1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-04-03 17:56:21 +03:00
occt/src/BRepMesh/delabella.cpp
dpasukhi 92e0a76a50 0033379: Coding - Processing Clang-15 warnings
Fixed warning generated by Clang++-15
2023-05-19 19:34:37 +01:00

1038 lines
23 KiB
C++

/*
MIT License
DELABELLA - Delaunay triangulation library
Copyright (C) 2018 GUMIX - Marcin Sokalski
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
*/
#include <assert.h>
#include <stdio.h>
// gcc 4.9 for Android doesn't have search.h
#if !defined(__ANDROID__) || defined(__clang__)
#include <search.h>
#endif
#if (defined(__APPLE__))
#include <malloc/malloc.h>
#else
#include <malloc.h>
#endif
#include <algorithm>
#include "delabella.pxx" // we just need LOG() macro
// assuming BITS is max(X_BITS,Y_BITS)
typedef double Signed14; // BITS xy coords
typedef double Signed15; // BITS + 1 vect::xy
typedef long double Unsigned28; // 2xBITS z coord
typedef long double Signed29; // 2xBITS + 1 vect::z
typedef long double Signed31; // 2xBITS + 3 norm::z
typedef long double Signed45; // 3xBITS + 3 norm::xy
typedef long double Signed62; // 4xBITS + 6 dot(vect,norm)
/*
// above typedefs can be used to configure delabella arithmetic types
// in example, EXACT SOLVER (with xy coords limited to 14bits integers in range: +/-8192)
// could be achieved with following configuration:
typedef int16_t Signed14; // BITS xy coords
typedef int16_t Signed15; // BITS + 1 vect::xy
typedef uint32_t Unsigned28; // 2xBITS z coord
typedef int32_t Signed29; // 2xBITS + 1 vect::z
typedef int32_t Signed31; // 2xBITS + 3 norm::z
typedef int64_t Signed45; // 3xBITS + 3 norm::xy
typedef int64_t Signed62; // 4xBITS + 6 dot(vect,norm)
// alternatively, one could use some BigInt implementation
// in order to expand xy range
*/
static Unsigned28 s14sqr(const Signed14& s)
{
return (Unsigned28)((Signed29)s*s);
}
struct Norm
{
Signed45 x;
Signed45 y;
Signed31 z;
};
struct Vect
{
Signed15 x, y;
Signed29 z;
Norm cross (const Vect& v) const // cross prod
{
Norm n;
n.x = (Signed45)y*v.z - (Signed45)z*v.y;
n.y = (Signed45)z*v.x - (Signed45)x*v.z;
n.z = (Signed29)x*v.y - (Signed29)y*v.x;
return n;
}
};
struct CDelaBella : IDelaBella
{
struct Face;
struct Vert : DelaBella_Vertex
{
Unsigned28 z;
Face* sew;
Vect operator - (const Vert& v) const // diff
{
Vect d;
d.x = (Signed15)x - (Signed15)v.x;
d.y = (Signed15)y - (Signed15)v.y;
d.z = (Signed29)z - (Signed29)v.z;
return d;
}
static bool overlap(const Vert* v1, const Vert* v2)
{
return v1->x == v2->x && v1->y == v2->y;
}
bool operator < (const Vert& v) const
{
return u28cmp(this, &v) < 0;
}
static int u28cmp(const void* a, const void* b)
{
Vert* va = (Vert*)a;
Vert* vb = (Vert*)b;
if (va->z < vb->z)
return -1;
if (va->z > vb->z)
return 1;
if (va->y < vb->y)
return -1;
if (va->y > vb->y)
return 1;
if (va->x < vb->x)
return -1;
if (va->x > vb->x)
return 1;
if (va->i < vb->i)
return -1;
if (va->i > vb->i)
return 1;
return 0;
}
};
struct Face : DelaBella_Triangle
{
Norm n;
static Face* Alloc(Face** from)
{
Face* f = *from;
*from = (Face*)f->next;
f->next = 0;
return f;
}
void Free(Face** to)
{
next = *to;
*to = this;
}
Face* Next(const Vert* p) const
{
// return next face in same direction as face vertices are (cw/ccw)
if (v[0] == p)
return (Face*)f[1];
if (v[1] == p)
return (Face*)f[2];
if (v[2] == p)
return (Face*)f[0];
return 0;
}
Signed62 dot(const Vert& p) const // dot
{
Vect d = p - *(Vert*)v[0];
return (Signed62)n.x * d.x + (Signed62)n.y * d.y + (Signed62)n.z * d.z;
}
Norm cross() const // cross of diffs
{
return (*(Vert*)v[1] - *(Vert*)v[0]).cross(*(Vert*)v[2] - *(Vert*)v[0]);
}
};
Vert* vert_alloc;
Face* face_alloc;
int max_verts;
int max_faces;
Face* first_dela_face;
Face* first_hull_face;
Vert* first_hull_vert;
int inp_verts;
int out_verts;
int(*errlog_proc)(void* file, const char* fmt, ...);
void* errlog_file;
virtual ~CDelaBella ()
{
}
int Triangulate()
{
int points = inp_verts;
std::sort(vert_alloc, vert_alloc + points);
// remove dups
{
int w = 0, r = 1; // skip initial no-dups block
while (r < points && !Vert::overlap(vert_alloc + r, vert_alloc + w))
{
w++;
r++;
}
w++;
while (r < points)
{
r++;
// skip dups
while (r < points && Vert::overlap(vert_alloc + r, vert_alloc + r - 1))
r++;
// copy next no-dups block
while (r < points && !Vert::overlap(vert_alloc + r, vert_alloc + r - 1))
vert_alloc[w++] = vert_alloc[r++];
}
if (points - w)
{
if (errlog_proc)
errlog_proc(errlog_file, "[WRN] detected %d dups in xy array!\n", points - w);
points = w;
}
}
if (points < 3)
{
if (points == 2)
{
if (errlog_proc)
errlog_proc(errlog_file, "[WRN] all input points are colinear, returning single segment!\n");
first_hull_vert = vert_alloc + 0;
vert_alloc[0].next = (DelaBella_Vertex*)vert_alloc + 1;
vert_alloc[1].next = 0;
}
else
{
if (errlog_proc)
errlog_proc(errlog_file, "[WRN] all input points are identical, returning single point!\n");
first_hull_vert = vert_alloc + 0;
vert_alloc[0].next = 0;
}
return -points;
}
int hull_faces = 2 * points - 4;
if (max_faces < hull_faces)
{
if (max_faces)
free(face_alloc);
max_faces = 0;
face_alloc = (Face*)malloc(sizeof(Face) * hull_faces);
if (face_alloc)
max_faces = hull_faces;
else
{
if (errlog_proc)
errlog_proc(errlog_file, "[ERR] Not enough memory, shop for some more RAM. See you!\n");
return 0;
}
}
for (int i = 1; i < hull_faces; i++)
face_alloc[i - 1].next = face_alloc + i;
face_alloc[hull_faces - 1].next = 0;
Face* cache = face_alloc;
Face* hull = 0;
Face f; // tmp
f.v[0] = vert_alloc + 0;
f.v[1] = vert_alloc + 1;
f.v[2] = vert_alloc + 2;
f.n = f.cross();
bool colinear = f.n.z == 0;
int i = 3;
/////////////////////////////////////////////////////////////////////////
// UNTIL INPUT IS COPLANAR, GROW IT IN FORM OF A 2D CONTOUR
/*
. | | after adding . | ________* L
. \ Last points to / Head next point . \ ______/ /
. *____ | -----> .H *____ |
. |\_ \_____ | . |\_ \_____ |
. \ \_ \__* - Tail points to Last . \ \_ \__* T
. \ \_ / . \ \_ /
. \__ \_ __/ . \__ \_ __/
. \__* - Head points to Tail . \__/
*/
Vert* head = (Vert*)f.v[0];
Vert* tail = (Vert*)f.v[1];
Vert* last = (Vert*)f.v[2];
head->next = tail;
tail->next = last;
last->next = head;
while (i < points && f.dot(vert_alloc[i]) == 0)
{
Vert* v = vert_alloc + i;
// it is enough to test just 1 non-zero coord
// but we want also to test stability (assert)
// so we calc all signs...
// why not testing sign of dot prod of 2 normals?
// that way we'd fall into precision problems
Norm LvH = (*v - *last).cross(*head - *last);
bool lvh =
(f.n.x > 0 && LvH.x > 0) || (f.n.x < 0 && LvH.x < 0) ||
(f.n.y > 0 && LvH.y > 0) || (f.n.y < 0 && LvH.y < 0) ||
(f.n.z > 0 && LvH.z > 0) || (f.n.z < 0 && LvH.z < 0);
Norm TvL = (*v - *tail).cross(*last - *tail);
bool tvl =
(f.n.x > 0 && TvL.x > 0) || (f.n.x < 0 && TvL.x < 0) ||
(f.n.y > 0 && TvL.y > 0) || (f.n.y < 0 && TvL.y < 0) ||
(f.n.z > 0 && TvL.z > 0) || (f.n.z < 0 && TvL.z < 0);
if (lvh && !tvl) // insert new f on top of e(2,0) = (last,head)
{
// f.v[0] = head;
f.v[1] = last;
f.v[2] = v;
last->next = v;
v->next = head;
tail = last;
}
else
if (tvl && !lvh) // insert new f on top of e(1,2) = (tail,last)
{
f.v[0] = last;
//f.v[1] = tail;
f.v[2] = v;
tail->next = v;
v->next = last;
head = last;
}
else
{
// wtf? dilithium crystals are fucked.
assert(0);
}
last = v;
i++;
}
if (i == points)
{
if (colinear)
{
if (errlog_proc)
errlog_proc(errlog_file, "[WRN] all input points are colinear, returning segment list!\n");
first_hull_vert = head;
last->next = 0; // break contour, make it a list
return -points;
}
else
{
if (points > 3)
{
if (errlog_proc)
errlog_proc(errlog_file, "[NFO] all input points are cocircular.\n");
}
else
{
if (errlog_proc)
errlog_proc(errlog_file, "[NFO] trivial case of 3 points, thank you.\n");
first_dela_face = Face::Alloc(&cache);
first_dela_face->next = 0;
first_hull_face = Face::Alloc(&cache);
first_hull_face->next = 0;
first_dela_face->f[0] = first_dela_face->f[1] = first_dela_face->f[2] = first_hull_face;
first_hull_face->f[0] = first_hull_face->f[1] = first_hull_face->f[2] = first_dela_face;
head->sew = tail->sew = last->sew = first_hull_face;
if (f.n.z < 0)
{
first_dela_face->v[0] = head;
first_dela_face->v[1] = tail;
first_dela_face->v[2] = last;
first_hull_face->v[0] = last;
first_hull_face->v[1] = tail;
first_hull_face->v[2] = head;
// reverse silhouette
head->next = last;
last->next = tail;
tail->next = head;
first_hull_vert = last;
}
else
{
first_dela_face->v[0] = last;
first_dela_face->v[1] = tail;
first_dela_face->v[2] = head;
first_hull_face->v[0] = head;
first_hull_face->v[1] = tail;
first_hull_face->v[2] = last;
first_hull_vert = head;
}
first_dela_face->n = first_dela_face->cross();
first_hull_face->n = first_hull_face->cross();
return 3;
}
// retract last point it will be added as a cone's top later
last = head;
head = (Vert*)head->next;
i--;
}
}
/////////////////////////////////////////////////////////////////////////
// CREATE CONE HULL WITH TOP AT cloud[i] AND BASE MADE OF CONTOUR LIST
// in 2 ways :( - depending on at which side of the contour a top vertex appears
Vert* q = vert_alloc + i;
if (f.dot(*q) > 0)
{
Vert* p = last;
Vert* n = (Vert*)p->next;
Face* first_side = Face::Alloc(&cache);
first_side->v[0] = p;
first_side->v[1] = n;
first_side->v[2] = q;
first_side->n = first_side->cross();
hull = first_side;
p = n;
n = (Vert*)n->next;
Face* prev_side = first_side;
Face* prev_base = 0;
Face* first_base = 0;
do
{
Face* base = Face::Alloc(&cache);
base->v[0] = n;
base->v[1] = p;
base->v[2] = last;
base->n = base->cross();
Face* side = Face::Alloc(&cache);
side->v[0] = p;
side->v[1] = n;
side->v[2] = q;
side->n = side->cross();
side->f[2] = base;
base->f[2] = side;
side->f[1] = prev_side;
prev_side->f[0] = side;
base->f[0] = prev_base;
if (prev_base)
prev_base->f[1] = base;
else
first_base = base;
prev_base = base;
prev_side = side;
p = n;
n = (Vert*)n->next;
} while (n != last);
Face* last_side = Face::Alloc(&cache);
last_side->v[0] = p;
last_side->v[1] = n;
last_side->v[2] = q;
last_side->n = last_side->cross();
last_side->f[1] = prev_side;
prev_side->f[0] = last_side;
last_side->f[0] = first_side;
first_side->f[1] = last_side;
first_base->f[0] = first_side;
first_side->f[2] = first_base;
last_side->f[2] = prev_base;
prev_base->f[1] = last_side;
i++;
}
else
{
Vert* p = last;
Vert* n = (Vert*)p->next;
Face* first_side = Face::Alloc(&cache);
first_side->v[0] = n;
first_side->v[1] = p;
first_side->v[2] = q;
first_side->n = first_side->cross();
hull = first_side;
p = n;
n = (Vert*)n->next;
Face* prev_side = first_side;
Face* prev_base = 0;
Face* first_base = 0;
do
{
Face* base = Face::Alloc(&cache);
base->v[0] = p;
base->v[1] = n;
base->v[2] = last;
base->n = base->cross();
Face* side = Face::Alloc(&cache);
side->v[0] = n;
side->v[1] = p;
side->v[2] = q;
side->n = side->cross();
side->f[2] = base;
base->f[2] = side;
side->f[0] = prev_side;
prev_side->f[1] = side;
base->f[1] = prev_base;
if (prev_base)
prev_base->f[0] = base;
else
first_base = base;
prev_base = base;
prev_side = side;
p = n;
n = (Vert*)n->next;
} while (n != last);
Face* last_side = Face::Alloc(&cache);
last_side->v[0] = n;
last_side->v[1] = p;
last_side->v[2] = q;
last_side->n = last_side->cross();
last_side->f[0] = prev_side;
prev_side->f[1] = last_side;
last_side->f[1] = first_side;
first_side->f[0] = last_side;
first_base->f[1] = first_side;
first_side->f[2] = first_base;
last_side->f[2] = prev_base;
prev_base->f[0] = last_side;
i++;
}
/////////////////////////////////////////////////////////////////////////
// ACTUAL ALGORITHM
for (; i < points; i++)
{
//ValidateHull(alloc, 2 * i - 4);
Vert* _q = vert_alloc + i;
Vert* _p = vert_alloc + i - 1;
Face* _f = hull;
// 1. FIND FIRST VISIBLE FACE
// simply iterate around last vertex using last added triangle adjecency info
while (_f->dot(*_q) <= 0)
{
_f = _f->Next(_p);
if (_f == hull)
{
// if no visible face can be located at last vertex,
// let's run through all faces (approximately last to first),
// yes this is emergency fallback and should not ever happen.
_f = face_alloc + 2 * i - 4 - 1;
while (_f->dot(*_q) <= 0)
{
assert(_f != face_alloc); // no face is visible? you must be kidding!
_f--;
}
}
}
// 2. DELETE VISIBLE FACES & ADD NEW ONES
// (we also build silhouette (vertex loop) between visible & invisible faces)
// push first visible face onto stack (of visible faces)
Face* stack = _f;
_f->next = _f; // old trick to use list pointers as 'on-stack' markers
while (stack)
{
// pop, take care of last item ptr (it's not null!)
_f = stack;
stack = (Face*)_f->next;
if (stack == _f)
stack = 0;
_f->next = 0;
// copy parts of old face that we still need after removal
Vert* fv[3] = { (Vert*)_f->v[0],(Vert*)_f->v[1],(Vert*)_f->v[2] };
Face* ff[3] = { (Face*)_f->f[0],(Face*)_f->f[1],(Face*)_f->f[2] };
// delete visible face
_f->Free(&cache);
// check all 3 neighbors
for (int e = 0; e < 3; e++)
{
Face* n = ff[e];
if (n && !n->next) // ensure neighbor is not processed yet & isn't on stack
{
if (n->dot(*_q) <= 0) // if neighbor is not visible we have slihouette edge
{
// build face
// ab: given face adjacency [index][],
// it provides [][2] vertex indices on shared edge (CCW order)
const static int ab[3][2] = { { 1,2 },{ 2,0 },{ 0,1 } };
Vert* a = fv[ab[e][0]];
Vert* b = fv[ab[e][1]];
Face* s = Face::Alloc(&cache);
s->v[0] = a;
s->v[1] = b;
s->v[2] = _q;
s->n = s->cross();
s->f[2] = n;
// change neighbour's adjacency from old visible face to cone side
if (n->f[0] == _f)
n->f[0] = s;
else
if (n->f[1] == _f)
n->f[1] = s;
else
if (n->f[2] == _f)
n->f[2] = s;
else
assert(0);
// build silhouette needed for sewing sides in the second pass
a->sew = s;
a->next = b;
}
else
{
// disjoin visible faces
// so they won't be processed more than once
if (n->f[0] == _f)
n->f[0] = 0;
else
if (n->f[1] == _f)
n->f[1] = 0;
else
if (n->f[2] == _f)
n->f[2] = 0;
else
assert(0);
// push neighbor face, it's visible and requires processing
n->next = stack ? stack : n;
stack = n;
}
}
}
}
// 3. SEW SIDES OF CONE BUILT ON SLIHOUTTE SEGMENTS
hull = face_alloc + 2 * i - 4 + 1; // last added face
// last face must contain part of the silhouette
// (edge between its v[0] and v[1])
Vert* entry = (Vert*)hull->v[0];
Vert* pr = entry;
do
{
// sew pr<->nx
Vert* nx = (Vert*)pr->next;
pr->sew->f[0] = nx->sew;
nx->sew->f[1] = pr->sew;
pr = nx;
} while (pr != entry);
}
assert(2 * i - 4 == hull_faces);
//ValidateHull(alloc, hull_faces);
// needed?
for (i = 0; i < points; i++)
{
vert_alloc[i].next = 0;
vert_alloc[i].sew = 0;
}
i = 0;
Face** prev_dela = &first_dela_face;
Face** prev_hull = &first_hull_face;
for (int j = 0; j < hull_faces; j++)
{
Face* _f = face_alloc + j;
if (_f->n.z < 0)
{
*prev_dela = _f;
prev_dela = (Face**)&_f->next;
i++;
}
else
{
*prev_hull = _f;
prev_hull = (Face**)&_f->next;
if (((Face*)_f->f[0])->n.z < 0)
{
_f->v[1]->next = _f->v[2];
((Vert*)_f->v[1])->sew = _f;
}
if (((Face*)_f->f[1])->n.z < 0)
{
_f->v[2]->next = _f->v[0];
((Vert*)_f->v[2])->sew = _f;
}
if (((Face*)_f->f[2])->n.z < 0)
{
_f->v[0]->next = _f->v[1];
((Vert*)_f->v[0])->sew = _f;
}
}
}
*prev_dela = 0;
*prev_hull = 0;
first_hull_vert = (Vert*)first_hull_face->v[0];
// todo link slihouette verts into contour
// and sew its edges with hull faces
return 3*i;
}
bool ReallocVerts(int points)
{
inp_verts = points;
out_verts = 0;
first_dela_face = 0;
first_hull_face = 0;
first_hull_vert = 0;
if (max_verts < points)
{
if (max_verts)
{
free(vert_alloc);
vert_alloc = 0;
max_verts = 0;
}
vert_alloc = (Vert*)malloc(sizeof(Vert)*points);
if (vert_alloc)
max_verts = points;
else
{
if (errlog_proc)
errlog_proc(errlog_file, "[ERR] Not enough memory, shop for some more RAM. See you!\n");
return false;
}
}
return true;
}
virtual int Triangulate(int points, const float* x, const float* y = 0, int advance_bytes = 0)
{
if (!x)
return 0;
if (!y)
y = x + 1;
if (advance_bytes < static_cast<int>(sizeof(float) * 2))
advance_bytes = static_cast<int>(sizeof(float) * 2);
if (!ReallocVerts(points))
return 0;
for (int i = 0; i < points; i++)
{
Vert* v = vert_alloc + i;
v->i = i;
v->x = (Signed14)*(const float*)((const char*)x + i*advance_bytes);
v->y = (Signed14)*(const float*)((const char*)y + i*advance_bytes);
v->z = s14sqr(v->x) + s14sqr(v->y);
}
out_verts = Triangulate();
return out_verts;
}
virtual int Triangulate(int points, const double* x, const double* y, int advance_bytes)
{
if (!x)
return 0;
if (!y)
y = x + 1;
if (advance_bytes < static_cast<int>(sizeof(double) * 2))
advance_bytes = static_cast<int>(sizeof(double) * 2);
if (!ReallocVerts(points))
return 0;
for (int i = 0; i < points; i++)
{
Vert* v = vert_alloc + i;
v->i = i;
v->x = (Signed14)*(const double*)((const char*)x + i*advance_bytes);
v->y = (Signed14)*(const double*)((const char*)y + i*advance_bytes);
v->z = s14sqr (v->x) + s14sqr (v->y);
}
out_verts = Triangulate();
return out_verts;
}
virtual void Destroy()
{
if (face_alloc)
free(face_alloc);
if (vert_alloc)
free(vert_alloc);
delete this;
}
// num of points passed to last call to Triangulate()
virtual int GetNumInputPoints() const
{
return inp_verts;
}
// num of verts returned from last call to Triangulate()
virtual int GetNumOutputVerts() const
{
return out_verts;
}
virtual const DelaBella_Triangle* GetFirstDelaunayTriangle() const
{
return first_dela_face;
}
virtual const DelaBella_Triangle* GetFirstHullTriangle() const
{
return first_hull_face;
}
virtual const DelaBella_Vertex* GetFirstHullVertex() const
{
return first_hull_vert;
}
virtual void SetErrLog(int(*proc)(void* stream, const char* fmt, ...), void* stream)
{
errlog_proc = proc;
errlog_file = stream;
}
};
IDelaBella* IDelaBella::Create()
{
CDelaBella* db = new CDelaBella;
if (!db)
return 0;
db->vert_alloc = 0;
db->face_alloc = 0;
db->max_verts = 0;
db->max_faces = 0;
db->first_dela_face = 0;
db->first_hull_face = 0;
db->first_hull_vert = 0;
db->inp_verts = 0;
db->out_verts = 0;
db->errlog_proc = 0;
db->errlog_file = 0;
return db;
}
void* DelaBella_Create()
{
return IDelaBella::Create();
}
void DelaBella_Destroy(void* db)
{
((IDelaBella*)db)->Destroy();
}
void DelaBella_SetErrLog(void* db, int(*proc)(void* stream, const char* fmt, ...), void* stream)
{
((IDelaBella*)db)->SetErrLog(proc, stream);
}
int DelaBella_TriangulateFloat(void* db, int points, float* x, float* y, int advance_bytes)
{
return ((IDelaBella*)db)->Triangulate(points, x, y, advance_bytes);
}
int DelaBella_TriangulateDouble(void* db, int points, double* x, double* y, int advance_bytes)
{
return ((IDelaBella*)db)->Triangulate(points, x, y, advance_bytes);
}
int DelaBella_GetNumInputPoints(void* db)
{
return ((IDelaBella*)db)->GetNumInputPoints();
}
int DelaBella_GetNumOutputVerts(void* db)
{
return ((IDelaBella*)db)->GetNumOutputVerts();
}
const DelaBella_Triangle* GetFirstDelaunayTriangle(void* db)
{
return ((IDelaBella*)db)->GetFirstDelaunayTriangle();
}
const DelaBella_Triangle* GetFirstHullTriangle(void* db)
{
return ((IDelaBella*)db)->GetFirstHullTriangle();
}
const DelaBella_Vertex* GetFirstHullVertex(void* db)
{
return ((IDelaBella*)db)->GetFirstHullVertex();
}
// depreciated!
int DelaBella(int points, const double* xy, int* abc, int(*errlog)(const char* fmt, ...))
{
if (errlog)
errlog("[WRN] Depreciated interface! errlog disabled.\n");
if (!xy || points <= 0)
return 0;
IDelaBella* db = IDelaBella::Create();
int verts = db->Triangulate(points, xy, 0, 0);
if (!abc)
return verts;
if (verts > 0)
{
int tris = verts / 3;
const DelaBella_Triangle* dela = db->GetFirstDelaunayTriangle();
for (int i = 0; i < tris; i++)
{
for (int j=0; j<3; j++)
abc[3 * i + j] = dela->v[j]->i;
dela = dela->next;
}
}
else
{
int pnts = -verts;
const DelaBella_Vertex* line = db->GetFirstHullVertex();
for (int i = 0; i < pnts; i++)
{
abc[i] = line->i;
line = line->next;
}
}
return verts;
}