1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-05-21 10:55:33 +03:00
occt/src/Extrema/Extrema_ExtPElC.cxx
bugmster 973c2be1e1 0024428: Implementation of LGPL license
The copying permission statements at the beginning of source files updated to refer to LGPL.
Copyright dates extended till 2014 in advance.
2013-12-17 12:42:41 +04:00

455 lines
15 KiB
C++

// Copyright (c) 1995-1999 Matra Datavision
// Copyright (c) 1999-2014 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and / or modify it
// under the terms of the GNU Lesser General Public version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
#include <Extrema_ExtPElC.ixx>
#include <StdFail_NotDone.hxx>
#include <math_DirectPolynomialRoots.hxx>
#include <math_TrigonometricFunctionRoots.hxx>
#include <ElCLib.hxx>
#include <Standard_OutOfRange.hxx>
#include <Standard_NotImplemented.hxx>
#include <Precision.hxx>
//=======================================================================
//function : Extrema_ExtPElC
//purpose :
//=======================================================================
Extrema_ExtPElC::Extrema_ExtPElC () { myDone = Standard_False; }
//=======================================================================
//function : Extrema_ExtPElC
//purpose :
//=======================================================================
Extrema_ExtPElC::Extrema_ExtPElC (const gp_Pnt& P,
const gp_Lin& L,
const Standard_Real Tol,
const Standard_Real Uinf,
const Standard_Real Usup)
{
Perform(P, L, Tol, Uinf, Usup);
}
//=======================================================================
//function : Perform
//purpose :
//=======================================================================
void Extrema_ExtPElC::Perform(const gp_Pnt& P,
const gp_Lin& L,
const Standard_Real Tol,
const Standard_Real Uinf,
const Standard_Real Usup)
{
myDone = Standard_False;
myNbExt = 0;
gp_Vec V1 (L.Direction());
gp_Pnt OR = L.Location();
gp_Vec V(OR, P);
Standard_Real Mydist = V1.Dot(V);
if ((Mydist >= Uinf-Tol) &&
(Mydist <= Usup+Tol)){
gp_Pnt MyP = OR.Translated(Mydist*V1);
Extrema_POnCurv MyPOnCurve(Mydist, MyP);
mySqDist[0] = P.SquareDistance(MyP);
myPoint[0] = MyPOnCurve;
myIsMin[0] = Standard_True;
myNbExt = 1;
myDone = Standard_True;
}
}
Extrema_ExtPElC::Extrema_ExtPElC (const gp_Pnt& P,
const gp_Circ& C,
const Standard_Real Tol,
const Standard_Real Uinf,
const Standard_Real Usup)
{
Perform(P, C, Tol, Uinf, Usup);
}
void Extrema_ExtPElC::Perform(const gp_Pnt& P,
const gp_Circ& C,
const Standard_Real Tol,
const Standard_Real Uinf,
const Standard_Real Usup)
/*-----------------------------------------------------------------------------
Function:
Find values of parameter u such as:
- dist(P,C(u)) pass by an extrema,
- Uinf <= u <= Usup.
Method:
Pass 3 stages:
1- Projection of point P in the plane of the circle,
2- Calculation of u solutions in [0.,2.*M_PI]:
Let Pp, the projected point and
O, the center of the circle;
2 cases:
- if Pp is mixed with 0, there is an infinite number of solutions;
IsDone() renvoie Standard_False.
- otherwise, 2 points are solutions for the complete circle:
. Us1 = angle(OPp,OX) corresponds to the minimum,
. let Us2 = ( Us1 + M_PI if Us1 < M_PI,
( Us1 - M_PI otherwise;
Us2 corresponds to the maximum.
3- Calculate the extrema in [Uinf,Usup].
-----------------------------------------------------------------------------*/
{
myDone = Standard_False;
myNbExt = 0;
// 1- Projection of the point P in the plane of circle -> Pp ...
gp_Pnt O = C.Location();
gp_Vec Axe (C.Axis().Direction());
gp_Vec Trsl = Axe.Multiplied(-(gp_Vec(O,P).Dot(Axe)));
gp_Pnt Pp = P.Translated(Trsl);
// 2- Calculate u solutions in [0.,2.*PI] ...
gp_Vec OPp (O,Pp);
if (OPp.Magnitude() < Tol) { return; }
Standard_Real Usol[2];
Usol[0] = C.XAxis().Direction().AngleWithRef(OPp,Axe); // -M_PI<U1<M_PI
Usol[1] = Usol[0] + M_PI;
Standard_Real myuinf = Uinf;
//Standard_Real TolU = Tol*C.Radius();
Standard_Real TolU, aR;
aR=C.Radius();
TolU=Precision::Infinite();
if (aR > gp::Resolution()) {
TolU= Tol/aR;
}
//
ElCLib::AdjustPeriodic(Uinf, Uinf+2*M_PI, TolU, myuinf, Usol[0]);
ElCLib::AdjustPeriodic(Uinf, Uinf+2*M_PI, TolU, myuinf, Usol[1]);
if (((Usol[0]-2*M_PI-Uinf) < TolU) && ((Usol[0]-2*M_PI-Uinf) > -TolU)) Usol[0] = Uinf;
if (((Usol[1]-2*M_PI-Uinf) < TolU) && ((Usol[1]-2*M_PI-Uinf) > -TolU)) Usol[1] = Uinf;
// 3- Calculate extrema in [Umin,Umax] ...
gp_Pnt Cu;
Standard_Real Us;
for (Standard_Integer NoSol = 0; NoSol <= 1; NoSol++) {
Us = Usol[NoSol];
if (((Uinf-Us) < TolU) && ((Us-Usup) < TolU)) {
Cu = ElCLib::Value(Us,C);
mySqDist[myNbExt] = Cu.SquareDistance(P);
myIsMin[myNbExt] = (NoSol == 0);
myPoint[myNbExt] = Extrema_POnCurv(Us,Cu);
myNbExt++;
}
}
myDone = Standard_True;
}
//=============================================================================
Extrema_ExtPElC::Extrema_ExtPElC (const gp_Pnt& P,
const gp_Elips& C,
const Standard_Real Tol,
const Standard_Real Uinf,
const Standard_Real Usup)
{
Perform(P, C, Tol, Uinf, Usup);
}
void Extrema_ExtPElC::Perform (const gp_Pnt& P,
const gp_Elips& C,
const Standard_Real Tol,
const Standard_Real Uinf,
const Standard_Real Usup)
/*-----------------------------------------------------------------------------
Function:
Find values of parameter u so that:
- dist(P,C(u)) passes by an extremum,
- Uinf <= u <= Usup.
Method:
Takes 2 steps:
1- Projection of point P in the plane of the ellipse,
2- Calculation of the solutions:
Let Pp, the projected point; find values u so that:
(C(u)-Pp).C'(u) = 0. (1)
Let Cos = cos(u) and Sin = sin(u),
C(u) = (A*Cos,B*Sin) and Pp = (X,Y);
Then, (1) <=> (A*Cos-X,B*Sin-Y).(-A*Sin,B*Cos) = 0.
(B**2-A**2)*Cos*Sin - B*Y*Cos + A*X*Sin = 0.
Use algorithm math_TrigonometricFunctionRoots to solve this equation.
-----------------------------------------------------------------------------*/
{
myDone = Standard_False;
myNbExt = 0;
// 1- Projection of point P in the plane of the ellipse -> Pp ...
gp_Pnt O = C.Location();
gp_Vec Axe (C.Axis().Direction());
gp_Vec Trsl = Axe.Multiplied(-(gp_Vec(O,P).Dot(Axe)));
gp_Pnt Pp = P.Translated(Trsl);
// 2- Calculation of solutions ...
Standard_Integer NoSol, NbSol;
Standard_Real A = C.MajorRadius();
Standard_Real B = C.MinorRadius();
gp_Vec OPp (O,Pp);
Standard_Real OPpMagn = OPp.Magnitude();
if (OPpMagn < Tol) { if (Abs(A-B) < Tol) { return; } }
Standard_Real X = OPp.Dot(gp_Vec(C.XAxis().Direction()));
Standard_Real Y = OPp.Dot(gp_Vec(C.YAxis().Direction()));
// Standard_Real Y = Sqrt(OPpMagn*OPpMagn-X*X);
Standard_Real ko2 = (B*B-A*A)/2., ko3 = -B*Y, ko4 = A*X;
if(Abs(ko3) < 1.e-16*Max(Abs(ko2), Abs(ko3))) ko3 = 0.0;
// math_TrigonometricFunctionRoots Sol(0.,(B*B-A*A)/2.,-B*Y,A*X,0.,Uinf,Usup);
math_TrigonometricFunctionRoots Sol(0.,ko2, ko3, ko4, 0.,Uinf,Usup);
if (!Sol.IsDone()) { return; }
gp_Pnt Cu;
Standard_Real Us;
NbSol = Sol.NbSolutions();
for (NoSol = 1; NoSol <= NbSol; NoSol++) {
Us = Sol.Value(NoSol);
Cu = ElCLib::Value(Us,C);
mySqDist[myNbExt] = Cu.SquareDistance(P);
myPoint[myNbExt] = Extrema_POnCurv(Us,Cu);
Cu = ElCLib::Value(Us + 0.1, C);
myIsMin[myNbExt] = mySqDist[myNbExt] < Cu.SquareDistance(P);
myNbExt++;
}
myDone = Standard_True;
}
//=============================================================================
Extrema_ExtPElC::Extrema_ExtPElC (const gp_Pnt& P,
const gp_Hypr& C,
const Standard_Real Tol,
const Standard_Real Uinf,
const Standard_Real Usup)
{
Perform(P, C, Tol, Uinf, Usup);
}
void Extrema_ExtPElC::Perform(const gp_Pnt& P,
const gp_Hypr& C,
const Standard_Real Tol,
const Standard_Real Uinf,
const Standard_Real Usup)
/*-----------------------------------------------------------------------------
Function:
Find values of parameter u so that:
- dist(P,C(u)) passes by an extremum,
- Uinf <= u <= Usup.
Method:
Takes 2 steps:
1- Projection of point P in the plane of the hyperbola,
2- Calculation of solutions:
Let Pp, le point projete; on recherche les valeurs u telles que:
(C(u)-Pp).C'(u) = 0. (1)
Let R and r be the radiuses of the hyperbola,
Chu = Cosh(u) and Shu = Sinh(u),
C(u) = (R*Chu,r*Shu) and Pp = (X,Y);
Then, (1) <=> (R*Chu-X,r*Shu-Y).(R*Shu,r*Chu) = 0.
(R**2+r**2)*Chu*Shu - X*R*Shu - Y*r*Chu = 0. (2)
Let v = e**u;
Then, by using Chu = (e**u+e**(-u))/2. and Sh = (e**u-e**(-u)))/2.
(2) <=> ((R**2+r**2)/4.) * (v**2-v**(-2)) -
((X*R+Y*r)/2.) * v +
((X*R-Y*r)/2.) * v**(-1) = 0.
(2)* v**2 <=> ((R**2+r**2)/4.) * v**4 -
((X*R+Y*r)/2.) * v**3 +
((X*R-Y*r)/2.) * v -
((R**2+r**2)/4.) = 0.
Use algorithm math_DirectPolynomialRoots to solve this equation by v.
-----------------------------------------------------------------------------*/
{
myDone = Standard_False;
myNbExt = 0;
// 1- Projection of point P in the plane of hyperbola -> Pp ...
gp_Pnt O = C.Location();
gp_Vec Axe (C.Axis().Direction());
gp_Vec Trsl = Axe.Multiplied(-(gp_Vec(O,P).Dot(Axe)));
gp_Pnt Pp = P.Translated(Trsl);
// 2- Calculation of solutions ...
Standard_Real Tol2 = Tol * Tol;
Standard_Real R = C.MajorRadius();
Standard_Real r = C.MinorRadius();
gp_Vec OPp (O,Pp);
Standard_Real X = OPp.Dot(gp_Vec(C.XAxis().Direction()));
Standard_Real Y = OPp.Dot(gp_Vec(C.YAxis().Direction()));
Standard_Real C1 = (R*R+r*r)/4.;
math_DirectPolynomialRoots Sol(C1,-(X*R+Y*r)/2.,0.,(X*R-Y*r)/2.,-C1);
if (!Sol.IsDone()) { return; }
gp_Pnt Cu;
Standard_Real Us, Vs;
Standard_Integer NbSol = Sol.NbSolutions();
Standard_Boolean DejaEnr;
Standard_Integer NoExt;
gp_Pnt TbExt[4];
for (Standard_Integer NoSol = 1; NoSol <= NbSol; NoSol++) {
Vs = Sol.Value(NoSol);
if (Vs > 0.) {
Us = Log(Vs);
if ((Us >= Uinf) && (Us <= Usup)) {
Cu = ElCLib::Value(Us,C);
DejaEnr = Standard_False;
for (NoExt = 0; NoExt < myNbExt; NoExt++) {
if (TbExt[NoExt].SquareDistance(Cu) < Tol2) {
DejaEnr = Standard_True;
break;
}
}
if (!DejaEnr) {
TbExt[myNbExt] = Cu;
mySqDist[myNbExt] = Cu.SquareDistance(P);
myIsMin[myNbExt] = mySqDist[myNbExt] < P.SquareDistance(ElCLib::Value(Us+1,C));
myPoint[myNbExt] = Extrema_POnCurv(Us,Cu);
myNbExt++;
}
} // if ((Us >= Uinf) && (Us <= Usup))
} // if (Vs > 0.)
} // for (Standard_Integer NoSol = 1; ...
myDone = Standard_True;
}
//=============================================================================
Extrema_ExtPElC::Extrema_ExtPElC (const gp_Pnt& P,
const gp_Parab& C,
const Standard_Real Tol,
const Standard_Real Uinf,
const Standard_Real Usup)
{
Perform(P, C, Tol, Uinf, Usup);
}
void Extrema_ExtPElC::Perform(const gp_Pnt& P,
const gp_Parab& C,
// const Standard_Real Tol,
const Standard_Real ,
const Standard_Real Uinf,
const Standard_Real Usup)
/*-----------------------------------------------------------------------------
Function:
Find values of parameter u so that:
- dist(P,C(u)) pass by an extremum,
- Uinf <= u <= Usup.
Method:
Takes 2 steps:
1- Projection of point P in the plane of the parabola,
2- Calculation of solutions:
Let Pp, the projected point; find values u so that:
(C(u)-Pp).C'(u) = 0. (1)
Let F the focus of the parabola,
C(u) = ((u*u)/(4.*F),u) and Pp = (X,Y);
Alors, (1) <=> ((u*u)/(4.*F)-X,u-Y).(u/(2.*F),1) = 0.
(1./(4.*F)) * U**3 + (2.*F-X) * U - 2*F*Y = 0.
Use algorithm math_DirectPolynomialRoots to solve this equation by U.
-----------------------------------------------------------------------------*/
{
myDone = Standard_False;
myNbExt = 0;
// 1- Projection of point P in the plane of the parabola -> Pp ...
gp_Pnt O = C.Location();
gp_Vec Axe (C.Axis().Direction());
gp_Vec Trsl = Axe.Multiplied(-(gp_Vec(O,P).Dot(Axe)));
gp_Pnt Pp = P.Translated(Trsl);
// 2- Calculation of solutions ...
Standard_Real F = C.Focal();
gp_Vec OPp (O,Pp);
Standard_Real X = OPp.Dot(gp_Vec(C.XAxis().Direction()));
// Standard_Real Y = Sqrt(OPpMagn*OPpMagn-X*X);
Standard_Real Y = OPp.Dot(gp_Vec(C.YAxis().Direction()));
math_DirectPolynomialRoots Sol(1./(4.*F),0.,2.*F-X,-2.*F*Y);
if (!Sol.IsDone()) { return; }
gp_Pnt Cu;
Standard_Real Us;
Standard_Integer NbSol = Sol.NbSolutions();
Standard_Boolean DejaEnr;
Standard_Integer NoExt;
gp_Pnt TbExt[3];
for (Standard_Integer NoSol = 1; NoSol <= NbSol; NoSol++) {
Us = Sol.Value(NoSol);
if ((Us >= Uinf) && (Us <= Usup)) {
Cu = ElCLib::Value(Us,C);
DejaEnr = Standard_False;
for (NoExt = 0; NoExt < myNbExt; NoExt++) {
if (TbExt[NoExt].SquareDistance(Cu) < Precision::SquareConfusion()) {
DejaEnr = Standard_True;
break;
}
}
if (!DejaEnr) {
TbExt[myNbExt] = Cu;
mySqDist[myNbExt] = Cu.SquareDistance(P);
myIsMin[myNbExt] = mySqDist[myNbExt] < P.SquareDistance(ElCLib::Value(Us+1,C));
myPoint[myNbExt] = Extrema_POnCurv(Us,Cu);
myNbExt++;
}
} // if ((Us >= Uinf) && (Us <= Usup))
} // for (Standard_Integer NoSol = 1; ...
myDone = Standard_True;
}
//=============================================================================
Standard_Boolean Extrema_ExtPElC::IsDone () const { return myDone; }
//=============================================================================
Standard_Integer Extrema_ExtPElC::NbExt () const
{
if (!IsDone()) { StdFail_NotDone::Raise(); }
return myNbExt;
}
//=============================================================================
Standard_Real Extrema_ExtPElC::SquareDistance (const Standard_Integer N) const
{
if ((N < 1) || (N > NbExt())) { Standard_OutOfRange::Raise(); }
return mySqDist[N-1];
}
//=============================================================================
Standard_Boolean Extrema_ExtPElC::IsMin (const Standard_Integer N) const
{
if ((N < 1) || (N > NbExt())) { Standard_OutOfRange::Raise(); }
return myIsMin[N-1];
}
//=============================================================================
const Extrema_POnCurv& Extrema_ExtPElC::Point (const Standard_Integer N) const
{
if ((N < 1) || (N > NbExt())) { Standard_OutOfRange::Raise(); }
return myPoint[N-1];
}
//=============================================================================