt.SetType(TopAbs_EDGE);
return 0;
}
}
if(!CheckTouch(aCommonPrt, tm)) {
tm = (af1 + al1) * 0.5;
}
aCommonPrt.SetType(TopAbs_VERTEX);
aCommonPrt.SetVertexParameter1(tm);
aCommonPrt.SetRange1 (af1, al1);
}
return 0;
}
/*
dt=al1-af1;
if (dt<1.e-5) {
gp_Pnt aPF, aPL;
myC.D0(af1, aPF);
myC.D0(al1, aPL);
df1=aPF.Distance(aPL);
if (df1<myCriteria) {
//
tm=.5*(af1+al1);
aCommonPrt.SetType(TopAbs_VERTEX);
aCommonPrt.SetVertexParameter1(tm);
aCommonPrt.SetRange1 (af1, al1);
return 0;
}
}
//
IsIntersection (af1, al1);
//
if (!myParallel) {
aCommonPrt.SetType(TopAbs_VERTEX);
aCommonPrt.SetVertexParameter1(myPar1);
aCommonPrt.SetRange1 (af1, al1);
}
else {
dt=al1-af1;
if (dt<1.e-5) {
df1=DistanceFunction(af1);
df2=DistanceFunction(al1);
tm=(df1 < df2) ? af1 : al1;
aCommonPrt.SetType(TopAbs_VERTEX);
aCommonPrt.SetVertexParameter1(tm);
aCommonPrt.SetRange1 (af1, al1);
}
else {
aCommonPrt.SetType(TopAbs_EDGE);
}
}
return 0;*/
}
//=======================================================================
//function : IsIntersection
//purpose :
//=======================================================================
void IntTools_EdgeFace::IsIntersection (const Standard_Real ta,
const Standard_Real tb)
{
IntTools_CArray1OfReal anArgs, aFunc;
Standard_Integer i, aNb, pri, aCnt=0;
//
Standard_Integer aCntIncreasing=1, aCntDecreasing=1;
Standard_Real t, f, f1;
//
// Prepare values of arguments for the interval [ta, tb]
pri=IntTools::PrepareArgs (myC, tb, ta, myDiscret, myDeflection, anArgs);
aNb=anArgs.Length();
aFunc.Resize(aNb);
for (i=0; i<aNb; i++) {
t=anArgs(i);
f1=DistanceFunction(t);
f=f1+myCriteria;
if (fabs(f1) < myEpsNull) {
aCnt++;
f=0.;
}
aFunc(i)=f;
//
if (i) {
if (aFunc(i)>aFunc(i-1)) {
aCntIncreasing++;
}
if (aFunc(i)<aFunc(i-1)) {
aCntDecreasing++;
}
}
//
}
if (aCnt==aNb) {
myParallel=Standard_True;
return;
}
FindDerivativeRoot(anArgs, aFunc);
//
if (myParallel) {
if (!(myC.GetType()==GeomAbs_Line
&&
myS.GetType()==GeomAbs_Cylinder)) {
if (aCntDecreasing==aNb) {
myPar1=anArgs(aNb-1);
myParallel=Standard_False;
}
if (aCntIncreasing==aNb) {
myPar1=anArgs(0);
myParallel=Standard_False;
}
}
}
//
return ;
}
//=======================================================================
//function : FindDerivativeRoot
//purpose :
//=======================================================================
void IntTools_EdgeFace::FindDerivativeRoot(const IntTools_CArray1OfReal& t,
const IntTools_CArray1OfReal& f)
{
Standard_Integer i, n, k;
Standard_Real fr, tr;
IntTools_CArray1OfReal fd;
TColStd_SequenceOfReal aTSeq, aFSeq;
myPar1=0.;
myParallel=Standard_True;
n=t.Length();
fd.Resize(n+1);
//
// Table of derivatives
fd(0)=(f(1)-f(0))/(t(1)-t(0));
if (fabs(fd(0)) < myEpsNull) {
fd(0)=0.;
}
k=n-1;
for (i=1; i<k; i++) {
fd(i)=.5*(f(i+1)-f(i-1))/(t(i)-t(i-1));
if (fabs(fd(i)) < myEpsNull) {
fd(i)=0.;
}
}
fd(n-1)=(f(n-1)-f(n-2))/(t(n-1)-t(n-2));
if (fabs(fd(n-1)) < myEpsNull) {
fd(n-1)=0.;
}
//
// Finding the range where the derivatives have different signs
// for neighbouring points
for (i=1; i<n; i++) {
Standard_Real fd1, fd2, t1, t2, fabsfd1, fabsfd2;
Standard_Boolean bF1, bF2;
t1 =t(i-1);
t2 =t(i);
fd1=fd(i-1);
fd2=fd(i);
fabsfd1=fabs(fd1);
bF1=fabsfd1 < myEpsNull;
fabsfd2=fabs(fd2);
bF2=fabsfd2 < myEpsNull;
//
if (fd1*fd2 < 0.) {
tr=FindSimpleRoot(2, t1, t2, fd1);
fr=DistanceFunction(tr);
myPar1=tr;
myParallel=Standard_False;
break;
}
if (!bF1 && bF2) {
tr=t2;
fr=fd2;
myPar1=tr;
myParallel=Standard_False;
break;
}
if (bF1 && !bF2) {
tr=t1;
fr=fd1;
myPar1=tr;
myParallel=Standard_False;
break;
}
}
}
//=======================================================================
//function : RemoveIdenticalRoots
//purpose :
//=======================================================================
void IntTools_EdgeFace::RemoveIdenticalRoots()
{
Standard_Integer aNbRoots, j, k;
aNbRoots=mySequenceOfRoots.Length();
for (j=1; j<=aNbRoots; j++) {
const IntTools_Root& aRj=mySequenceOfRoots(j);
for (k=j+1; k<=aNbRoots; k++) {
const IntTools_Root& aRk=mySequenceOfRoots(k);
Standard_Real aTj, aTk, aDistance;
gp_Pnt aPj, aPk;
aTj=aRj.Root();
aTk=aRk.Root();
myC.D0(aTj, aPj);
myC.D0(aTk, aPk);
aDistance=aPj.Distance(aPk);
if (aDistance < myCriteria) {
mySequenceOfRoots.Remove(k);
aNbRoots=mySequenceOfRoots.Length();
}
}
}
}
//=======================================================================
//function : CheckTouch
//purpose :
//=======================================================================
Standard_Boolean IntTools_EdgeFace::CheckTouch(const IntTools_CommonPrt& aCP,
Standard_Real& aTx)
{
Standard_Real aTF, aTL, Tol, U1f, U1l, V1f, V1l, af, al,aDist2, aMinDist2;
Standard_Boolean theflag=Standard_False;
Standard_Integer aNbExt, i, iLower ;
aCP.Range1(aTF, aTL);
//
Standard_Real aCR;
aCR=myC.Resolution(myCriteria);
if((Abs(aTF - myRange.First()) < aCR) &&
(Abs(aTL - myRange.Last()) < aCR)) {
return theflag; // EDGE
}
//
Tol = Precision::PConfusion();
const Handle(Geom_Curve)& Curve =BRep_Tool::Curve (myC.Edge(), af, al);
const Handle(Geom_Surface)& Surface=BRep_Tool::Surface(myS.Face());
// Surface->Bounds(U1f,U1l,V1f,V1l);
U1f = myS.FirstUParameter();
U1l = myS.LastUParameter();
V1f = myS.FirstVParameter();
V1l = myS.LastVParameter();
GeomAdaptor_Curve TheCurve (Curve,aTF, aTL);
GeomAdaptor_Surface TheSurface (Surface, U1f, U1l, V1f, V1l);
Extrema_ExtCS anExtrema (TheCurve, TheSurface, Tol, Tol);
aDist2 = 1.e100;
if(anExtrema.IsDone()) {
aMinDist2 = aDist2;
if(!anExtrema.IsParallel()) {
aNbExt=anExtrema.NbExt();
if(aNbExt > 0) {
iLower=1;
for (i=1; i<=aNbExt; i++) {
aDist2=anExtrema.SquareDistance(i);
if (aDist2 < aMinDist2) {
aMinDist2=aDist2;
iLower=i;
}
}
aDist2=anExtrema.SquareDistance(iLower);
Extrema_POnCurv aPOnC;
Extrema_POnSurf aPOnS;
anExtrema.Points(iLower, aPOnC, aPOnS);
aTx=aPOnC.Parameter();
}
else {
// modified by NIZHNY-MKK Thu Jul 21 11:35:32 2005.BEGIN
IntCurveSurface_HInter anExactIntersector;
Handle(GeomAdaptor_HCurve) aCurve = new GeomAdaptor_HCurve(TheCurve);
Handle(GeomAdaptor_HSurface) aSurface = new GeomAdaptor_HSurface(TheSurface);
anExactIntersector.Perform(aCurve, aSurface);
if(anExactIntersector.IsDone()) {
Standard_Integer i = 0;
for(i = 1; i <= anExactIntersector.NbPoints(); i++) {
const IntCurveSurface_IntersectionPoint& aPoint = anExactIntersector.Point(i);
if((aPoint.W() >= aTF) && (aPoint.W() <= aTL)) {
aDist2=0.;
aTx = aPoint.W();
}
}
}
// modified by NIZHNY-MKK Thu Jul 21 11:35:40 2005.END
}
}
else {
return theflag;
}
}
Standard_Real aBoundaryDist;
aBoundaryDist = DistanceFunction(aTF) + myCriteria;
if(aBoundaryDist * aBoundaryDist < aDist2) {
aDist2 = aBoundaryDist * aBoundaryDist;
aTx = aTF;
}
aBoundaryDist = DistanceFunction(aTL) + myCriteria;
if(aBoundaryDist * aBoundaryDist < aDist2) {
aDist2 = aBoundaryDist * aBoundaryDist;
aTx = aTL;
}
Standard_Real aParameter = (aTF + aTL) * 0.5;
aBoundaryDist = DistanceFunction(aParameter) + myCriteria;
if(aBoundaryDist * aBoundaryDist < aDist2) {
aDist2 = aBoundaryDist * aBoundaryDist;
aTx = aParameter;
}
if(aDist2 > myCriteria * myCriteria) {
return theflag;
}
if (fabs (aTx-aTF) < myEpsT) {
return !theflag;
}
if (fabs (aTx-aTL) < myEpsT) {
return !theflag;
}
if (aTx>aTF && aTx<aTL) {
return !theflag;
}
return theflag;
}
//=======================================================================
//function : Perform
//purpose :
//=======================================================================
void IntTools_EdgeFace::Perform()
{
Standard_Integer i, aNb;
IntTools_CommonPrt aCommonPrt;
//
aCommonPrt.SetEdge1(myEdge);
//
myErrorStatus=0;
CheckData();
if (myErrorStatus) {
return;
}
//
if (myContext.IsNull()) {
myContext=new BOPInt_Context;
}
//
myIsDone = Standard_False;
myC.Initialize(myEdge);
GeomAbs_CurveType aCurveType;
aCurveType=myC.GetType();
//
// Prepare myCriteria
if (aCurveType==GeomAbs_BSplineCurve||
aCurveType==GeomAbs_BezierCurve) {
//--- 5112
Standard_Real diff1 = (myTolE/myTolF);
Standard_Real diff2 = (myTolF/myTolE);
if( diff1 > 100 || diff2 > 100 ) {
myCriteria = Max(myTolE,myTolF);
}
else //--- 5112
myCriteria=1.5*myTolE+myTolF;
}
else {
myCriteria=myTolE+myTolF;
}
myTmin=myRange.First();
myTmax=myRange.Last();
myS.Initialize (myFace,Standard_True);
if(myContext.IsNull()) {
myFClass2d.Init(myFace, 1.e-6);
}
IntTools_BeanFaceIntersector anIntersector(myC, myS, myTolE, myTolF);
anIntersector.SetBeanParameters(myRange.First(), myRange.Last());
//
anIntersector.SetContext(myContext);
//
anIntersector.Perform();
if(!anIntersector.IsDone()) {
return;
}
for(Standard_Integer r = 1; r <= anIntersector.Result().Length(); r++) {
const IntTools_Range& aRange = anIntersector.Result().Value(r);
if(IsProjectable(IntTools_Tools::IntermediatePoint(aRange.First(), aRange.Last()))) {
aCommonPrt.SetRange1(aRange.First(), aRange.Last());
mySeqOfCommonPrts.Append(aCommonPrt);
}
}
aNb = mySeqOfCommonPrts.Length();
for (i=1; i<=aNb; i++) {
IntTools_CommonPrt& aCP=mySeqOfCommonPrts.ChangeValue(i);
//
Standard_Real aTx1, aTx2;
gp_Pnt aPx1, aPx2;
//
aCP.Range1(aTx1, aTx2);
myC.D0(aTx1, aPx1);
myC.D0(aTx2, aPx2);
aCP.SetBoundingPoints(aPx1, aPx2);
//
MakeType (aCP);
}
{
// Line\Cylinder's Common Parts treatement
GeomAbs_CurveType aCType;
GeomAbs_SurfaceType aSType;
TopAbs_ShapeEnum aType;
Standard_Boolean bIsTouch;
Standard_Real aTx;
aCType=myC.GetType();
aSType=myS.GetType();
if (aCType==GeomAbs_Line && aSType==GeomAbs_Cylinder) {
for (i=1; i<=aNb; i++) {
IntTools_CommonPrt& aCP=mySeqOfCommonPrts(i);
aType=aCP.Type();
if (aType==TopAbs_EDGE) {
bIsTouch=CheckTouch (aCP, aTx);
if (bIsTouch) {
aCP.SetType(TopAbs_VERTEX);
aCP.SetVertexParameter1(aTx);
aCP.SetRange1 (aTx, aTx);
}
}
if (aType==TopAbs_VERTEX) {
bIsTouch=CheckTouchVertex (aCP, aTx);
if (bIsTouch) {
aCP.SetVertexParameter1(aTx);
aCP.SetRange1 (aTx, aTx);
}
}
}
}
// Circle\Plane's Common Parts treatement
if (aCType==GeomAbs_Circle && aSType==GeomAbs_Plane) {
Standard_Boolean bIsCoplanar, bIsRadius;
bIsCoplanar=IsCoplanar(myC, myS);
bIsRadius=IsRadius(myC, myS);
if (!bIsCoplanar && !bIsRadius) {
for (i=1; i<=aNb; i++) {
IntTools_CommonPrt& aCP=mySeqOfCommonPrts(i);
aType=aCP.Type();
if (aType==TopAbs_EDGE) {
bIsTouch=CheckTouch (aCP, aTx);
if (bIsTouch) {
aCP.SetType(TopAbs_VERTEX);
aCP.SetVertexParameter1(aTx);
aCP.SetRange1 (aTx, aTx);
}
}
}
}
}
}
myIsDone=Standard_True;
}
//
// myErrorStatus
// 1 - the method Perform() is not invoked
// 2,3,4,5 -the method CheckData() fails
// 6 - PrepareArgs() problems
// 7 - No Projectable ranges
// 8,9 - PrepareArgs() problems occured inside projectable Ranges
// 11 - can't fill array aFunc(i) in PrepareArgsFuncArrays
//=======================================================================
//function : CheckTouch
//purpose :
//=======================================================================
Standard_Boolean IntTools_EdgeFace::CheckTouchVertex (const IntTools_CommonPrt& aCP,
Standard_Real& aTx)
{
Standard_Real aTF, aTL, Tol, U1f,U1l,V1f,V1l, af, al,aDist2, aMinDist2, aTm, aDist2New;
Standard_Real aEpsT;
Standard_Boolean theflag=Standard_False;
Standard_Integer aNbExt, i, iLower ;
aCP.Range1(aTF, aTL);
aEpsT=8.e-5;
aTm=0.5*(aTF+aTL);
aDist2=DistanceFunction(aTm);
aDist2 *= aDist2;
Tol = Precision::PConfusion();
const Handle(Geom_Curve)& Curve =BRep_Tool::Curve (myC.Edge(), af, al);
const Handle(Geom_Surface)& Surface=BRep_Tool::Surface(myS.Face());
Surface->Bounds(U1f,U1l,V1f,V1l);
GeomAdaptor_Curve TheCurve (Curve,aTF, aTL);
GeomAdaptor_Surface TheSurface (Surface, U1f, U1l, V1f, V1l);
Extrema_ExtCS anExtrema (TheCurve, TheSurface, Tol, Tol);
if(!anExtrema.IsDone()) {
return theflag;
}
if (anExtrema.IsParallel()) {
return theflag;
}
aNbExt=anExtrema.NbExt() ;
if (!aNbExt) {
return theflag;
}
iLower=1;
aMinDist2=1.e100;
for (i=1; i<=aNbExt; ++i) {
aDist2=anExtrema.SquareDistance(i);
if (aDist2 < aMinDist2) {
aMinDist2=aDist2;
iLower=i;
}
}
aDist2New=anExtrema.SquareDistance(iLower);
if (aDist2New > aDist2) {
aTx=aTm;
return !theflag;
}
if (aDist2New > myCriteria * myCriteria) {
return theflag;
}
Extrema_POnCurv aPOnC;
Extrema_POnSurf aPOnS;
anExtrema.Points(iLower, aPOnC, aPOnS);
aTx=aPOnC.Parameter();
///
if (fabs (aTx-aTF) < aEpsT) {
return theflag;
}
if (fabs (aTx-aTL) < aEpsT) {
return theflag;
}
if (aTx>aTF && aTx<aTL) {
return !theflag;
}
return theflag;
}
//=======================================================================
//function : IsCoplanar
//purpose :
//=======================================================================
Standard_Boolean IsCoplanar (const BRepAdaptor_Curve& aCurve ,
const BRepAdaptor_Surface& aSurface)
{
Standard_Boolean bFlag=Standard_False;
GeomAbs_CurveType aCType;
GeomAbs_SurfaceType aSType;
aCType=aCurve.GetType();
aSType=aSurface.GetType();
if (aCType==GeomAbs_Circle && aSType==GeomAbs_Plane) {
gp_Circ aCirc=aCurve.Circle();
const gp_Ax1& anAx1=aCirc.Axis();
const gp_Dir& aDirAx1=anAx1.Direction();
gp_Pln aPln=aSurface.Plane();
const gp_Ax1& anAx=aPln.Axis();
const gp_Dir& aDirPln=anAx.Direction();
bFlag=IntTools_Tools::IsDirsCoinside(aDirAx1, aDirPln);
}
return bFlag;
}
//=======================================================================
//function : IsRadius
//purpose :
//=======================================================================
Standard_Boolean IsRadius (const BRepAdaptor_Curve& aCurve ,
const BRepAdaptor_Surface& aSurface)
{
Standard_Boolean bFlag=Standard_False;
GeomAbs_CurveType aCType;
GeomAbs_SurfaceType aSType;
aCType=aCurve.GetType();
aSType=aSurface.GetType();
if (aCType==GeomAbs_Circle && aSType==GeomAbs_Plane) {
gp_Circ aCirc=aCurve.Circle();
const gp_Pnt aCenter=aCirc.Location();
Standard_Real aR=aCirc.Radius();
gp_Pln aPln=aSurface.Plane();
Standard_Real aD=aPln.Distance(aCenter);
if (fabs (aD-aR) < 1.e-7) {
return !bFlag;
}
}
return bFlag;
}
//
//=======================================================================
//function : AdaptiveDiscret
//purpose :
//=======================================================================
Standard_Integer AdaptiveDiscret (const Standard_Integer iDiscret,
const BRepAdaptor_Curve& aCurve ,
const BRepAdaptor_Surface& aSurface)
{
Standard_Integer iDiscretNew;
iDiscretNew=iDiscret;
GeomAbs_CurveType aCType;
GeomAbs_SurfaceType aSType;
aCType=aCurve.GetType();
aSType=aSurface.GetType();
if (aSType==GeomAbs_Cylinder) {
Standard_Real aELength, aRadius, dL, dLR;
aELength=IntTools::Length(aCurve.Edge());
dL=aELength/iDiscret;
gp_Cylinder aCylinder=aSurface.Cylinder();
aRadius=aCylinder.Radius();
dLR=2*aRadius;
iDiscretNew=(Standard_Integer)(aELength/dLR);
if (iDiscretNew<iDiscret) {
iDiscretNew=iDiscret;
}
}
return iDiscretNew;
}
#ifdef WNT
#pragma warning ( default : 4101 )
#endif