1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-04-21 10:13:43 +03:00
occt/src/GeomLib/GeomLib_Tool.cxx
bugmster 973c2be1e1 0024428: Implementation of LGPL license
The copying permission statements at the beginning of source files updated to refer to LGPL.
Copyright dates extended till 2014 in advance.
2013-12-17 12:42:41 +04:00

571 lines
22 KiB
C++

// Created on: 2003-03-18
// Created by: Oleg FEDYAEV
// Copyright (c) 2003-2014 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and / or modify it
// under the terms of the GNU Lesser General Public version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
#include <GeomLib_Tool.ixx>
#include <Geom_Curve.hxx>
#include <Geom_Line.hxx>
#include <Geom_Circle.hxx>
#include <Geom_Ellipse.hxx>
#include <Geom_Parabola.hxx>
#include <Geom_Hyperbola.hxx>
#include <Geom_BSplineCurve.hxx>
#include <Geom_BezierCurve.hxx>
#include <Geom_TrimmedCurve.hxx>
#include <Geom_OffsetCurve.hxx>
#include <Geom_Surface.hxx>
#include <Geom_Plane.hxx>
#include <Geom_CylindricalSurface.hxx>
#include <Geom_ConicalSurface.hxx>
#include <Geom_SphericalSurface.hxx>
#include <Geom_ToroidalSurface.hxx>
#include <Geom_BSplineSurface.hxx>
#include <Geom_BezierSurface.hxx>
#include <Geom_RectangularTrimmedSurface.hxx>
#include <Geom_OffsetSurface.hxx>
#include <Geom_SurfaceOfLinearExtrusion.hxx>
#include <Geom_SurfaceOfRevolution.hxx>
#include <gp_Pnt.hxx>
#include <gp_Pln.hxx>
#include <gp_Cylinder.hxx>
#include <gp_Cone.hxx>
#include <gp_Sphere.hxx>
#include <gp_Torus.hxx>
#include <gp_Lin.hxx>
#include <gp_Circ.hxx>
#include <gp_Elips.hxx>
#include <gp_Parab.hxx>
#include <gp_Hypr.hxx>
#include <gp_Vec.hxx>
#include <GeomAdaptor_Curve.hxx>
#include <GeomAdaptor_Surface.hxx>
#include <ElSLib.hxx>
#include <ElCLib.hxx>
#include <Extrema_ExtPC.hxx>
#include <Extrema_ExtPS.hxx>
#include <Geom2d_Curve.hxx>
#include <Geom2d_Line.hxx>
#include <Geom2d_Circle.hxx>
#include <Geom2d_Ellipse.hxx>
#include <Geom2d_Parabola.hxx>
#include <Geom2d_Hyperbola.hxx>
#include <Geom2d_BSplineCurve.hxx>
#include <Geom2d_BezierCurve.hxx>
#include <Geom2d_TrimmedCurve.hxx>
#include <Geom2d_OffsetCurve.hxx>
#include <gp_Pnt2d.hxx>
#include <gp_Lin2d.hxx>
#include <gp_Circ2d.hxx>
#include <gp_Elips2d.hxx>
#include <gp_Parab2d.hxx>
#include <gp_Hypr2d.hxx>
#include <Geom2dAdaptor_Curve.hxx>
#include <ElCLib.hxx>
#include <Extrema_ExtPC2d.hxx>
// The functions Parameter(s) are used to compute parameter(s) of point
// on curves and surfaces. The main rule is that tested point must lied
// on curves or surfaces otherwise the resulted parameter(s) may be wrong.
// To make search process more common the tolerance value is used to define
// the proximity of point to curve or surface. It is clear that this tolerance
// value can't be too high to be not in conflict with previous rule.
static const Standard_Real MAXTOLERANCEGEOM = 1.e-4;
static const Standard_Real MAXTOLERANCEPARM = 1.e-3;
static const Standard_Real UNKNOWNVALUE = 1.e+100;
static const Standard_Real PARTOLERANCE = 1.e-9;
//=======================================================================
//function : ProcessAnalyticalSurfaces
//purpose : Computes the coefficients of the implicit equation
// of the analytical surfaces in the absolute cartesian
// coordinate system and check given point
//=======================================================================
static Standard_Boolean ProcessAnalyticalSurfaces(const Handle(Geom_Surface)& Surface,
const gp_Pnt& Point,
Standard_Real& Delta)
{
Delta = UNKNOWNVALUE;
Handle(Standard_Type) KindOfSurface = Surface->DynamicType();
if( KindOfSurface == STANDARD_TYPE (Geom_Plane) )
{
Handle(Geom_Plane) aGP = Handle(Geom_Plane)::DownCast(Surface);
if( aGP.IsNull() ) return Standard_False;
gp_Pln aPlane = aGP->Pln();
Delta = aPlane.Distance(Point);
}
else if( KindOfSurface == STANDARD_TYPE (Geom_CylindricalSurface) )
{
Handle(Geom_CylindricalSurface) aGC = Handle(Geom_CylindricalSurface)::DownCast(Surface);
if( aGC.IsNull() ) return Standard_False;
gp_Vec aVec(aGC->Cylinder().Location(),Point);
Standard_Real X = aVec.Dot(aGC->Cylinder().XAxis().Direction());
Standard_Real Y = aVec.Dot(aGC->Cylinder().YAxis().Direction());
Delta = X*X + Y*Y - aGC->Cylinder().Radius()*aGC->Cylinder().Radius();
}
else if( KindOfSurface == STANDARD_TYPE (Geom_ConicalSurface) )
{
Handle(Geom_ConicalSurface) aGC = Handle(Geom_ConicalSurface)::DownCast(Surface);
if( aGC.IsNull() ) return Standard_False;
gp_Vec aVec(aGC->Cone().Location(),Point);
Standard_Real X = aVec.Dot(aGC->Cone().XAxis().Direction());
Standard_Real Y = aVec.Dot(aGC->Cone().YAxis().Direction());
Standard_Real Z = aVec.Dot(aGC->Cone().Axis().Direction());
Standard_Real tZ = aGC->Cone().RefRadius() + Z * Tan(aGC->Cone().SemiAngle());
Delta = X*X + Y*Y - tZ*tZ;
}
else if( KindOfSurface == STANDARD_TYPE (Geom_SphericalSurface) )
{
Handle(Geom_SphericalSurface) aGS = Handle(Geom_SphericalSurface)::DownCast(Surface);
if( aGS.IsNull() ) return Standard_False;
gp_Vec aVec(aGS->Sphere().Location(),Point);
Standard_Real X = aVec.Dot(aGS->Sphere().XAxis().Direction());
Standard_Real Y = aVec.Dot(aGS->Sphere().YAxis().Direction());
gp_Dir Zdir = aGS->Sphere().XAxis().Direction().Crossed(aGS->Sphere().YAxis().Direction());
Standard_Real Z = aVec.Dot(Zdir);
Delta = X*X + Y*Y + Z*Z - aGS->Sphere().Radius() * aGS->Sphere().Radius();
}
else if( KindOfSurface == STANDARD_TYPE (Geom_ToroidalSurface) )
{
Handle(Geom_ToroidalSurface) aTS = Handle(Geom_ToroidalSurface)::DownCast(Surface);
if( aTS.IsNull() ) return Standard_False;
gp_Vec aVec(aTS->Torus().Location(),Point);
Standard_Real X = aVec.Dot(aTS->Torus().XAxis().Direction());
Standard_Real Y = aVec.Dot(aTS->Torus().YAxis().Direction());
Standard_Real Z = aVec.Dot(aTS->Torus().Axis().Direction());
Delta = X*X + Y*Y + Z*Z - 2.*aTS->Torus().MajorRadius()*Sqrt( X*X + Y*Y ) -
aTS->Torus().MinorRadius()*aTS->Torus().MinorRadius() +
aTS->Torus().MajorRadius()*aTS->Torus().MajorRadius();
}
else
{
return Standard_False;
}
return Standard_True;
}
//=======================================================================
//function : ProcessAnalyticalCurves
//purpose : Computes the coefficients of the implicit equation
// of the analytical curves and check given point
//=======================================================================
static Standard_Boolean ProcessAnalyticalCurves(const Handle(Geom_Curve)& Curve,
const gp_Pnt& Point,
Standard_Real& Delta)
{
Delta = UNKNOWNVALUE;
Handle(Standard_Type) KindOfCurve = Curve->DynamicType();
if( KindOfCurve == STANDARD_TYPE (Geom_Line) )
{
Handle(Geom_Line) aGL = Handle(Geom_Line)::DownCast(Curve);
if( aGL.IsNull() ) return Standard_False;
gp_Lin aLin = aGL->Lin();
Delta = aLin.Distance(Point);
}
else if( KindOfCurve == STANDARD_TYPE (Geom_Circle) )
{
Handle(Geom_Circle) aGC = Handle(Geom_Circle)::DownCast(Curve);
if( aGC.IsNull() ) return Standard_False;
gp_Circ aCirc = aGC->Circ();
Delta = aCirc.Distance(Point);
}
else if( KindOfCurve == STANDARD_TYPE (Geom_Ellipse) )
{
Handle(Geom_Ellipse) aGE = Handle(Geom_Ellipse)::DownCast(Curve);
if( aGE.IsNull() ) return Standard_False;
gp_Elips anElips = aGE->Elips();
gp_Vec aVec(anElips.Location(),Point);
Standard_Real X = aVec.Dot(anElips.XAxis().Direction());
Standard_Real Y = aVec.Dot(anElips.YAxis().Direction());
Standard_Real Z = aVec.Dot(anElips.Axis().Direction());
Standard_Real AA = anElips.MajorRadius()*anElips.MajorRadius();
Standard_Real BB = anElips.MinorRadius()*anElips.MinorRadius();
Standard_Real tY = Sqrt( Abs( (1. - X*X/AA)*BB ) );
Delta = Max( Abs(Z), Abs( Y - tY ) );
}
else if( KindOfCurve == STANDARD_TYPE (Geom_Parabola) )
{
Handle(Geom_Parabola) aGP = Handle(Geom_Parabola)::DownCast(Curve);
if( aGP.IsNull() ) return Standard_False;
gp_Parab aParab = aGP->Parab();
gp_Vec aVec(aParab.Location(),Point);
Standard_Real X = aVec.Dot(aParab.XAxis().Direction());
Standard_Real Y = aVec.Dot(aParab.YAxis().Direction());
Standard_Real Z = aVec.Dot(aParab.Axis().Direction());
Standard_Real tY = Sqrt( Abs(X*2.*aParab.Parameter()) );
Delta = Max( Abs(Z), Abs( Y - tY ) );
}
else if( KindOfCurve == STANDARD_TYPE (Geom_Hyperbola) )
{
Handle(Geom_Hyperbola) aGH = Handle(Geom_Hyperbola)::DownCast(Curve);
if( aGH.IsNull() ) return Standard_False;
gp_Hypr aHypr = aGH->Hypr();
gp_Vec aVec(aHypr.Location(),Point);
Standard_Real X = aVec.Dot(aHypr.XAxis().Direction());
Standard_Real Y = aVec.Dot(aHypr.YAxis().Direction());
Standard_Real Z = aVec.Dot(aHypr.Axis().Direction());
Standard_Real AA = aHypr.MajorRadius()*aHypr.MajorRadius();
Standard_Real BB = aHypr.MinorRadius()*aHypr.MinorRadius();
Standard_Real tY1 = Sqrt( Abs( (X*X/AA - 1.)*BB ) );
Standard_Real tY2 = Sqrt( (X*X/AA + 1.)*BB );
Delta = Max( Abs(Z), Min( Abs( tY1 - Y ), Abs( tY2 - Y ) ) );
}
else return Standard_False;
return Standard_True;
}
//=======================================================================
//function : Parameter
//purpose : Get parameter on curve of given point
// return FALSE if point is far from curve than tolerance
// or computation fails
//=======================================================================
Standard_Boolean GeomLib_Tool::Parameter(const Handle(Geom_Curve)& Curve,
const gp_Pnt& Point,
const Standard_Real Tolerance,
Standard_Real& U)
{
U = 0.;
if( Curve.IsNull() ) return Standard_False;
Handle(Standard_Type) KindOfCurve = Curve->DynamicType();
// process analitical curves
if( KindOfCurve == STANDARD_TYPE (Geom_Line) ||
KindOfCurve == STANDARD_TYPE (Geom_Circle) ||
KindOfCurve == STANDARD_TYPE (Geom_Ellipse) ||
KindOfCurve == STANDARD_TYPE (Geom_Parabola) ||
KindOfCurve == STANDARD_TYPE (Geom_Hyperbola) )
{
Standard_Real aTol = (Tolerance < MAXTOLERANCEGEOM) ? Tolerance : MAXTOLERANCEGEOM;
Standard_Real D = 0.;
Standard_Boolean isOk = ProcessAnalyticalCurves(Curve,Point,D);
if( !isOk ) return Standard_False;
if( Abs(D) > aTol ) return Standard_False;
if( KindOfCurve == STANDARD_TYPE (Geom_Line) )
{
Handle(Geom_Line) aGL = Handle(Geom_Line)::DownCast(Curve);
gp_Lin aLin = aGL->Lin();
U = ElCLib::Parameter(aLin,Point);
}
else if( KindOfCurve == STANDARD_TYPE (Geom_Circle) )
{
Handle(Geom_Circle) aGC = Handle(Geom_Circle)::DownCast(Curve);
gp_Circ aCirc = aGC->Circ();
U = ElCLib::Parameter(aCirc,Point);
}
else if( KindOfCurve == STANDARD_TYPE (Geom_Ellipse) )
{
Handle(Geom_Ellipse) aGE = Handle(Geom_Ellipse)::DownCast(Curve);
gp_Elips anElips = aGE->Elips();
U = ElCLib::Parameter(anElips,Point);
}
else if( KindOfCurve == STANDARD_TYPE (Geom_Parabola) )
{
Handle(Geom_Parabola) aGP = Handle(Geom_Parabola)::DownCast(Curve);
gp_Parab aParab = aGP->Parab();
U = ElCLib::Parameter(aParab,Point);
}
else if( KindOfCurve == STANDARD_TYPE (Geom_Hyperbola) )
{
Handle(Geom_Hyperbola) aGH = Handle(Geom_Hyperbola)::DownCast(Curve);
gp_Hypr aHypr = aGH->Hypr();
U = ElCLib::Parameter(aHypr,Point);
}
}
// process parametrical curves
else if( KindOfCurve == STANDARD_TYPE (Geom_BSplineCurve) ||
KindOfCurve == STANDARD_TYPE (Geom_BezierCurve) ||
KindOfCurve == STANDARD_TYPE (Geom_TrimmedCurve) ||
KindOfCurve == STANDARD_TYPE (Geom_OffsetCurve) )
{
Standard_Real aTol = (Tolerance < MAXTOLERANCEPARM) ? Tolerance : MAXTOLERANCEPARM;
GeomAdaptor_Curve aGAC(Curve);
Extrema_ExtPC extrema(Point,aGAC);
if( !extrema.IsDone() ) return Standard_False;
Standard_Integer n = extrema.NbExt();
if( n <= 0 ) return Standard_False;
Standard_Integer i = 0, iMin = 0;
Standard_Real Dist2Min = 1.e+100;
for( i = 1; i <= n; i++ )
{
if (extrema.SquareDistance(i) < Dist2Min)
{
iMin = i;
Dist2Min = extrema.SquareDistance(i);
}
}
if( iMin != 0 && Dist2Min <= aTol * aTol ) U = (extrema.Point(iMin)).Parameter();
}
else { return Standard_False; }
return Standard_True;
}
//=======================================================================
//function : Parameters
//purpose : Get parameters on surface of given point
// return FALSE if point is far from surface than tolerance
// or computation fails
//=======================================================================
Standard_Boolean GeomLib_Tool::Parameters(const Handle(Geom_Surface)& Surface,
const gp_Pnt& Point,
const Standard_Real Tolerance,
Standard_Real& U,
Standard_Real& V)
{
U = 0.;
V = 0.;
if( Surface.IsNull() ) return Standard_False;
Handle(Standard_Type) KindOfSurface = Surface->DynamicType();
// process analitical surfaces
if( KindOfSurface == STANDARD_TYPE (Geom_Plane) ||
KindOfSurface == STANDARD_TYPE (Geom_CylindricalSurface) ||
KindOfSurface == STANDARD_TYPE (Geom_ConicalSurface) ||
KindOfSurface == STANDARD_TYPE (Geom_SphericalSurface) ||
KindOfSurface == STANDARD_TYPE (Geom_ToroidalSurface) )
{
Standard_Real aTol = (Tolerance < MAXTOLERANCEGEOM) ? Tolerance : MAXTOLERANCEGEOM;
Standard_Real D = 0.;
Standard_Boolean isOk = ProcessAnalyticalSurfaces(Surface,Point,D);
if( !isOk ) return Standard_False;
if( Abs(D) > aTol ) return Standard_False;
if( KindOfSurface == STANDARD_TYPE (Geom_Plane) )
{
Handle(Geom_Plane) aGP = Handle(Geom_Plane)::DownCast(Surface);
gp_Pln aPlane = aGP->Pln();
ElSLib::Parameters (aPlane,Point,U,V);
}
else if( KindOfSurface == STANDARD_TYPE (Geom_CylindricalSurface) )
{
Handle(Geom_CylindricalSurface) aGC = Handle(Geom_CylindricalSurface)::DownCast(Surface);
gp_Cylinder aCylinder = aGC->Cylinder();
ElSLib::Parameters(aCylinder,Point,U,V);
}
else if( KindOfSurface == STANDARD_TYPE (Geom_ConicalSurface) )
{
Handle(Geom_ConicalSurface) aGC = Handle(Geom_ConicalSurface)::DownCast(Surface);
gp_Cone aCone = aGC->Cone();
ElSLib::Parameters(aCone,Point,U,V);
}
else if( KindOfSurface == STANDARD_TYPE (Geom_SphericalSurface) )
{
Handle(Geom_SphericalSurface) aGS = Handle(Geom_SphericalSurface)::DownCast(Surface);
gp_Sphere aSphere = aGS->Sphere();
ElSLib::Parameters(aSphere,Point,U,V);
}
else if( KindOfSurface == STANDARD_TYPE (Geom_ToroidalSurface) )
{
Handle(Geom_ToroidalSurface) aTS = Handle(Geom_ToroidalSurface)::DownCast(Surface);
gp_Torus aTorus = aTS->Torus();
ElSLib::Parameters(aTorus,Point,U,V);
}
else return Standard_False;
}
// process parametrical surfaces
else if( KindOfSurface == STANDARD_TYPE (Geom_BSplineSurface) ||
KindOfSurface == STANDARD_TYPE (Geom_BezierSurface) ||
KindOfSurface == STANDARD_TYPE (Geom_RectangularTrimmedSurface) ||
KindOfSurface == STANDARD_TYPE (Geom_OffsetSurface) ||
KindOfSurface == STANDARD_TYPE (Geom_SurfaceOfLinearExtrusion) ||
KindOfSurface == STANDARD_TYPE (Geom_SurfaceOfRevolution) )
{
Standard_Real aTol = (Tolerance < MAXTOLERANCEPARM) ? Tolerance : MAXTOLERANCEPARM;
GeomAdaptor_Surface aGAS(Surface);
Standard_Real aTolU = PARTOLERANCE, aTolV = PARTOLERANCE;
Extrema_ExtPS extrema(Point,aGAS,aTolU,aTolV);
if( !extrema.IsDone() ) return Standard_False;
Standard_Integer n = extrema.NbExt();
if( n <= 0 ) return Standard_False;
Standard_Real Dist2Min = 1.e+100;
Standard_Integer i = 0, iMin = 0;
for( i = 1; i <= n; i++ )
{
if( extrema.SquareDistance(i) < Dist2Min )
{
Dist2Min = extrema.SquareDistance(i);
iMin = i;
}
}
if( iMin != 0 && Dist2Min <= aTol * aTol ) extrema.Point(iMin).Parameter(U,V);
else return Standard_False;
}
else { return Standard_False; }
return Standard_True;
}
//=======================================================================
//function : ProcessAnalyticalCurves2d
//purpose : Computes the coefficients of the implicit equation
// of the analytical curves and check given point
//=======================================================================
static Standard_Boolean ProcessAnalyticalCurves2d(const Handle(Geom2d_Curve)& Curve,
const gp_Pnt2d& Point,
Standard_Real& Delta)
{
Delta = UNKNOWNVALUE;
Handle(Standard_Type) KindOfCurve = Curve->DynamicType();
if( KindOfCurve == STANDARD_TYPE (Geom2d_Line) )
{
Handle(Geom2d_Line) aGL = Handle(Geom2d_Line)::DownCast(Curve);
if( aGL.IsNull() ) return Standard_False;
gp_Lin2d aLin = aGL->Lin2d();
Delta = aLin.Distance(Point);
}
else if( KindOfCurve == STANDARD_TYPE (Geom2d_Circle) )
{
Handle(Geom2d_Circle) aGC = Handle(Geom2d_Circle)::DownCast(Curve);
if( aGC.IsNull() ) return Standard_False;
gp_Circ2d aCirc = aGC->Circ2d();
Delta = aCirc.Distance(Point);
}
else if( KindOfCurve == STANDARD_TYPE (Geom2d_Ellipse) )
{
Handle(Geom2d_Ellipse) aGE = Handle(Geom2d_Ellipse)::DownCast(Curve);
if( aGE.IsNull() ) return Standard_False;
gp_Elips2d anElips = aGE->Elips2d();
Standard_Real A=0., B=0., C=0., D=0., E=0., F=0.;
anElips.Coefficients(A,B,C,D,E,F);
Standard_Real X = Point.X(), Y = Point.Y();
Delta = A*X*X + B*Y*Y + 2.*C*X*Y + 2.*D*X + 2.*E*Y + F;
}
else if( KindOfCurve == STANDARD_TYPE (Geom2d_Parabola) )
{
Handle(Geom2d_Parabola) aGP = Handle(Geom2d_Parabola)::DownCast(Curve);
if( aGP.IsNull() ) return Standard_False;
gp_Parab2d aParab = aGP->Parab2d();
Standard_Real A=0., B=0., C=0., D=0., E=0., F=0.;
aParab.Coefficients(A,B,C,D,E,F);
Standard_Real X = Point.X(), Y = Point.Y();
Delta = A*X*X + B*Y*Y + 2.*C*X*Y + 2.*D*X + 2.*E*Y + F;
}
else if( KindOfCurve == STANDARD_TYPE (Geom2d_Hyperbola) )
{
Handle(Geom2d_Hyperbola) aGH = Handle(Geom2d_Hyperbola)::DownCast(Curve);
if( aGH.IsNull() ) return Standard_False;
gp_Hypr2d aHypr = aGH->Hypr2d();
Standard_Real A=0., B=0., C=0., D=0., E=0., F=0.;
aHypr.Coefficients(A,B,C,D,E,F);
Standard_Real X = Point.X(), Y = Point.Y();
Delta = A*X*X + B*Y*Y + 2.*C*X*Y + 2.*D*X + 2.*E*Y + F;
}
else return Standard_False;
return Standard_True;
}
//=======================================================================
//function : Parameter
//purpose : Get parameter on curve of given point
// return FALSE if point is far from curve than tolerance
// or computation fails
//=======================================================================
Standard_Boolean GeomLib_Tool::Parameter(const Handle(Geom2d_Curve)& Curve,
const gp_Pnt2d& Point,
const Standard_Real Tolerance,
Standard_Real& U)
{
U = 0.;
if( Curve.IsNull() ) return Standard_False;
Handle(Standard_Type) KindOfCurve = Curve->DynamicType();
// process analytical curves
if( KindOfCurve == STANDARD_TYPE (Geom2d_Line) ||
KindOfCurve == STANDARD_TYPE (Geom2d_Circle) ||
KindOfCurve == STANDARD_TYPE (Geom2d_Ellipse) ||
KindOfCurve == STANDARD_TYPE (Geom2d_Parabola) ||
KindOfCurve == STANDARD_TYPE (Geom2d_Hyperbola) )
{
Standard_Real aTol = (Tolerance < MAXTOLERANCEGEOM) ? Tolerance : MAXTOLERANCEGEOM;
Standard_Real D = 0.;
Standard_Boolean isOk = ProcessAnalyticalCurves2d(Curve,Point,D);
if( !isOk ) return Standard_False;
if( Abs(D) > aTol ) return Standard_False;
if( KindOfCurve == STANDARD_TYPE (Geom2d_Line) )
{
Handle(Geom2d_Line) aGL = Handle(Geom2d_Line)::DownCast(Curve);
gp_Lin2d aLin = aGL->Lin2d();
U = ElCLib::Parameter(aLin,Point);
}
else if( KindOfCurve == STANDARD_TYPE (Geom2d_Circle) )
{
Handle(Geom2d_Circle) aGC = Handle(Geom2d_Circle)::DownCast(Curve);
gp_Circ2d aCirc = aGC->Circ2d();
U = ElCLib::Parameter(aCirc,Point);
}
else if( KindOfCurve == STANDARD_TYPE (Geom2d_Ellipse) )
{
Handle(Geom2d_Ellipse) aGE = Handle(Geom2d_Ellipse)::DownCast(Curve);
gp_Elips2d anElips = aGE->Elips2d();
U = ElCLib::Parameter(anElips,Point);
}
else if( KindOfCurve == STANDARD_TYPE (Geom2d_Parabola) )
{
Handle(Geom2d_Parabola) aGP = Handle(Geom2d_Parabola)::DownCast(Curve);
gp_Parab2d aParab = aGP->Parab2d();
U = ElCLib::Parameter(aParab,Point);
}
else if( KindOfCurve == STANDARD_TYPE (Geom2d_Hyperbola) )
{
Handle(Geom2d_Hyperbola) aGH = Handle(Geom2d_Hyperbola)::DownCast(Curve);
gp_Hypr2d aHypr = aGH->Hypr2d();
U = ElCLib::Parameter(aHypr,Point);
}
else return Standard_False;
}
// process parametrical curves
else if( KindOfCurve == STANDARD_TYPE (Geom2d_BSplineCurve) ||
KindOfCurve == STANDARD_TYPE (Geom2d_BezierCurve) ||
KindOfCurve == STANDARD_TYPE (Geom2d_TrimmedCurve) ||
KindOfCurve == STANDARD_TYPE (Geom2d_OffsetCurve) )
{
Standard_Real aTol = (Tolerance < MAXTOLERANCEPARM) ? Tolerance : MAXTOLERANCEPARM;
Geom2dAdaptor_Curve aGAC(Curve);
Extrema_ExtPC2d extrema(Point,aGAC);
if( !extrema.IsDone() ) return Standard_False;
Standard_Integer n = extrema.NbExt();
if( n <= 0 ) return Standard_False;
Standard_Integer i = 0, iMin = 0;
Standard_Real Dist2Min = 1.e+100;
for ( i = 1; i <= n; i++ )
{
if( extrema.SquareDistance(i) < Dist2Min )
{
Dist2Min = extrema.SquareDistance(i);
iMin = i;
}
}
if( iMin != 0 && Dist2Min <= aTol * aTol ) U = (extrema.Point(iMin)).Parameter();
else return Standard_False;
}
else { return Standard_False; }
return Standard_True;
}