mirror of
https://git.dev.opencascade.org/repos/occt.git
synced 2025-09-03 14:10:33 +03:00
140 lines
3.7 KiB
C++
140 lines
3.7 KiB
C++
// Created by: CKY / Contract Toubro-Larsen
|
|
// Copyright (c) 1993-1999 Matra Datavision
|
|
// Copyright (c) 1999-2014 OPEN CASCADE SAS
|
|
//
|
|
// This file is part of Open CASCADE Technology software library.
|
|
//
|
|
// This library is free software; you can redistribute it and/or modify it under
|
|
// the terms of the GNU Lesser General Public License version 2.1 as published
|
|
// by the Free Software Foundation, with special exception defined in the file
|
|
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
|
|
// distribution for complete text of the license and disclaimer of any warranty.
|
|
//
|
|
// Alternatively, this file may be used under the terms of Open CASCADE
|
|
// commercial license or contractual agreement.
|
|
|
|
//--------------------------------------------------------------------
|
|
//--------------------------------------------------------------------
|
|
|
|
#include <gp_Dir.hxx>
|
|
#include <gp_Dir2d.hxx>
|
|
#include <gp_GTrsf.hxx>
|
|
#include <gp_Pnt.hxx>
|
|
#include <gp_Pnt2d.hxx>
|
|
#include <gp_XY.hxx>
|
|
#include <IGESGeom_CircularArc.hxx>
|
|
#include <Standard_Type.hxx>
|
|
|
|
IMPLEMENT_STANDARD_RTTIEXT(IGESGeom_CircularArc,IGESData_IGESEntity)
|
|
|
|
IGESGeom_CircularArc::IGESGeom_CircularArc () { }
|
|
|
|
void IGESGeom_CircularArc::Init
|
|
(const Standard_Real aZT, const gp_XY& aCenter,
|
|
const gp_XY& aStart, const gp_XY& anEnd)
|
|
{
|
|
theZT = aZT;
|
|
theCenter = aCenter;
|
|
theStart = aStart;
|
|
theEnd = anEnd;
|
|
InitTypeAndForm(100,0);
|
|
}
|
|
|
|
|
|
gp_Pnt2d IGESGeom_CircularArc::Center () const
|
|
{
|
|
gp_Pnt2d Center(theCenter);
|
|
return Center;
|
|
}
|
|
|
|
gp_Pnt IGESGeom_CircularArc::TransformedCenter () const
|
|
{
|
|
gp_XYZ Center(theCenter.X(), theCenter.Y(), theZT);
|
|
if (HasTransf()) Location().Transforms(Center);
|
|
gp_Pnt transCenter(Center);
|
|
return transCenter;
|
|
}
|
|
|
|
gp_Pnt2d IGESGeom_CircularArc::StartPoint () const
|
|
{
|
|
gp_Pnt2d Start(theStart);
|
|
return Start;
|
|
}
|
|
|
|
gp_Pnt IGESGeom_CircularArc::TransformedStartPoint () const
|
|
{
|
|
gp_XYZ Start(theStart.X(), theStart.Y(), theZT);
|
|
if (HasTransf()) Location().Transforms(Start);
|
|
gp_Pnt transStart(Start);
|
|
return transStart;
|
|
}
|
|
|
|
Standard_Real IGESGeom_CircularArc::ZPlane () const
|
|
{
|
|
return theZT;
|
|
}
|
|
|
|
gp_Pnt2d IGESGeom_CircularArc::EndPoint () const
|
|
{
|
|
gp_Pnt2d End(theEnd);
|
|
return End;
|
|
}
|
|
|
|
gp_Pnt IGESGeom_CircularArc::TransformedEndPoint () const
|
|
{
|
|
gp_XYZ End(theEnd.X(), theEnd.Y(), theZT);
|
|
if (HasTransf()) Location().Transforms(End);
|
|
gp_Pnt transEnd(End);
|
|
return transEnd;
|
|
}
|
|
|
|
Standard_Real IGESGeom_CircularArc::Radius () const
|
|
{
|
|
Standard_Real x1, y1, x2, y2;
|
|
x1 = theStart.X();
|
|
y1 = theStart.Y();
|
|
x2 = theCenter.X();
|
|
y2 = theCenter.Y();
|
|
|
|
Standard_Real radius = Sqrt(Square(x2 - x1) + Square(y2 - y1));
|
|
return radius;
|
|
}
|
|
|
|
Standard_Real IGESGeom_CircularArc::Angle () const
|
|
{
|
|
Standard_Real x1, y1, x2, y2, xc, yc;
|
|
xc = theCenter.X();
|
|
yc = theCenter.Y();
|
|
x1 = theStart.X();
|
|
y1 = theStart.Y();
|
|
x2 = theEnd.X();
|
|
y2 = theEnd.Y();
|
|
gp_Dir2d dir1(x1-xc, y1-yc); // After shifting the centre of
|
|
// arc to the origin
|
|
gp_Dir2d dir2(x2-xc, y2-yc); // After shifting the centre of
|
|
// arc to the origin
|
|
Standard_Real t = dir1.Angle(dir2);
|
|
return t + (t > 0 ? 0 : 2*M_PI);
|
|
}
|
|
|
|
gp_Dir IGESGeom_CircularArc::Axis () const
|
|
{
|
|
gp_Dir axis(0.0 , 0.0, 1.0);
|
|
return axis;
|
|
}
|
|
|
|
gp_Dir IGESGeom_CircularArc::TransformedAxis () const
|
|
{
|
|
gp_XYZ axis(0.0 , 0.0, 1.0);
|
|
if (!HasTransf()) return gp_Dir(axis);
|
|
gp_GTrsf loc = Location();
|
|
loc.SetTranslationPart (gp_XYZ(0.,0.,0.));
|
|
loc.Transforms(axis);
|
|
return gp_Dir(axis);
|
|
}
|
|
|
|
Standard_Boolean IGESGeom_CircularArc::IsClosed () const
|
|
{
|
|
return (Abs (theStart.X() - theEnd.X()) < Precision::PConfusion() && Abs (theStart.Y() - theEnd.Y()) < Precision::PConfusion());
|
|
}
|