mirror of
https://git.dev.opencascade.org/repos/occt.git
synced 2025-08-09 13:22:24 +03:00
Added macro Standard_NODISCARD equivalent to C++17 attribute [[nodiscard]] for compilers that support this. Using Standard_NODISCARD macro for methods that create new object in gp, math, Geom, Bnd packages. Marked equivalent operators with Standard_NODISCARD, if they are defined close to relevant methods. Corrected code where warnings on unused result of calls to methods creating new objects are generated. In most cases it looks like spelling errors (e.g. Normalised() instead of Normalise())
355 lines
12 KiB
C++
355 lines
12 KiB
C++
// Copyright (c) 1991-1999 Matra Datavision
|
|
// Copyright (c) 1999-2014 OPEN CASCADE SAS
|
|
//
|
|
// This file is part of Open CASCADE Technology software library.
|
|
//
|
|
// This library is free software; you can redistribute it and/or modify it under
|
|
// the terms of the GNU Lesser General Public License version 2.1 as published
|
|
// by the Free Software Foundation, with special exception defined in the file
|
|
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
|
|
// distribution for complete text of the license and disclaimer of any warranty.
|
|
//
|
|
// Alternatively, this file may be used under the terms of Open CASCADE
|
|
// commercial license or contractual agreement.
|
|
|
|
#ifndef _gp_Hypr2d_HeaderFile
|
|
#define _gp_Hypr2d_HeaderFile
|
|
|
|
#include <Standard.hxx>
|
|
#include <Standard_DefineAlloc.hxx>
|
|
#include <Standard_Handle.hxx>
|
|
|
|
#include <gp_Ax22d.hxx>
|
|
#include <Standard_Real.hxx>
|
|
#include <Standard_Boolean.hxx>
|
|
#include <gp_Ax2d.hxx>
|
|
#include <gp_Pnt2d.hxx>
|
|
class Standard_ConstructionError;
|
|
class Standard_DomainError;
|
|
class gp_Ax2d;
|
|
class gp_Ax22d;
|
|
class gp_Pnt2d;
|
|
class gp_Trsf2d;
|
|
class gp_Vec2d;
|
|
|
|
|
|
|
|
//! Describes a branch of a hyperbola in the plane (2D space).
|
|
//! A hyperbola is defined by its major and minor radii, and
|
|
//! positioned in the plane with a coordinate system (a
|
|
//! gp_Ax22d object) of which:
|
|
//! - the origin is the center of the hyperbola,
|
|
//! - the "X Direction" defines the major axis of the hyperbola, and
|
|
//! - the "Y Direction" defines the minor axis of the hyperbola.
|
|
//! This coordinate system is the "local coordinate system"
|
|
//! of the hyperbola. The orientation of this coordinate
|
|
//! system (direct or indirect) gives an implicit orientation to
|
|
//! the hyperbola. In this coordinate system, the equation of
|
|
//! the hyperbola is:
|
|
//! X*X/(MajorRadius**2)-Y*Y/(MinorRadius**2) = 1.0
|
|
//! The branch of the hyperbola described is the one located
|
|
//! on the positive side of the major axis.
|
|
//! The following schema shows the plane of the hyperbola,
|
|
//! and in it, the respective positions of the three branches of
|
|
//! hyperbolas constructed with the functions OtherBranch,
|
|
//! ConjugateBranch1, and ConjugateBranch2:
|
|
//! ^YAxis
|
|
//! |
|
|
//! FirstConjugateBranch
|
|
//! |
|
|
//! Other | Main
|
|
//! --------------------- C ------------------------------>XAxis
|
|
//! Branch | Branch
|
|
//! |
|
|
//! |
|
|
//! SecondConjugateBranch
|
|
//! |
|
|
//!
|
|
//! Warning
|
|
//! The major radius can be less than the minor radius.
|
|
//! See Also
|
|
//! gce_MakeHypr2d which provides functions for more
|
|
//! complex hyperbola constructions
|
|
//! Geom2d_Hyperbola which provides additional functions
|
|
//! for constructing hyperbolas and works, in particular, with
|
|
//! the parametric equations of hyperbolas
|
|
class gp_Hypr2d
|
|
{
|
|
public:
|
|
|
|
DEFINE_STANDARD_ALLOC
|
|
|
|
|
|
//! Creates of an indefinite hyperbola.
|
|
gp_Hypr2d();
|
|
|
|
|
|
//! Creates a hyperbola with radii MajorRadius and
|
|
//! MinorRadius, centered on the origin of MajorAxis
|
|
//! and where the unit vector of MajorAxis is the "X
|
|
//! Direction" of the local coordinate system of the
|
|
//! hyperbola. This coordinate system is direct if Sense
|
|
//! is true (the default value), and indirect if Sense is false.
|
|
//! Warnings :
|
|
//! It is yet possible to create an Hyperbola with
|
|
//! MajorRadius <= MinorRadius.
|
|
//! Raises ConstructionError if MajorRadius < 0.0 or MinorRadius < 0.0
|
|
gp_Hypr2d(const gp_Ax2d& MajorAxis, const Standard_Real MajorRadius, const Standard_Real MinorRadius, const Standard_Boolean Sense = Standard_True);
|
|
|
|
|
|
//! a hyperbola with radii MajorRadius and
|
|
//! MinorRadius, positioned in the plane by coordinate system A where:
|
|
//! - the origin of A is the center of the hyperbola,
|
|
//! - the "X Direction" of A defines the major axis of
|
|
//! the hyperbola, that is, the major radius
|
|
//! MajorRadius is measured along this axis, and
|
|
//! - the "Y Direction" of A defines the minor axis of
|
|
//! the hyperbola, that is, the minor radius
|
|
//! MinorRadius is measured along this axis, and
|
|
//! - the orientation (direct or indirect sense) of A
|
|
//! gives the implicit orientation of the hyperbola.
|
|
//! Warnings :
|
|
//! It is yet possible to create an Hyperbola with
|
|
//! MajorRadius <= MinorRadius.
|
|
//! Raises ConstructionError if MajorRadius < 0.0 or MinorRadius < 0.0
|
|
gp_Hypr2d(const gp_Ax22d& A, const Standard_Real MajorRadius, const Standard_Real MinorRadius);
|
|
|
|
//! Modifies this hyperbola, by redefining its local
|
|
//! coordinate system so that its origin becomes P.
|
|
void SetLocation (const gp_Pnt2d& P);
|
|
|
|
//! Modifies the major or minor radius of this hyperbola.
|
|
//! Exceptions
|
|
//! Standard_ConstructionError if MajorRadius or
|
|
//! MinorRadius is negative.
|
|
void SetMajorRadius (const Standard_Real MajorRadius);
|
|
|
|
//! Modifies the major or minor radius of this hyperbola.
|
|
//! Exceptions
|
|
//! Standard_ConstructionError if MajorRadius or
|
|
//! MinorRadius is negative.
|
|
void SetMinorRadius (const Standard_Real MinorRadius);
|
|
|
|
//! Modifies this hyperbola, by redefining its local
|
|
//! coordinate system so that it becomes A.
|
|
void SetAxis (const gp_Ax22d& A);
|
|
|
|
|
|
//! Changes the major axis of the hyperbola. The minor axis is
|
|
//! recomputed and the location of the hyperbola too.
|
|
void SetXAxis (const gp_Ax2d& A);
|
|
|
|
|
|
//! Changes the minor axis of the hyperbola.The minor axis is
|
|
//! recomputed and the location of the hyperbola too.
|
|
void SetYAxis (const gp_Ax2d& A);
|
|
|
|
|
|
//! In the local coordinate system of the hyperbola the equation of
|
|
//! the hyperbola is (X*X)/(A*A) - (Y*Y)/(B*B) = 1.0 and the
|
|
//! equation of the first asymptote is Y = (B/A)*X
|
|
//! where A is the major radius of the hyperbola and B the minor
|
|
//! radius of the hyperbola.
|
|
//! Raises ConstructionError if MajorRadius = 0.0
|
|
gp_Ax2d Asymptote1() const;
|
|
|
|
|
|
//! In the local coordinate system of the hyperbola the equation of
|
|
//! the hyperbola is (X*X)/(A*A) - (Y*Y)/(B*B) = 1.0 and the
|
|
//! equation of the first asymptote is Y = -(B/A)*X
|
|
//! where A is the major radius of the hyperbola and B the minor
|
|
//! radius of the hyperbola.
|
|
//! Raises ConstructionError if MajorRadius = 0.0
|
|
gp_Ax2d Asymptote2() const;
|
|
|
|
|
|
//! Computes the coefficients of the implicit equation of
|
|
//! the hyperbola :
|
|
//! A * (X**2) + B * (Y**2) + 2*C*(X*Y) + 2*D*X + 2*E*Y + F = 0.
|
|
Standard_EXPORT void Coefficients (Standard_Real& A, Standard_Real& B, Standard_Real& C, Standard_Real& D, Standard_Real& E, Standard_Real& F) const;
|
|
|
|
|
|
//! Computes the branch of hyperbola which is on the positive side of the
|
|
//! "YAxis" of <me>.
|
|
gp_Hypr2d ConjugateBranch1() const;
|
|
|
|
|
|
//! Computes the branch of hyperbola which is on the negative side of the
|
|
//! "YAxis" of <me>.
|
|
gp_Hypr2d ConjugateBranch2() const;
|
|
|
|
|
|
//! Computes the directrix which is the line normal to the XAxis of the hyperbola
|
|
//! in the local plane (Z = 0) at a distance d = MajorRadius / e
|
|
//! from the center of the hyperbola, where e is the eccentricity of
|
|
//! the hyperbola.
|
|
//! This line is parallel to the "YAxis". The intersection point
|
|
//! between the "Directrix1" and the "XAxis" is the "Location" point
|
|
//! of the "Directrix1".
|
|
//! This point is on the positive side of the "XAxis".
|
|
gp_Ax2d Directrix1() const;
|
|
|
|
|
|
//! This line is obtained by the symmetrical transformation
|
|
//! of "Directrix1" with respect to the "YAxis" of the hyperbola.
|
|
gp_Ax2d Directrix2() const;
|
|
|
|
|
|
//! Returns the excentricity of the hyperbola (e > 1).
|
|
//! If f is the distance between the location of the hyperbola
|
|
//! and the Focus1 then the eccentricity e = f / MajorRadius. Raises DomainError if MajorRadius = 0.0.
|
|
Standard_Real Eccentricity() const;
|
|
|
|
|
|
//! Computes the focal distance. It is the distance between the
|
|
//! "Location" of the hyperbola and "Focus1" or "Focus2".
|
|
Standard_Real Focal() const;
|
|
|
|
|
|
//! Returns the first focus of the hyperbola. This focus is on the
|
|
//! positive side of the "XAxis" of the hyperbola.
|
|
gp_Pnt2d Focus1() const;
|
|
|
|
|
|
//! Returns the second focus of the hyperbola. This focus is on the
|
|
//! negative side of the "XAxis" of the hyperbola.
|
|
gp_Pnt2d Focus2() const;
|
|
|
|
|
|
//! Returns the location point of the hyperbola.
|
|
//! It is the intersection point between the "XAxis" and
|
|
//! the "YAxis".
|
|
const gp_Pnt2d& Location() const;
|
|
|
|
|
|
//! Returns the major radius of the hyperbola (it is the radius
|
|
//! corresponding to the "XAxis" of the hyperbola).
|
|
Standard_Real MajorRadius() const;
|
|
|
|
|
|
//! Returns the minor radius of the hyperbola (it is the radius
|
|
//! corresponding to the "YAxis" of the hyperbola).
|
|
Standard_Real MinorRadius() const;
|
|
|
|
|
|
//! Returns the branch of hyperbola obtained by doing the
|
|
//! symmetrical transformation of <me> with respect to the
|
|
//! "YAxis" of <me>.
|
|
gp_Hypr2d OtherBranch() const;
|
|
|
|
|
|
//! Returns p = (e * e - 1) * MajorRadius where e is the
|
|
//! eccentricity of the hyperbola.
|
|
//! Raises DomainError if MajorRadius = 0.0
|
|
Standard_Real Parameter() const;
|
|
|
|
//! Returns the axisplacement of the hyperbola.
|
|
const gp_Ax22d& Axis() const;
|
|
|
|
//! Computes an axis whose
|
|
//! - the origin is the center of this hyperbola, and
|
|
//! - the unit vector is the "X Direction" or "Y Direction"
|
|
//! respectively of the local coordinate system of this hyperbola
|
|
//! Returns the major axis of the hyperbola.
|
|
gp_Ax2d XAxis() const;
|
|
|
|
//! Computes an axis whose
|
|
//! - the origin is the center of this hyperbola, and
|
|
//! - the unit vector is the "X Direction" or "Y Direction"
|
|
//! respectively of the local coordinate system of this hyperbola
|
|
//! Returns the minor axis of the hyperbola.
|
|
gp_Ax2d YAxis() const;
|
|
|
|
void Reverse();
|
|
|
|
//! Reverses the orientation of the local coordinate system
|
|
//! of this hyperbola (the "Y Axis" is reversed). Therefore,
|
|
//! the implicit orientation of this hyperbola is reversed.
|
|
//! Note:
|
|
//! - Reverse assigns the result to this hyperbola, while
|
|
//! - Reversed creates a new one.
|
|
Standard_NODISCARD gp_Hypr2d Reversed() const;
|
|
|
|
//! Returns true if the local coordinate system is direct
|
|
//! and false in the other case.
|
|
Standard_Boolean IsDirect() const;
|
|
|
|
Standard_EXPORT void Mirror (const gp_Pnt2d& P);
|
|
|
|
|
|
//! Performs the symmetrical transformation of an hyperbola with
|
|
//! respect to the point P which is the center of the symmetry.
|
|
Standard_EXPORT Standard_NODISCARD gp_Hypr2d Mirrored (const gp_Pnt2d& P) const;
|
|
|
|
Standard_EXPORT void Mirror (const gp_Ax2d& A);
|
|
|
|
|
|
//! Performs the symmetrical transformation of an hyperbola with
|
|
//! respect to an axis placement which is the axis of the symmetry.
|
|
Standard_EXPORT Standard_NODISCARD gp_Hypr2d Mirrored (const gp_Ax2d& A) const;
|
|
|
|
void Rotate (const gp_Pnt2d& P, const Standard_Real Ang);
|
|
|
|
|
|
//! Rotates an hyperbola. P is the center of the rotation.
|
|
//! Ang is the angular value of the rotation in radians.
|
|
Standard_NODISCARD gp_Hypr2d Rotated (const gp_Pnt2d& P, const Standard_Real Ang) const;
|
|
|
|
void Scale (const gp_Pnt2d& P, const Standard_Real S);
|
|
|
|
|
|
//! Scales an hyperbola. <S> is the scaling value.
|
|
//! If <S> is positive only the location point is
|
|
//! modified. But if <S> is negative the "XAxis" is
|
|
//! reversed and the "YAxis" too.
|
|
Standard_NODISCARD gp_Hypr2d Scaled (const gp_Pnt2d& P, const Standard_Real S) const;
|
|
|
|
void Transform (const gp_Trsf2d& T);
|
|
|
|
|
|
//! Transforms an hyperbola with the transformation T from
|
|
//! class Trsf2d.
|
|
Standard_NODISCARD gp_Hypr2d Transformed (const gp_Trsf2d& T) const;
|
|
|
|
void Translate (const gp_Vec2d& V);
|
|
|
|
|
|
//! Translates an hyperbola in the direction of the vector V.
|
|
//! The magnitude of the translation is the vector's magnitude.
|
|
Standard_NODISCARD gp_Hypr2d Translated (const gp_Vec2d& V) const;
|
|
|
|
void Translate (const gp_Pnt2d& P1, const gp_Pnt2d& P2);
|
|
|
|
|
|
//! Translates an hyperbola from the point P1 to the point P2.
|
|
Standard_NODISCARD gp_Hypr2d Translated (const gp_Pnt2d& P1, const gp_Pnt2d& P2) const;
|
|
|
|
|
|
|
|
|
|
protected:
|
|
|
|
|
|
|
|
|
|
|
|
private:
|
|
|
|
|
|
|
|
gp_Ax22d pos;
|
|
Standard_Real majorRadius;
|
|
Standard_Real minorRadius;
|
|
|
|
|
|
};
|
|
|
|
|
|
#include <gp_Hypr2d.lxx>
|
|
|
|
|
|
|
|
|
|
|
|
#endif // _gp_Hypr2d_HeaderFile
|