mirror of
https://git.dev.opencascade.org/repos/occt.git
synced 2025-04-10 18:51:21 +03:00
Fix Newton's minimum projection algorithm onto boundaries in case of conditional optimization. Add possibility to detect several optimal points at initialization of the math_GlobOptMin.
288 lines
11 KiB
C++
288 lines
11 KiB
C++
// Created on: 2014-01-20
|
|
// Created by: Alexaner Malyshev
|
|
// Copyright (c) 2014-2015 OPEN CASCADE SAS
|
|
//
|
|
// This file is part of Open CASCADE Technology software library.
|
|
//
|
|
// This library is free software; you can redistribute it and/or modify it under
|
|
// the terms of the GNU Lesser General Public License version 2.1 as published
|
|
// by the Free Software Foundation, with special exception defined in the file
|
|
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
|
|
// distribution for complete text of the license and disclaimer of any warranty.
|
|
//
|
|
// Alternatively, this file may be used under the terms of Open CASCADE
|
|
// commercial license or contractual agreement.
|
|
|
|
#ifndef _math_GlobOptMin_HeaderFile
|
|
#define _math_GlobOptMin_HeaderFile
|
|
|
|
#include <gp_Pnt.hxx>
|
|
#include <gp_Pnt2d.hxx>
|
|
#include <NCollection_CellFilter.hxx>
|
|
#include <math_MultipleVarFunction.hxx>
|
|
#include <NCollection_Sequence.hxx>
|
|
#include <Standard_Type.hxx>
|
|
|
|
//! This class represents Evtushenko's algorithm of global optimization based on non-uniform mesh.
|
|
//! Article: Yu. Evtushenko. Numerical methods for finding global extreme (case of a non-uniform mesh).
|
|
//! U.S.S.R. Comput. Maths. Math. Phys., Vol. 11, N 6, pp. 38-54.
|
|
//!
|
|
//! This method performs search on non-uniform mesh. The search space is a box in R^n space.
|
|
//! The default behavior is to find all minimums in that box. Computation of maximums is not supported.
|
|
//!
|
|
//! The search box can be split into smaller boxes by discontinuity criteria.
|
|
//! This functionality is covered by SetGlobalParams and SetLocalParams API.
|
|
//!
|
|
//! It is possible to set continuity of the local boxes.
|
|
//! Such option can forcibly change local extrema search.
|
|
//! In other words if theFunc can be casted to the function with Hessian but, continuity is set to 1
|
|
//! Gradient based local optimization method will be used, not Hessian based method.
|
|
//! This functionality is covered by SetContinuity and GetContinuity API.
|
|
//!
|
|
//! It is possible to freeze Lipschitz const to avoid internal modifications on it.
|
|
//! This functionality is covered by SetLipConstState and GetLipConstState API.
|
|
//!
|
|
//! It is possible to perform single solution search.
|
|
//! This functionality is covered by first parameter in Perform method.
|
|
//!
|
|
//! It is possible to set / get minimal value of the functional.
|
|
//! It works well together with single solution search.
|
|
//! This functionality is covered by SetFunctionalMinimalValue and GetFunctionalMinimalValue API.
|
|
class math_GlobOptMin
|
|
{
|
|
public:
|
|
|
|
//! Constructor. Perform method is not called from it.
|
|
//! @param theFunc - objective functional.
|
|
//! @param theLowerBorder - lower corner of the search box.
|
|
//! @param theUpperBorder - upper corner of the search box.
|
|
//! @param theC - Lipschitz constant.
|
|
//! @param theDiscretizationTol - parameter space discretization tolerance.
|
|
//! @param theSameTol - functional value space indifference tolerance.
|
|
Standard_EXPORT math_GlobOptMin(math_MultipleVarFunction* theFunc,
|
|
const math_Vector& theLowerBorder,
|
|
const math_Vector& theUpperBorder,
|
|
const Standard_Real theC = 9,
|
|
const Standard_Real theDiscretizationTol = 1.0e-2,
|
|
const Standard_Real theSameTol = 1.0e-7);
|
|
|
|
//! @param theFunc - objective functional.
|
|
//! @param theLowerBorder - lower corner of the search box.
|
|
//! @param theUpperBorder - upper corner of the search box.
|
|
//! @param theC - Lipschitz constant.
|
|
//! @param theDiscretizationTol - parameter space discretization tolerance.
|
|
//! @param theSameTol - functional value space indifference tolerance.
|
|
Standard_EXPORT void SetGlobalParams(math_MultipleVarFunction* theFunc,
|
|
const math_Vector& theLowerBorder,
|
|
const math_Vector& theUpperBorder,
|
|
const Standard_Real theC = 9,
|
|
const Standard_Real theDiscretizationTol = 1.0e-2,
|
|
const Standard_Real theSameTol = 1.0e-7);
|
|
|
|
//! Method to reduce bounding box. Perform will use this box.
|
|
//! @param theLocalA - lower corner of the local box.
|
|
//! @param theLocalB - upper corner of the local box.
|
|
Standard_EXPORT void SetLocalParams(const math_Vector& theLocalA,
|
|
const math_Vector& theLocalB);
|
|
|
|
//! Method to set tolerances.
|
|
//! @param theDiscretizationTol - parameter space discretization tolerance.
|
|
//! @param theSameTol - functional value space indifference tolerance.
|
|
Standard_EXPORT void SetTol(const Standard_Real theDiscretizationTol,
|
|
const Standard_Real theSameTol);
|
|
|
|
//! Method to get tolerances.
|
|
//! @param theDiscretizationTol - parameter space discretization tolerance.
|
|
//! @param theSameTol - functional value space indifference tolerance.
|
|
Standard_EXPORT void GetTol(Standard_Real& theDiscretizationTol,
|
|
Standard_Real& theSameTol);
|
|
|
|
//! @param isFindSingleSolution - defines whether to find single solution or all solutions.
|
|
Standard_EXPORT void Perform(const Standard_Boolean isFindSingleSolution = Standard_False);
|
|
|
|
//! Return solution theIndex, 1 <= theIndex <= NbExtrema.
|
|
Standard_EXPORT void Points(const Standard_Integer theIndex, math_Vector& theSol);
|
|
|
|
//! Set / Get continuity of local borders splits (0 ~ C0, 1 ~ C1, 2 ~ C2).
|
|
inline void SetContinuity(const Standard_Integer theCont) { myCont = theCont; }
|
|
inline Standard_Integer GetContinuity() const {return myCont; }
|
|
|
|
//! Set / Get functional minimal value.
|
|
inline void SetFunctionalMinimalValue(const Standard_Real theMinimalValue)
|
|
{ myFunctionalMinimalValue = theMinimalValue; }
|
|
inline Standard_Real GetFunctionalMinimalValue() const {return myFunctionalMinimalValue;}
|
|
|
|
//! Set / Get Lipchitz constant modification state.
|
|
//! True means that the constant is locked and unlocked otherwise.
|
|
inline void SetLipConstState(const Standard_Boolean theFlag) {myIsConstLocked = theFlag; }
|
|
inline Standard_Boolean GetLipConstState() const { return myIsConstLocked; }
|
|
|
|
//! Return computation state of the algorithm.
|
|
inline Standard_Boolean isDone() const {return myDone; }
|
|
|
|
//! Get best functional value.
|
|
inline Standard_Real GetF() const {return myF;}
|
|
|
|
//! Return count of global extremas.
|
|
inline Standard_Integer NbExtrema() const {return mySolCount;}
|
|
|
|
private:
|
|
|
|
//! Class for duplicate fast search. For internal usage only.
|
|
class NCollection_CellFilter_Inspector
|
|
{
|
|
public:
|
|
|
|
//! Points and target type
|
|
typedef math_Vector Point;
|
|
typedef math_Vector Target;
|
|
|
|
NCollection_CellFilter_Inspector(const Standard_Integer theDim,
|
|
const Standard_Real theTol)
|
|
: myCurrent(1, theDim)
|
|
{
|
|
myTol = theTol * theTol;
|
|
myIsFind = Standard_False;
|
|
Dimension = theDim;
|
|
}
|
|
|
|
//! Access to coordinate.
|
|
static Standard_Real Coord (int i, const Point &thePnt)
|
|
{
|
|
return thePnt(i + 1);
|
|
}
|
|
|
|
//! Auxiliary method to shift point by each coordinate on given value;
|
|
//! useful for preparing a points range for Inspect with tolerance.
|
|
void Shift (const Point& thePnt,
|
|
const NCollection_Array1<Standard_Real> &theTol,
|
|
Point& theLowPnt,
|
|
Point& theUppPnt) const
|
|
{
|
|
for(Standard_Integer anIdx = 1; anIdx <= Dimension; anIdx++)
|
|
{
|
|
theLowPnt(anIdx) = thePnt(anIdx) - theTol(anIdx - 1);
|
|
theUppPnt(anIdx) = thePnt(anIdx) + theTol(anIdx - 1);
|
|
}
|
|
}
|
|
|
|
void ClearFind()
|
|
{
|
|
myIsFind = Standard_False;
|
|
}
|
|
|
|
Standard_Boolean isFind()
|
|
{
|
|
return myIsFind;
|
|
}
|
|
|
|
//! Set current point to search for coincidence
|
|
void SetCurrent (const math_Vector& theCurPnt)
|
|
{
|
|
myCurrent = theCurPnt;
|
|
}
|
|
|
|
//! Implementation of inspection method
|
|
NCollection_CellFilter_Action Inspect (const Target& theObject)
|
|
{
|
|
Standard_Real aSqDist = (myCurrent - theObject).Norm2();
|
|
|
|
if(aSqDist < myTol)
|
|
{
|
|
myIsFind = Standard_True;
|
|
}
|
|
|
|
return CellFilter_Keep;
|
|
}
|
|
|
|
private:
|
|
Standard_Real myTol;
|
|
math_Vector myCurrent;
|
|
Standard_Boolean myIsFind;
|
|
Standard_Integer Dimension;
|
|
};
|
|
|
|
|
|
// Compute cell size.
|
|
void initCellSize();
|
|
|
|
// Compute initial solution
|
|
void ComputeInitSol();
|
|
|
|
math_GlobOptMin & operator = (const math_GlobOptMin & theOther);
|
|
|
|
Standard_Boolean computeLocalExtremum(const math_Vector& thePnt, Standard_Real& theVal, math_Vector& theOutPnt);
|
|
|
|
void computeGlobalExtremum(Standard_Integer theIndex);
|
|
|
|
//! Check possibility to stop computations.
|
|
//! Find single solution + in neighborhood of best possible solution.
|
|
Standard_Boolean CheckFunctionalStopCriteria();
|
|
|
|
//! Computes starting value / approximation:
|
|
//! myF - initial best value.
|
|
//! myY - initial best point.
|
|
//! myC - approximation of Lipschitz constant.
|
|
//! to improve convergence speed.
|
|
void computeInitialValues();
|
|
|
|
//! Check that myA <= thePnt <= myB
|
|
Standard_Boolean isInside(const math_Vector& thePnt);
|
|
|
|
//! Check presence of thePnt in GlobOpt sequence.
|
|
Standard_Boolean isStored(const math_Vector &thePnt);
|
|
|
|
//! Check and add candidate point into solutions.
|
|
//! @param thePnt Candidate point.
|
|
//! @param theValue Function value in the candidate point.
|
|
void checkAddCandidate(const math_Vector& thePnt,
|
|
const Standard_Real theValue);
|
|
|
|
|
|
// Input.
|
|
math_MultipleVarFunction* myFunc;
|
|
Standard_Integer myN;
|
|
math_Vector myA; // Left border on current C2 interval.
|
|
math_Vector myB; // Right border on current C2 interval.
|
|
math_Vector myGlobA; // Global left border.
|
|
math_Vector myGlobB; // Global right border.
|
|
Standard_Real myTol; // Discretization tolerance, default 1.0e-2.
|
|
Standard_Real mySameTol; // points with ||p1 - p2|| < mySameTol is equal,
|
|
// function values |val1 - val2| * 0.01 < mySameTol is equal,
|
|
// default value is 1.0e-7.
|
|
Standard_Real myC; //Lipchitz constant, default 9
|
|
Standard_Real myInitC; // Lipchitz constant initial value.
|
|
Standard_Boolean myIsFindSingleSolution; // Default value is false.
|
|
Standard_Real myFunctionalMinimalValue; // Default value is -Precision::Infinite
|
|
Standard_Boolean myIsConstLocked; // Is constant locked for modifications.
|
|
|
|
// Output.
|
|
Standard_Boolean myDone;
|
|
NCollection_Sequence<Standard_Real> myY;// Current solutions.
|
|
Standard_Integer mySolCount; // Count of solutions.
|
|
|
|
// Algorithm data.
|
|
Standard_Real myZ;
|
|
Standard_Real myE1; // Border coefficient.
|
|
Standard_Real myE2; // Minimum step size.
|
|
Standard_Real myE3; // Local extrema starting parameter.
|
|
|
|
math_Vector myX; // Current modified solution.
|
|
math_Vector myTmp; // Current modified solution.
|
|
math_Vector myV; // Steps array.
|
|
math_Vector myMaxV; // Max Steps array.
|
|
Standard_Real myLastStep; // Last step.
|
|
|
|
NCollection_Array1<Standard_Real> myCellSize;
|
|
Standard_Integer myMinCellFilterSol;
|
|
Standard_Boolean isFirstCellFilterInvoke;
|
|
NCollection_CellFilter<NCollection_CellFilter_Inspector> myFilter;
|
|
|
|
// Continuity of local borders.
|
|
Standard_Integer myCont;
|
|
|
|
Standard_Real myF; // Current value of Global optimum.
|
|
};
|
|
|
|
#endif
|