1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-04-03 17:56:21 +03:00
occt/src/math/math_TrigonometricFunctionRoots.cxx
dpasukhi 92e0a76a50 0033379: Coding - Processing Clang-15 warnings
Fixed warning generated by Clang++-15
2023-05-19 19:34:37 +01:00

510 lines
13 KiB
C++

// Copyright (c) 1997-1999 Matra Datavision
// Copyright (c) 1999-2014 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
// lpa, le 03/09/91
// Implementation de la classe resolvant les equations en cosinus-sinus.
// Equation de la forme a*cos(x)*cos(x)+2*b*cos(x)*sin(x)+c*cos(x)+d*sin(x)+e
//#ifndef OCCT_DEBUG
#define No_Standard_RangeError
#define No_Standard_OutOfRange
#define No_Standard_DimensionError
//#endif
#include <math_TrigonometricFunctionRoots.hxx>
#include <math_TrigonometricEquationFunction.hxx>
#include <math_DirectPolynomialRoots.hxx>
#include <math_FunctionWithDerivative.hxx>
#include <math_NewtonFunctionRoot.hxx>
#include <Precision.hxx>
math_TrigonometricFunctionRoots::math_TrigonometricFunctionRoots
(const Standard_Real theD,
const Standard_Real theE,
const Standard_Real theInfBound,
const Standard_Real theSupBound)
: NbSol (-1),
Sol (1, 4),
InfiniteStatus(Standard_False),
Done (Standard_False)
{
const Standard_Real A(0.0), B(0.0), C(0.0);
Perform(A, B, C, theD, theE, theInfBound, theSupBound);
}
math_TrigonometricFunctionRoots::math_TrigonometricFunctionRoots
(const Standard_Real theC,
const Standard_Real theD,
const Standard_Real theE,
const Standard_Real theInfBound,
const Standard_Real theSupBound)
: NbSol (-1),
Sol (1, 4),
InfiniteStatus(Standard_False),
Done (Standard_False)
{
const Standard_Real A(0.0), B(0.0);
Perform(A, B, theC, theD, theE, theInfBound, theSupBound);
}
math_TrigonometricFunctionRoots::math_TrigonometricFunctionRoots
(const Standard_Real theA,
const Standard_Real theB,
const Standard_Real theC,
const Standard_Real theD,
const Standard_Real theE,
const Standard_Real theInfBound,
const Standard_Real theSupBound)
: NbSol (-1),
Sol (1, 4),
InfiniteStatus(Standard_False),
Done (Standard_False)
{
Perform(theA, theB, theC, theD, theE, theInfBound, theSupBound);
}
void math_TrigonometricFunctionRoots::Perform(const Standard_Real A,
const Standard_Real B,
const Standard_Real C,
const Standard_Real D,
const Standard_Real E,
const Standard_Real InfBound,
const Standard_Real SupBound) {
Standard_Integer i, j=0, k, l, NZer=0, Nit = 10;
Standard_Real Depi, Delta, Mod, AA, BB, CC, MyBorneInf;
Standard_Real Teta, X;
Standard_Real Eps, Tol1 = 1.e-15;
TColStd_Array1OfReal ko(1,5), Zer(1,4);
Standard_Boolean Flag4;
InfiniteStatus = Standard_False;
Done = Standard_True;
Eps = 1.5e-12;
Depi = M_PI+M_PI;
if (InfBound <= RealFirst() && SupBound >= RealLast()) {
MyBorneInf = 0.0;
Delta = Depi;
Mod = 0.0;
}
else if (SupBound >= RealLast()) {
MyBorneInf = InfBound;
Delta = Depi;
Mod = MyBorneInf/Depi;
}
else if (InfBound <= RealFirst()) {
MyBorneInf = SupBound - Depi;
Delta = Depi;
Mod = MyBorneInf/Depi;
}
else {
MyBorneInf = InfBound;
Delta = SupBound-InfBound;
Mod = InfBound/Depi;
if ((SupBound-InfBound) > Depi) { Delta = Depi;}
}
if ((Abs(A) <= Eps) && (Abs(B) <= Eps)) {
if (Abs(C) <= Eps) {
if (Abs(D) <= Eps) {
if (Abs(E) <= Eps) {
InfiniteStatus = Standard_True; // infinite de solutions.
return;
}
else {
NbSol = 0;
return;
}
}
else {
// Equation du type d*sin(x) + e = 0
// =================================
NbSol = 0;
AA = -E/D;
if (Abs(AA) > 1.) {
return;
}
Zer(1) = ASin(AA);
Zer(2) = M_PI - Zer(1);
NZer = 2;
for (i = 1; i <= NZer; i++) {
if (Zer(i) <= -Eps) {
Zer(i) = Depi - Abs(Zer(i));
}
// On rend les solutions entre InfBound et SupBound:
// =================================================
Zer(i) += IntegerPart(Mod)*Depi;
X = Zer(i)-MyBorneInf;
if ((X > (-Epsilon(Delta))) && (X < Delta+ Epsilon(Delta))) {
NbSol++;
Sol(NbSol) = Zer(i);
}
}
}
return;
}
else if (Abs(D) <= Eps) {
// Equation du premier degre de la forme c*cos(x) + e = 0
// ======================================================
NbSol = 0;
AA = -E/C;
if (Abs(AA) >1.) {
return;
}
Zer(1) = ACos(AA);
Zer(2) = -Zer(1);
NZer = 2;
for (i = 1; i <= NZer; i++) {
if (Zer(i) <= -Eps) {
Zer(i) = Depi - Abs(Zer(i));
}
// On rend les solutions entre InfBound et SupBound:
// =================================================
Zer(i) += IntegerPart(Mod)*2.*M_PI;
X = Zer(i)-MyBorneInf;
if ((X >= (-Epsilon(Delta))) && (X <= Delta+ Epsilon(Delta))) {
NbSol++;
Sol(NbSol) = Zer(i);
}
}
return;
}
else {
// Equation du second degre:
// =========================
AA = E - C;
BB = 2.0*D;
CC = E + C;
math_DirectPolynomialRoots Resol(AA, BB, CC);
if (!Resol.IsDone()) {
Done = Standard_False;
return;
}
else if(!Resol.InfiniteRoots()) {
NZer = Resol.NbSolutions();
for (i = 1; i <= NZer; i++) {
Zer(i) = Resol.Value(i);
}
}
else if (Resol.InfiniteRoots()) {
InfiniteStatus = Standard_True;
return;
}
}
}
else {
// Two additional analytical cases.
if ((Abs(A) <= Eps) &&
(Abs(E) <= Eps))
{
if (Abs(C) <= Eps)
{
// 2 * B * sin * cos + D * sin = 0
NZer = 2;
Zer(1) = 0.0;
Zer(2) = M_PI;
AA = -D/(B * 2);
if (Abs(AA) <= 1.0 + Precision::PConfusion())
{
NZer = 4;
if (AA >= 1.0)
{
Zer(3)= 0.0;
Zer(4)= 0.0;
}
else if (AA <= -1.0)
{
Zer(3)= M_PI;
Zer(4)= M_PI;
}
else
{
Zer(3)= ACos(AA);
Zer(4) = Depi - Zer(3);
}
}
NbSol = 0;
for (i = 1; i <= NZer; i++)
{
if (Zer(i) <= MyBorneInf - Eps)
{
Zer(i) += Depi;
}
// On rend les solutions entre InfBound et SupBound:
// =================================================
Zer(i) += IntegerPart(Mod)*2.*M_PI;
X = Zer(i)-MyBorneInf;
if ((X >= (-Precision::PConfusion())) &&
(X <= Delta + Precision::PConfusion()))
{
if (Zer(i) < InfBound)
Zer(i) = InfBound;
if (Zer(i) > SupBound)
Zer(i) = SupBound;
NbSol++;
Sol(NbSol) = Zer(i);
}
}
return;
}
if (Abs(D) <= Eps)
{
// 2 * B * sin * cos + C * cos = 0
NZer = 2;
Zer(1) = M_PI / 2.0;
Zer(2) = M_PI * 3.0 / 2.0;
AA = -C/(B * 2);
if (Abs(AA) <= 1.0 + Precision::PConfusion())
{
NZer = 4;
if (AA >= 1.0)
{
Zer(3) = M_PI / 2.0;
Zer(4) = M_PI / 2.0;
}
else if (AA <= -1.0)
{
Zer(3) = M_PI * 3.0 / 2.0;
Zer(4) = M_PI * 3.0 / 2.0;
}
else
{
Zer(3)= ASin(AA);
Zer(4) = M_PI - Zer(3);
}
}
NbSol = 0;
for (i = 1; i <= NZer; i++)
{
if (Zer(i) <= MyBorneInf - Eps)
{
Zer(i) += Depi;
}
// On rend les solutions entre InfBound et SupBound:
// =================================================
Zer(i) += IntegerPart(Mod)*2.*M_PI;
X = Zer(i)-MyBorneInf;
if ((X >= (-Precision::PConfusion())) &&
(X <= Delta + Precision::PConfusion()))
{
if (Zer(i) < InfBound)
Zer(i) = InfBound;
if (Zer(i) > SupBound)
Zer(i) = SupBound;
NbSol++;
Sol(NbSol) = Zer(i);
}
}
return;
}
}
// Equation du 4 ieme degre
// ========================
ko(1) = A-C+E;
ko(2) = 2.0*D-4.0*B;
ko(3) = 2.0*E-2.0*A;
ko(4) = 4.0*B+2.0*D;
ko(5) = A+C+E;
Standard_Boolean bko;
do {
bko=Standard_False;
math_DirectPolynomialRoots Resol4(ko(1), ko(2), ko(3), ko(4), ko(5));
if (!Resol4.IsDone()) {
Done = Standard_False;
return;
}
else if (!Resol4.InfiniteRoots()) {
NZer = Resol4.NbSolutions();
for (i = 1; i <= NZer; i++) {
Zer(i) = Resol4.Value(i);
}
}
else if (Resol4.InfiniteRoots()) {
InfiniteStatus = Standard_True;
return;
}
Standard_Boolean triok;
do {
triok=Standard_True;
for(i=1;i<NZer;i++) {
if(Zer(i)>Zer(i+1)) {
Standard_Real t=Zer(i);
Zer(i)=Zer(i+1);
Zer(i+1)=t;
triok=Standard_False;
}
}
}
while(triok==Standard_False);
for(i=1;i<NZer;i++) {
if(Abs(Zer(i+1)-Zer(i))<Eps) {
//-- est ce une racine double ou une erreur numerique ?
Standard_Real qw=Zer(i+1);
Standard_Real va=ko(4)+qw*(2.0*ko(3)+qw*(3.0*ko(2)+qw*(4.0*ko(1))));
//-- std::cout<<" Val Double ("<<qw<<")=("<<va<<")"<<std::endl;
if(Abs(va)>Eps) {
bko=Standard_True;
#ifdef OCCT_DEBUG
//if(nbko==1) {
// std::cout<<"Pb ds math_TrigonometricFunctionRoots CC="
// <<A<<" CS="<<B<<" C="<<C<<" S="<<D<<" Cte="<<E<<std::endl;
//}
#endif
break;
}
}
}
if(bko) {
//-- Si il y a un coeff petit, on divise
//--
ko(1)*=0.0001;
ko(2)*=0.0001;
ko(3)*=0.0001;
ko(4)*=0.0001;
ko(5)*=0.0001;
}
}
while(bko);
}
// Verification des solutions par rapport aux bornes:
// ==================================================
Standard_Real SupmInfs100 = (SupBound-InfBound)*0.01;
NbSol = 0;
for (i = 1; i <= NZer; i++) {
Teta = atan(Zer(i)); Teta+=Teta;
if (Zer(i) <= (-Eps)) {
Teta = Depi-Abs(Teta);
}
Teta += IntegerPart(Mod)*Depi;
if (Teta-MyBorneInf < 0) Teta += Depi;
X = Teta -MyBorneInf;
if ((X >= (-Epsilon(Delta))) && (X <= Delta+ Epsilon(Delta))) {
X = Teta;
// Appel de Newton:
//OCC541(apo): Standard_Real TetaNewton=0;
Standard_Real TetaNewton = Teta;
math_TrigonometricEquationFunction MyF(A, B, C, D, E);
math_NewtonFunctionRoot Resol(MyF, X, Tol1, Eps, Nit);
if (Resol.IsDone()) {
TetaNewton = Resol.Root();
}
//-- lbr le 7 mars 97 (newton converge tres tres loin de la solution initilale)
Standard_Real DeltaNewton = TetaNewton-Teta;
if((DeltaNewton > SupmInfs100) || (DeltaNewton < -SupmInfs100)) {
//-- std::cout<<"\n Newton X0="<<Teta<<" -> "<<TetaNewton<<std::endl;
}
else {
Teta=TetaNewton;
}
Flag4 = Standard_False;
for(k = 1; k <= NbSol; k++) {
//On met les valeurs par ordre croissant:
if (Teta < Sol(k)) {
for (l = k; l <= NbSol; l++) {
j = NbSol-l+k;
Sol(j+1) = Sol(j);
}
Sol(k) = Teta;
NbSol++;
Flag4 = Standard_True;
break;
}
}
if (!Flag4) {
NbSol++;
Sol(NbSol) = Teta;
}
}
}
// Cas particulier de PI:
if(NbSol<4) {
Standard_Integer startIndex = NbSol + 1;
for( Standard_Integer solIt = startIndex; solIt <= 4; solIt++) {
Teta = M_PI + IntegerPart(Mod)*2.0*M_PI;
X = Teta - MyBorneInf;
if ((X >= (-Epsilon(Delta))) && (X <= Delta + Epsilon(Delta))) {
if (Abs(A-C+E) <= Eps) {
Flag4 = Standard_False;
for (k = 1; k <= NbSol; k++) {
j = k;
if (Teta < Sol(k)) {
Flag4 = Standard_True;
break;
}
if ((solIt == startIndex) && (Abs(Teta-Sol(k)) <= Eps)) {
return;
}
}
if (!Flag4) {
NbSol++;
Sol(NbSol) = Teta;
}
else {
for (k = j; k <= NbSol; k++) {
i = NbSol-k+j;
Sol(i+1) = Sol(i);
}
Sol(j) = Teta;
NbSol++;
}
}
}
}
}
}
void math_TrigonometricFunctionRoots::Dump(Standard_OStream& o) const
{
o << " math_TrigonometricFunctionRoots: \n";
if (!Done) {
o << "Not Done \n";
}
else if (InfiniteStatus) {
o << " There is an infinity of roots\n";
}
else if (!InfiniteStatus) {
o << " Number of solutions = " << NbSol <<"\n";
for (Standard_Integer i = 1; i <= NbSol; i++) {
o << " Value number " << i << "= " << Sol(i) << "\n";
}
}
}