mirror of
https://git.dev.opencascade.org/repos/occt.git
synced 2025-04-21 10:13:43 +03:00
The copying permission statements at the beginning of source files updated to refer to LGPL. Copyright dates extended till 2014 in advance.
571 lines
22 KiB
C++
571 lines
22 KiB
C++
// Created on: 2003-03-18
|
|
// Created by: Oleg FEDYAEV
|
|
// Copyright (c) 2003-2014 OPEN CASCADE SAS
|
|
//
|
|
// This file is part of Open CASCADE Technology software library.
|
|
//
|
|
// This library is free software; you can redistribute it and / or modify it
|
|
// under the terms of the GNU Lesser General Public version 2.1 as published
|
|
// by the Free Software Foundation, with special exception defined in the file
|
|
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
|
|
// distribution for complete text of the license and disclaimer of any warranty.
|
|
//
|
|
// Alternatively, this file may be used under the terms of Open CASCADE
|
|
// commercial license or contractual agreement.
|
|
|
|
#include <GeomLib_Tool.ixx>
|
|
|
|
#include <Geom_Curve.hxx>
|
|
#include <Geom_Line.hxx>
|
|
#include <Geom_Circle.hxx>
|
|
#include <Geom_Ellipse.hxx>
|
|
#include <Geom_Parabola.hxx>
|
|
#include <Geom_Hyperbola.hxx>
|
|
#include <Geom_BSplineCurve.hxx>
|
|
#include <Geom_BezierCurve.hxx>
|
|
#include <Geom_TrimmedCurve.hxx>
|
|
#include <Geom_OffsetCurve.hxx>
|
|
#include <Geom_Surface.hxx>
|
|
#include <Geom_Plane.hxx>
|
|
#include <Geom_CylindricalSurface.hxx>
|
|
#include <Geom_ConicalSurface.hxx>
|
|
#include <Geom_SphericalSurface.hxx>
|
|
#include <Geom_ToroidalSurface.hxx>
|
|
#include <Geom_BSplineSurface.hxx>
|
|
#include <Geom_BezierSurface.hxx>
|
|
#include <Geom_RectangularTrimmedSurface.hxx>
|
|
#include <Geom_OffsetSurface.hxx>
|
|
#include <Geom_SurfaceOfLinearExtrusion.hxx>
|
|
#include <Geom_SurfaceOfRevolution.hxx>
|
|
#include <gp_Pnt.hxx>
|
|
#include <gp_Pln.hxx>
|
|
#include <gp_Cylinder.hxx>
|
|
#include <gp_Cone.hxx>
|
|
#include <gp_Sphere.hxx>
|
|
#include <gp_Torus.hxx>
|
|
#include <gp_Lin.hxx>
|
|
#include <gp_Circ.hxx>
|
|
#include <gp_Elips.hxx>
|
|
#include <gp_Parab.hxx>
|
|
#include <gp_Hypr.hxx>
|
|
#include <gp_Vec.hxx>
|
|
#include <GeomAdaptor_Curve.hxx>
|
|
#include <GeomAdaptor_Surface.hxx>
|
|
#include <ElSLib.hxx>
|
|
#include <ElCLib.hxx>
|
|
#include <Extrema_ExtPC.hxx>
|
|
#include <Extrema_ExtPS.hxx>
|
|
#include <Geom2d_Curve.hxx>
|
|
#include <Geom2d_Line.hxx>
|
|
#include <Geom2d_Circle.hxx>
|
|
#include <Geom2d_Ellipse.hxx>
|
|
#include <Geom2d_Parabola.hxx>
|
|
#include <Geom2d_Hyperbola.hxx>
|
|
#include <Geom2d_BSplineCurve.hxx>
|
|
#include <Geom2d_BezierCurve.hxx>
|
|
#include <Geom2d_TrimmedCurve.hxx>
|
|
#include <Geom2d_OffsetCurve.hxx>
|
|
#include <gp_Pnt2d.hxx>
|
|
#include <gp_Lin2d.hxx>
|
|
#include <gp_Circ2d.hxx>
|
|
#include <gp_Elips2d.hxx>
|
|
#include <gp_Parab2d.hxx>
|
|
#include <gp_Hypr2d.hxx>
|
|
#include <Geom2dAdaptor_Curve.hxx>
|
|
#include <ElCLib.hxx>
|
|
#include <Extrema_ExtPC2d.hxx>
|
|
|
|
|
|
// The functions Parameter(s) are used to compute parameter(s) of point
|
|
// on curves and surfaces. The main rule is that tested point must lied
|
|
// on curves or surfaces otherwise the resulted parameter(s) may be wrong.
|
|
// To make search process more common the tolerance value is used to define
|
|
// the proximity of point to curve or surface. It is clear that this tolerance
|
|
// value can't be too high to be not in conflict with previous rule.
|
|
static const Standard_Real MAXTOLERANCEGEOM = 1.e-4;
|
|
static const Standard_Real MAXTOLERANCEPARM = 1.e-3;
|
|
static const Standard_Real UNKNOWNVALUE = 1.e+100;
|
|
static const Standard_Real PARTOLERANCE = 1.e-9;
|
|
|
|
//=======================================================================
|
|
//function : ProcessAnalyticalSurfaces
|
|
//purpose : Computes the coefficients of the implicit equation
|
|
// of the analytical surfaces in the absolute cartesian
|
|
// coordinate system and check given point
|
|
//=======================================================================
|
|
|
|
static Standard_Boolean ProcessAnalyticalSurfaces(const Handle(Geom_Surface)& Surface,
|
|
const gp_Pnt& Point,
|
|
Standard_Real& Delta)
|
|
{
|
|
Delta = UNKNOWNVALUE;
|
|
Handle(Standard_Type) KindOfSurface = Surface->DynamicType();
|
|
if( KindOfSurface == STANDARD_TYPE (Geom_Plane) )
|
|
{
|
|
Handle(Geom_Plane) aGP = Handle(Geom_Plane)::DownCast(Surface);
|
|
if( aGP.IsNull() ) return Standard_False;
|
|
gp_Pln aPlane = aGP->Pln();
|
|
Delta = aPlane.Distance(Point);
|
|
}
|
|
else if( KindOfSurface == STANDARD_TYPE (Geom_CylindricalSurface) )
|
|
{
|
|
Handle(Geom_CylindricalSurface) aGC = Handle(Geom_CylindricalSurface)::DownCast(Surface);
|
|
if( aGC.IsNull() ) return Standard_False;
|
|
gp_Vec aVec(aGC->Cylinder().Location(),Point);
|
|
Standard_Real X = aVec.Dot(aGC->Cylinder().XAxis().Direction());
|
|
Standard_Real Y = aVec.Dot(aGC->Cylinder().YAxis().Direction());
|
|
Delta = X*X + Y*Y - aGC->Cylinder().Radius()*aGC->Cylinder().Radius();
|
|
}
|
|
else if( KindOfSurface == STANDARD_TYPE (Geom_ConicalSurface) )
|
|
{
|
|
Handle(Geom_ConicalSurface) aGC = Handle(Geom_ConicalSurface)::DownCast(Surface);
|
|
if( aGC.IsNull() ) return Standard_False;
|
|
gp_Vec aVec(aGC->Cone().Location(),Point);
|
|
Standard_Real X = aVec.Dot(aGC->Cone().XAxis().Direction());
|
|
Standard_Real Y = aVec.Dot(aGC->Cone().YAxis().Direction());
|
|
Standard_Real Z = aVec.Dot(aGC->Cone().Axis().Direction());
|
|
Standard_Real tZ = aGC->Cone().RefRadius() + Z * Tan(aGC->Cone().SemiAngle());
|
|
Delta = X*X + Y*Y - tZ*tZ;
|
|
}
|
|
else if( KindOfSurface == STANDARD_TYPE (Geom_SphericalSurface) )
|
|
{
|
|
Handle(Geom_SphericalSurface) aGS = Handle(Geom_SphericalSurface)::DownCast(Surface);
|
|
if( aGS.IsNull() ) return Standard_False;
|
|
gp_Vec aVec(aGS->Sphere().Location(),Point);
|
|
Standard_Real X = aVec.Dot(aGS->Sphere().XAxis().Direction());
|
|
Standard_Real Y = aVec.Dot(aGS->Sphere().YAxis().Direction());
|
|
gp_Dir Zdir = aGS->Sphere().XAxis().Direction().Crossed(aGS->Sphere().YAxis().Direction());
|
|
Standard_Real Z = aVec.Dot(Zdir);
|
|
Delta = X*X + Y*Y + Z*Z - aGS->Sphere().Radius() * aGS->Sphere().Radius();
|
|
}
|
|
else if( KindOfSurface == STANDARD_TYPE (Geom_ToroidalSurface) )
|
|
{
|
|
Handle(Geom_ToroidalSurface) aTS = Handle(Geom_ToroidalSurface)::DownCast(Surface);
|
|
if( aTS.IsNull() ) return Standard_False;
|
|
gp_Vec aVec(aTS->Torus().Location(),Point);
|
|
Standard_Real X = aVec.Dot(aTS->Torus().XAxis().Direction());
|
|
Standard_Real Y = aVec.Dot(aTS->Torus().YAxis().Direction());
|
|
Standard_Real Z = aVec.Dot(aTS->Torus().Axis().Direction());
|
|
Delta = X*X + Y*Y + Z*Z - 2.*aTS->Torus().MajorRadius()*Sqrt( X*X + Y*Y ) -
|
|
aTS->Torus().MinorRadius()*aTS->Torus().MinorRadius() +
|
|
aTS->Torus().MajorRadius()*aTS->Torus().MajorRadius();
|
|
}
|
|
else
|
|
{
|
|
return Standard_False;
|
|
}
|
|
return Standard_True;
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : ProcessAnalyticalCurves
|
|
//purpose : Computes the coefficients of the implicit equation
|
|
// of the analytical curves and check given point
|
|
//=======================================================================
|
|
|
|
static Standard_Boolean ProcessAnalyticalCurves(const Handle(Geom_Curve)& Curve,
|
|
const gp_Pnt& Point,
|
|
Standard_Real& Delta)
|
|
{
|
|
Delta = UNKNOWNVALUE;
|
|
Handle(Standard_Type) KindOfCurve = Curve->DynamicType();
|
|
if( KindOfCurve == STANDARD_TYPE (Geom_Line) )
|
|
{
|
|
Handle(Geom_Line) aGL = Handle(Geom_Line)::DownCast(Curve);
|
|
if( aGL.IsNull() ) return Standard_False;
|
|
gp_Lin aLin = aGL->Lin();
|
|
Delta = aLin.Distance(Point);
|
|
}
|
|
else if( KindOfCurve == STANDARD_TYPE (Geom_Circle) )
|
|
{
|
|
Handle(Geom_Circle) aGC = Handle(Geom_Circle)::DownCast(Curve);
|
|
if( aGC.IsNull() ) return Standard_False;
|
|
gp_Circ aCirc = aGC->Circ();
|
|
Delta = aCirc.Distance(Point);
|
|
}
|
|
else if( KindOfCurve == STANDARD_TYPE (Geom_Ellipse) )
|
|
{
|
|
Handle(Geom_Ellipse) aGE = Handle(Geom_Ellipse)::DownCast(Curve);
|
|
if( aGE.IsNull() ) return Standard_False;
|
|
gp_Elips anElips = aGE->Elips();
|
|
gp_Vec aVec(anElips.Location(),Point);
|
|
Standard_Real X = aVec.Dot(anElips.XAxis().Direction());
|
|
Standard_Real Y = aVec.Dot(anElips.YAxis().Direction());
|
|
Standard_Real Z = aVec.Dot(anElips.Axis().Direction());
|
|
Standard_Real AA = anElips.MajorRadius()*anElips.MajorRadius();
|
|
Standard_Real BB = anElips.MinorRadius()*anElips.MinorRadius();
|
|
Standard_Real tY = Sqrt( Abs( (1. - X*X/AA)*BB ) );
|
|
Delta = Max( Abs(Z), Abs( Y - tY ) );
|
|
}
|
|
else if( KindOfCurve == STANDARD_TYPE (Geom_Parabola) )
|
|
{
|
|
Handle(Geom_Parabola) aGP = Handle(Geom_Parabola)::DownCast(Curve);
|
|
if( aGP.IsNull() ) return Standard_False;
|
|
gp_Parab aParab = aGP->Parab();
|
|
gp_Vec aVec(aParab.Location(),Point);
|
|
Standard_Real X = aVec.Dot(aParab.XAxis().Direction());
|
|
Standard_Real Y = aVec.Dot(aParab.YAxis().Direction());
|
|
Standard_Real Z = aVec.Dot(aParab.Axis().Direction());
|
|
Standard_Real tY = Sqrt( Abs(X*2.*aParab.Parameter()) );
|
|
Delta = Max( Abs(Z), Abs( Y - tY ) );
|
|
}
|
|
else if( KindOfCurve == STANDARD_TYPE (Geom_Hyperbola) )
|
|
{
|
|
Handle(Geom_Hyperbola) aGH = Handle(Geom_Hyperbola)::DownCast(Curve);
|
|
if( aGH.IsNull() ) return Standard_False;
|
|
gp_Hypr aHypr = aGH->Hypr();
|
|
gp_Vec aVec(aHypr.Location(),Point);
|
|
Standard_Real X = aVec.Dot(aHypr.XAxis().Direction());
|
|
Standard_Real Y = aVec.Dot(aHypr.YAxis().Direction());
|
|
Standard_Real Z = aVec.Dot(aHypr.Axis().Direction());
|
|
Standard_Real AA = aHypr.MajorRadius()*aHypr.MajorRadius();
|
|
Standard_Real BB = aHypr.MinorRadius()*aHypr.MinorRadius();
|
|
Standard_Real tY1 = Sqrt( Abs( (X*X/AA - 1.)*BB ) );
|
|
Standard_Real tY2 = Sqrt( (X*X/AA + 1.)*BB );
|
|
Delta = Max( Abs(Z), Min( Abs( tY1 - Y ), Abs( tY2 - Y ) ) );
|
|
}
|
|
else return Standard_False;
|
|
return Standard_True;
|
|
}
|
|
|
|
|
|
//=======================================================================
|
|
//function : Parameter
|
|
//purpose : Get parameter on curve of given point
|
|
// return FALSE if point is far from curve than tolerance
|
|
// or computation fails
|
|
//=======================================================================
|
|
|
|
Standard_Boolean GeomLib_Tool::Parameter(const Handle(Geom_Curve)& Curve,
|
|
const gp_Pnt& Point,
|
|
const Standard_Real Tolerance,
|
|
Standard_Real& U)
|
|
{
|
|
U = 0.;
|
|
if( Curve.IsNull() ) return Standard_False;
|
|
Handle(Standard_Type) KindOfCurve = Curve->DynamicType();
|
|
|
|
// process analitical curves
|
|
if( KindOfCurve == STANDARD_TYPE (Geom_Line) ||
|
|
KindOfCurve == STANDARD_TYPE (Geom_Circle) ||
|
|
KindOfCurve == STANDARD_TYPE (Geom_Ellipse) ||
|
|
KindOfCurve == STANDARD_TYPE (Geom_Parabola) ||
|
|
KindOfCurve == STANDARD_TYPE (Geom_Hyperbola) )
|
|
{
|
|
Standard_Real aTol = (Tolerance < MAXTOLERANCEGEOM) ? Tolerance : MAXTOLERANCEGEOM;
|
|
Standard_Real D = 0.;
|
|
Standard_Boolean isOk = ProcessAnalyticalCurves(Curve,Point,D);
|
|
if( !isOk ) return Standard_False;
|
|
if( Abs(D) > aTol ) return Standard_False;
|
|
|
|
if( KindOfCurve == STANDARD_TYPE (Geom_Line) )
|
|
{
|
|
Handle(Geom_Line) aGL = Handle(Geom_Line)::DownCast(Curve);
|
|
gp_Lin aLin = aGL->Lin();
|
|
U = ElCLib::Parameter(aLin,Point);
|
|
}
|
|
else if( KindOfCurve == STANDARD_TYPE (Geom_Circle) )
|
|
{
|
|
Handle(Geom_Circle) aGC = Handle(Geom_Circle)::DownCast(Curve);
|
|
gp_Circ aCirc = aGC->Circ();
|
|
U = ElCLib::Parameter(aCirc,Point);
|
|
}
|
|
else if( KindOfCurve == STANDARD_TYPE (Geom_Ellipse) )
|
|
{
|
|
Handle(Geom_Ellipse) aGE = Handle(Geom_Ellipse)::DownCast(Curve);
|
|
gp_Elips anElips = aGE->Elips();
|
|
U = ElCLib::Parameter(anElips,Point);
|
|
}
|
|
else if( KindOfCurve == STANDARD_TYPE (Geom_Parabola) )
|
|
{
|
|
Handle(Geom_Parabola) aGP = Handle(Geom_Parabola)::DownCast(Curve);
|
|
gp_Parab aParab = aGP->Parab();
|
|
U = ElCLib::Parameter(aParab,Point);
|
|
}
|
|
else if( KindOfCurve == STANDARD_TYPE (Geom_Hyperbola) )
|
|
{
|
|
Handle(Geom_Hyperbola) aGH = Handle(Geom_Hyperbola)::DownCast(Curve);
|
|
gp_Hypr aHypr = aGH->Hypr();
|
|
U = ElCLib::Parameter(aHypr,Point);
|
|
}
|
|
}
|
|
// process parametrical curves
|
|
else if( KindOfCurve == STANDARD_TYPE (Geom_BSplineCurve) ||
|
|
KindOfCurve == STANDARD_TYPE (Geom_BezierCurve) ||
|
|
KindOfCurve == STANDARD_TYPE (Geom_TrimmedCurve) ||
|
|
KindOfCurve == STANDARD_TYPE (Geom_OffsetCurve) )
|
|
{
|
|
Standard_Real aTol = (Tolerance < MAXTOLERANCEPARM) ? Tolerance : MAXTOLERANCEPARM;
|
|
GeomAdaptor_Curve aGAC(Curve);
|
|
Extrema_ExtPC extrema(Point,aGAC);
|
|
if( !extrema.IsDone() ) return Standard_False;
|
|
Standard_Integer n = extrema.NbExt();
|
|
if( n <= 0 ) return Standard_False;
|
|
Standard_Integer i = 0, iMin = 0;
|
|
Standard_Real Dist2Min = 1.e+100;
|
|
for( i = 1; i <= n; i++ )
|
|
{
|
|
if (extrema.SquareDistance(i) < Dist2Min)
|
|
{
|
|
iMin = i;
|
|
Dist2Min = extrema.SquareDistance(i);
|
|
}
|
|
}
|
|
if( iMin != 0 && Dist2Min <= aTol * aTol ) U = (extrema.Point(iMin)).Parameter();
|
|
}
|
|
else { return Standard_False; }
|
|
|
|
return Standard_True;
|
|
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : Parameters
|
|
//purpose : Get parameters on surface of given point
|
|
// return FALSE if point is far from surface than tolerance
|
|
// or computation fails
|
|
//=======================================================================
|
|
|
|
Standard_Boolean GeomLib_Tool::Parameters(const Handle(Geom_Surface)& Surface,
|
|
const gp_Pnt& Point,
|
|
const Standard_Real Tolerance,
|
|
Standard_Real& U,
|
|
Standard_Real& V)
|
|
{
|
|
U = 0.;
|
|
V = 0.;
|
|
if( Surface.IsNull() ) return Standard_False;
|
|
Handle(Standard_Type) KindOfSurface = Surface->DynamicType();
|
|
|
|
// process analitical surfaces
|
|
if( KindOfSurface == STANDARD_TYPE (Geom_Plane) ||
|
|
KindOfSurface == STANDARD_TYPE (Geom_CylindricalSurface) ||
|
|
KindOfSurface == STANDARD_TYPE (Geom_ConicalSurface) ||
|
|
KindOfSurface == STANDARD_TYPE (Geom_SphericalSurface) ||
|
|
KindOfSurface == STANDARD_TYPE (Geom_ToroidalSurface) )
|
|
{
|
|
Standard_Real aTol = (Tolerance < MAXTOLERANCEGEOM) ? Tolerance : MAXTOLERANCEGEOM;
|
|
Standard_Real D = 0.;
|
|
Standard_Boolean isOk = ProcessAnalyticalSurfaces(Surface,Point,D);
|
|
if( !isOk ) return Standard_False;
|
|
if( Abs(D) > aTol ) return Standard_False;
|
|
|
|
if( KindOfSurface == STANDARD_TYPE (Geom_Plane) )
|
|
{
|
|
Handle(Geom_Plane) aGP = Handle(Geom_Plane)::DownCast(Surface);
|
|
gp_Pln aPlane = aGP->Pln();
|
|
ElSLib::Parameters (aPlane,Point,U,V);
|
|
}
|
|
else if( KindOfSurface == STANDARD_TYPE (Geom_CylindricalSurface) )
|
|
{
|
|
Handle(Geom_CylindricalSurface) aGC = Handle(Geom_CylindricalSurface)::DownCast(Surface);
|
|
gp_Cylinder aCylinder = aGC->Cylinder();
|
|
ElSLib::Parameters(aCylinder,Point,U,V);
|
|
}
|
|
else if( KindOfSurface == STANDARD_TYPE (Geom_ConicalSurface) )
|
|
{
|
|
Handle(Geom_ConicalSurface) aGC = Handle(Geom_ConicalSurface)::DownCast(Surface);
|
|
gp_Cone aCone = aGC->Cone();
|
|
ElSLib::Parameters(aCone,Point,U,V);
|
|
}
|
|
else if( KindOfSurface == STANDARD_TYPE (Geom_SphericalSurface) )
|
|
{
|
|
Handle(Geom_SphericalSurface) aGS = Handle(Geom_SphericalSurface)::DownCast(Surface);
|
|
gp_Sphere aSphere = aGS->Sphere();
|
|
ElSLib::Parameters(aSphere,Point,U,V);
|
|
}
|
|
else if( KindOfSurface == STANDARD_TYPE (Geom_ToroidalSurface) )
|
|
{
|
|
Handle(Geom_ToroidalSurface) aTS = Handle(Geom_ToroidalSurface)::DownCast(Surface);
|
|
gp_Torus aTorus = aTS->Torus();
|
|
ElSLib::Parameters(aTorus,Point,U,V);
|
|
}
|
|
else return Standard_False;
|
|
}
|
|
// process parametrical surfaces
|
|
else if( KindOfSurface == STANDARD_TYPE (Geom_BSplineSurface) ||
|
|
KindOfSurface == STANDARD_TYPE (Geom_BezierSurface) ||
|
|
KindOfSurface == STANDARD_TYPE (Geom_RectangularTrimmedSurface) ||
|
|
KindOfSurface == STANDARD_TYPE (Geom_OffsetSurface) ||
|
|
KindOfSurface == STANDARD_TYPE (Geom_SurfaceOfLinearExtrusion) ||
|
|
KindOfSurface == STANDARD_TYPE (Geom_SurfaceOfRevolution) )
|
|
{
|
|
Standard_Real aTol = (Tolerance < MAXTOLERANCEPARM) ? Tolerance : MAXTOLERANCEPARM;
|
|
GeomAdaptor_Surface aGAS(Surface);
|
|
Standard_Real aTolU = PARTOLERANCE, aTolV = PARTOLERANCE;
|
|
Extrema_ExtPS extrema(Point,aGAS,aTolU,aTolV);
|
|
if( !extrema.IsDone() ) return Standard_False;
|
|
Standard_Integer n = extrema.NbExt();
|
|
if( n <= 0 ) return Standard_False;
|
|
|
|
Standard_Real Dist2Min = 1.e+100;
|
|
Standard_Integer i = 0, iMin = 0;
|
|
for( i = 1; i <= n; i++ )
|
|
{
|
|
if( extrema.SquareDistance(i) < Dist2Min )
|
|
{
|
|
Dist2Min = extrema.SquareDistance(i);
|
|
iMin = i;
|
|
}
|
|
}
|
|
if( iMin != 0 && Dist2Min <= aTol * aTol ) extrema.Point(iMin).Parameter(U,V);
|
|
else return Standard_False;
|
|
}
|
|
else { return Standard_False; }
|
|
|
|
return Standard_True;
|
|
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : ProcessAnalyticalCurves2d
|
|
//purpose : Computes the coefficients of the implicit equation
|
|
// of the analytical curves and check given point
|
|
//=======================================================================
|
|
|
|
static Standard_Boolean ProcessAnalyticalCurves2d(const Handle(Geom2d_Curve)& Curve,
|
|
const gp_Pnt2d& Point,
|
|
Standard_Real& Delta)
|
|
{
|
|
Delta = UNKNOWNVALUE;
|
|
Handle(Standard_Type) KindOfCurve = Curve->DynamicType();
|
|
if( KindOfCurve == STANDARD_TYPE (Geom2d_Line) )
|
|
{
|
|
Handle(Geom2d_Line) aGL = Handle(Geom2d_Line)::DownCast(Curve);
|
|
if( aGL.IsNull() ) return Standard_False;
|
|
gp_Lin2d aLin = aGL->Lin2d();
|
|
Delta = aLin.Distance(Point);
|
|
}
|
|
else if( KindOfCurve == STANDARD_TYPE (Geom2d_Circle) )
|
|
{
|
|
Handle(Geom2d_Circle) aGC = Handle(Geom2d_Circle)::DownCast(Curve);
|
|
if( aGC.IsNull() ) return Standard_False;
|
|
gp_Circ2d aCirc = aGC->Circ2d();
|
|
Delta = aCirc.Distance(Point);
|
|
}
|
|
else if( KindOfCurve == STANDARD_TYPE (Geom2d_Ellipse) )
|
|
{
|
|
Handle(Geom2d_Ellipse) aGE = Handle(Geom2d_Ellipse)::DownCast(Curve);
|
|
if( aGE.IsNull() ) return Standard_False;
|
|
gp_Elips2d anElips = aGE->Elips2d();
|
|
Standard_Real A=0., B=0., C=0., D=0., E=0., F=0.;
|
|
anElips.Coefficients(A,B,C,D,E,F);
|
|
Standard_Real X = Point.X(), Y = Point.Y();
|
|
Delta = A*X*X + B*Y*Y + 2.*C*X*Y + 2.*D*X + 2.*E*Y + F;
|
|
}
|
|
else if( KindOfCurve == STANDARD_TYPE (Geom2d_Parabola) )
|
|
{
|
|
Handle(Geom2d_Parabola) aGP = Handle(Geom2d_Parabola)::DownCast(Curve);
|
|
if( aGP.IsNull() ) return Standard_False;
|
|
gp_Parab2d aParab = aGP->Parab2d();
|
|
Standard_Real A=0., B=0., C=0., D=0., E=0., F=0.;
|
|
aParab.Coefficients(A,B,C,D,E,F);
|
|
Standard_Real X = Point.X(), Y = Point.Y();
|
|
Delta = A*X*X + B*Y*Y + 2.*C*X*Y + 2.*D*X + 2.*E*Y + F;
|
|
}
|
|
else if( KindOfCurve == STANDARD_TYPE (Geom2d_Hyperbola) )
|
|
{
|
|
Handle(Geom2d_Hyperbola) aGH = Handle(Geom2d_Hyperbola)::DownCast(Curve);
|
|
if( aGH.IsNull() ) return Standard_False;
|
|
gp_Hypr2d aHypr = aGH->Hypr2d();
|
|
Standard_Real A=0., B=0., C=0., D=0., E=0., F=0.;
|
|
aHypr.Coefficients(A,B,C,D,E,F);
|
|
Standard_Real X = Point.X(), Y = Point.Y();
|
|
Delta = A*X*X + B*Y*Y + 2.*C*X*Y + 2.*D*X + 2.*E*Y + F;
|
|
}
|
|
else return Standard_False;
|
|
|
|
return Standard_True;
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : Parameter
|
|
//purpose : Get parameter on curve of given point
|
|
// return FALSE if point is far from curve than tolerance
|
|
// or computation fails
|
|
//=======================================================================
|
|
|
|
Standard_Boolean GeomLib_Tool::Parameter(const Handle(Geom2d_Curve)& Curve,
|
|
const gp_Pnt2d& Point,
|
|
const Standard_Real Tolerance,
|
|
Standard_Real& U)
|
|
{
|
|
U = 0.;
|
|
if( Curve.IsNull() ) return Standard_False;
|
|
Handle(Standard_Type) KindOfCurve = Curve->DynamicType();
|
|
|
|
// process analytical curves
|
|
if( KindOfCurve == STANDARD_TYPE (Geom2d_Line) ||
|
|
KindOfCurve == STANDARD_TYPE (Geom2d_Circle) ||
|
|
KindOfCurve == STANDARD_TYPE (Geom2d_Ellipse) ||
|
|
KindOfCurve == STANDARD_TYPE (Geom2d_Parabola) ||
|
|
KindOfCurve == STANDARD_TYPE (Geom2d_Hyperbola) )
|
|
{
|
|
Standard_Real aTol = (Tolerance < MAXTOLERANCEGEOM) ? Tolerance : MAXTOLERANCEGEOM;
|
|
Standard_Real D = 0.;
|
|
Standard_Boolean isOk = ProcessAnalyticalCurves2d(Curve,Point,D);
|
|
if( !isOk ) return Standard_False;
|
|
if( Abs(D) > aTol ) return Standard_False;
|
|
|
|
if( KindOfCurve == STANDARD_TYPE (Geom2d_Line) )
|
|
{
|
|
Handle(Geom2d_Line) aGL = Handle(Geom2d_Line)::DownCast(Curve);
|
|
gp_Lin2d aLin = aGL->Lin2d();
|
|
U = ElCLib::Parameter(aLin,Point);
|
|
}
|
|
else if( KindOfCurve == STANDARD_TYPE (Geom2d_Circle) )
|
|
{
|
|
Handle(Geom2d_Circle) aGC = Handle(Geom2d_Circle)::DownCast(Curve);
|
|
gp_Circ2d aCirc = aGC->Circ2d();
|
|
U = ElCLib::Parameter(aCirc,Point);
|
|
}
|
|
else if( KindOfCurve == STANDARD_TYPE (Geom2d_Ellipse) )
|
|
{
|
|
Handle(Geom2d_Ellipse) aGE = Handle(Geom2d_Ellipse)::DownCast(Curve);
|
|
gp_Elips2d anElips = aGE->Elips2d();
|
|
U = ElCLib::Parameter(anElips,Point);
|
|
}
|
|
else if( KindOfCurve == STANDARD_TYPE (Geom2d_Parabola) )
|
|
{
|
|
Handle(Geom2d_Parabola) aGP = Handle(Geom2d_Parabola)::DownCast(Curve);
|
|
gp_Parab2d aParab = aGP->Parab2d();
|
|
U = ElCLib::Parameter(aParab,Point);
|
|
}
|
|
else if( KindOfCurve == STANDARD_TYPE (Geom2d_Hyperbola) )
|
|
{
|
|
Handle(Geom2d_Hyperbola) aGH = Handle(Geom2d_Hyperbola)::DownCast(Curve);
|
|
gp_Hypr2d aHypr = aGH->Hypr2d();
|
|
U = ElCLib::Parameter(aHypr,Point);
|
|
}
|
|
else return Standard_False;
|
|
}
|
|
// process parametrical curves
|
|
else if( KindOfCurve == STANDARD_TYPE (Geom2d_BSplineCurve) ||
|
|
KindOfCurve == STANDARD_TYPE (Geom2d_BezierCurve) ||
|
|
KindOfCurve == STANDARD_TYPE (Geom2d_TrimmedCurve) ||
|
|
KindOfCurve == STANDARD_TYPE (Geom2d_OffsetCurve) )
|
|
{
|
|
Standard_Real aTol = (Tolerance < MAXTOLERANCEPARM) ? Tolerance : MAXTOLERANCEPARM;
|
|
Geom2dAdaptor_Curve aGAC(Curve);
|
|
Extrema_ExtPC2d extrema(Point,aGAC);
|
|
if( !extrema.IsDone() ) return Standard_False;
|
|
Standard_Integer n = extrema.NbExt();
|
|
if( n <= 0 ) return Standard_False;
|
|
Standard_Integer i = 0, iMin = 0;
|
|
Standard_Real Dist2Min = 1.e+100;
|
|
for ( i = 1; i <= n; i++ )
|
|
{
|
|
if( extrema.SquareDistance(i) < Dist2Min )
|
|
{
|
|
Dist2Min = extrema.SquareDistance(i);
|
|
iMin = i;
|
|
}
|
|
}
|
|
if( iMin != 0 && Dist2Min <= aTol * aTol ) U = (extrema.Point(iMin)).Parameter();
|
|
else return Standard_False;
|
|
}
|
|
else { return Standard_False; }
|
|
|
|
return Standard_True;
|
|
}
|