1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-04-07 18:30:55 +03:00
occt/src/Geom2dGcc/Geom2dGcc_Circ2d3Tan.hxx
abv 42cf5bc1ca 0024002: Overall code and build procedure refactoring -- automatic
Automatic upgrade of OCCT code by command "occt_upgrade . -nocdl":
- WOK-generated header files from inc and sources from drv are moved to src
- CDL files removed
- All packages are converted to nocdlpack
2015-07-12 07:42:38 +03:00

228 lines
10 KiB
C++

// Created on: 1992-10-20
// Created by: Remi GILET
// Copyright (c) 1992-1999 Matra Datavision
// Copyright (c) 1999-2014 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
#ifndef _Geom2dGcc_Circ2d3Tan_HeaderFile
#define _Geom2dGcc_Circ2d3Tan_HeaderFile
#include <Standard.hxx>
#include <Standard_DefineAlloc.hxx>
#include <Standard_Handle.hxx>
#include <TColgp_Array1OfCirc2d.hxx>
#include <Standard_Real.hxx>
#include <Standard_Boolean.hxx>
#include <GccEnt_Array1OfPosition.hxx>
#include <TColStd_Array1OfInteger.hxx>
#include <TColgp_Array1OfPnt2d.hxx>
#include <TColStd_Array1OfReal.hxx>
#include <Standard_Integer.hxx>
#include <GccEnt_Position.hxx>
class StdFail_NotDone;
class Standard_OutOfRange;
class Geom2dGcc_QualifiedCurve;
class Geom2d_Point;
class GccAna_Circ2d3Tan;
class gp_Circ2d;
class gp_Pnt2d;
//! This class implements the algorithms used to
//! create 2d circles tangent to 3 points/lines/circles/
//! curves with one curve or more.
//! The arguments of all construction methods are :
//! - The three qualifiied elements for the
//! tangency constrains (QualifiedCirc, QualifiedLine,
//! Qualifiedcurv, Points).
//! - A parameter for each QualifiedCurv.
//! Describes functions for building a 2D circle:
//! - tangential to 3 curves, or
//! - tangential to 2 curves and passing through a point, or
//! - tangential to a curve and passing through 2 points, or
//! - passing through 3 points.
//! A Circ2d3Tan object provides a framework for:
//! - defining the construction of 2D circles(s),
//! - implementing the construction algorithm, and
//! - consulting the result(s).
class Geom2dGcc_Circ2d3Tan
{
public:
DEFINE_STANDARD_ALLOC
//! Constructs one or more 2D circles
//! tangential to three curves Qualified1, Qualified2 and
//! Qualified3, where Param1, Param2 and Param3 are
//! used, respectively, as the initial values of the
//! parameters on Qualified1, Qualified2 and Qualified3
//! of the tangency point between these arguments and
//! the solution sought, if the algorithm chooses an
//! iterative method to find the solution (i.e. if either
//! Qualified1, Qualified2 or Qualified3 is more complex
//! than a line or a circle).
Standard_EXPORT Geom2dGcc_Circ2d3Tan(const Geom2dGcc_QualifiedCurve& Qualified1, const Geom2dGcc_QualifiedCurve& Qualified2, const Geom2dGcc_QualifiedCurve& Qualified3, const Standard_Real Tolerance, const Standard_Real Param1, const Standard_Real Param2, const Standard_Real Param3);
//! Constructs one or more 2D circles
//! tangential to two curves Qualified1 and Qualified2
//! and passing through the point Point, where Param1
//! and Param2 are used, respectively, as the initial
//! values of the parameters on Qualified1 and
//! Qualified2 of the tangency point between this
//! argument and the solution sought, if the algorithm
//! chooses an iterative method to find the solution (i.e. if
//! either Qualified1 or Qualified2 is more complex than
//! a line or a circle).
Standard_EXPORT Geom2dGcc_Circ2d3Tan(const Geom2dGcc_QualifiedCurve& Qualified1, const Geom2dGcc_QualifiedCurve& Qualified2, const Handle(Geom2d_Point)& Point, const Standard_Real Tolerance, const Standard_Real Param1, const Standard_Real Param2);
//! Constructs one or more 2D circles tangential to the curve Qualified1 and passing
//! through two points Point1 and Point2, where Param1
//! is used as the initial value of the parameter on
//! Qualified1 of the tangency point between this
//! argument and the solution sought, if the algorithm
//! chooses an iterative method to find the solution (i.e. if
//! Qualified1 is more complex than a line or a circle)
Standard_EXPORT Geom2dGcc_Circ2d3Tan(const Geom2dGcc_QualifiedCurve& Qualified1, const Handle(Geom2d_Point)& Point1, const Handle(Geom2d_Point)& Point2, const Standard_Real Tolerance, const Standard_Real Param1);
//! Constructs one or more 2D circles passing through three points Point1, Point2 and Point3.
//! Tolerance is a tolerance criterion used by the algorithm
//! to find a solution when, mathematically, the problem
//! posed does not have a solution, but where there is
//! numeric uncertainty attached to the arguments.
//! For example, take:
//! - two circles C1 and C2, such that C2 is inside C1,
//! and almost tangential to C1; there is in fact no point
//! of intersection between C1 and C2; and
//! - a circle C3 outside C1.
//! You now want to find a circle which is tangential to C1,
//! C2 and C3: a pure mathematical resolution will not find
//! a solution. This is where the tolerance criterion is used:
//! the algorithm considers that C1 and C2 are tangential if
//! the shortest distance between these two circles is less
//! than or equal to Tolerance. Thus, the algorithm finds a solution.
//! Warning
//! An iterative algorithm is used if Qualified1, Qualified2 or
//! Qualified3 is more complex than a line or a circle. In
//! such cases, the algorithm constructs only one solution.
//! Exceptions
//! GccEnt_BadQualifier if a qualifier is inconsistent with
//! the argument it qualifies (for example, enclosing for a line).
Standard_EXPORT Geom2dGcc_Circ2d3Tan(const Handle(Geom2d_Point)& Point1, const Handle(Geom2d_Point)& Point2, const Handle(Geom2d_Point)& Point3, const Standard_Real Tolerance);
Standard_EXPORT void Results (const GccAna_Circ2d3Tan& Circ, const Standard_Integer Rank1, const Standard_Integer Rank2, const Standard_Integer Rank3);
//! Returns true if the construction algorithm does not fail (even if it finds no solution).
//! Note: IsDone protects against a failure arising from a
//! more internal intersection algorithm, which has reached its numeric limits.
Standard_EXPORT Standard_Boolean IsDone() const;
//! This method returns the number of solutions.
//! NotDone is raised if the algorithm failed.
Standard_EXPORT Standard_Integer NbSolutions() const;
//! Returns the solution number Index and raises OutOfRange
//! exception if Index is greater than the number of solutions.
//! Be carefull: the Index is only a way to get all the
//! solutions, but is not associated to theses outside the context
//! of the algorithm-object.
Standard_EXPORT gp_Circ2d ThisSolution (const Standard_Integer Index) const;
//! It returns the informations about the qualifiers of the tangency
//! arguments concerning the solution number Index.
//! It returns the real qualifiers (the qualifiers given to the
//! constructor method in case of enclosed, enclosing and outside
//! and the qualifiers computedin case of unqualified).
Standard_EXPORT void WhichQualifier (const Standard_Integer Index, GccEnt_Position& Qualif1, GccEnt_Position& Qualif2, GccEnt_Position& Qualif3) const;
//! Returns informations about the tangency point between the
//! result and the first argument.
//! ParSol is the intrinsic parameter of the point PntSol on the solution curv.
//! ParArg is the intrinsic parameter of the point PntSol on the argument curv.
Standard_EXPORT void Tangency1 (const Standard_Integer Index, Standard_Real& ParSol, Standard_Real& ParArg, gp_Pnt2d& PntSol) const;
//! Returns informations about the tangency point between the
//! result and the second argument.
//! ParSol is the intrinsic parameter of the point PntSol on the solution curv.
//! ParArg is the intrinsic parameter of the point PntSol on the argument curv.
Standard_EXPORT void Tangency2 (const Standard_Integer Index, Standard_Real& ParSol, Standard_Real& ParArg, gp_Pnt2d& PntSol) const;
//! Returns informations about the tangency point between the
//! result and the third argument.
//! ParSol is the intrinsic parameter of the point PntSol on the solution curv.
//! ParArg is the intrinsic parameter of the point PntSol on the argument curv.
Standard_EXPORT void Tangency3 (const Standard_Integer Index, Standard_Real& ParSol, Standard_Real& ParArg, gp_Pnt2d& PntSol) const;
//! Returns True if the solution is equal to the first argument.
Standard_EXPORT Standard_Boolean IsTheSame1 (const Standard_Integer Index) const;
//! Returns True if the solution is equal to the second argument.
Standard_EXPORT Standard_Boolean IsTheSame2 (const Standard_Integer Index) const;
//! Returns True if the solution is equal to the third argument.
//! If Rarg is the radius of the first, second or third
//! argument, Rsol is the radius of the solution and dist
//! is the distance between the two centers, we consider
//! the two circles to be identical if |Rarg - Rsol| and
//! dist are less than or equal to the tolerance criterion
//! given at the time of construction of this algorithm.
//! Exceptions
//! Standard_OutOfRange if Index is less than zero or
//! greater than the number of solutions computed by this algorithm.
//! StdFail_NotDone if the construction fails.
Standard_EXPORT Standard_Boolean IsTheSame3 (const Standard_Integer Index) const;
protected:
private:
TColgp_Array1OfCirc2d cirsol;
Standard_Real NbrSol;
Standard_Boolean WellDone;
GccEnt_Array1OfPosition qualifier1;
GccEnt_Array1OfPosition qualifier2;
GccEnt_Array1OfPosition qualifier3;
TColStd_Array1OfInteger TheSame1;
TColStd_Array1OfInteger TheSame2;
TColStd_Array1OfInteger TheSame3;
TColgp_Array1OfPnt2d pnttg1sol;
TColgp_Array1OfPnt2d pnttg2sol;
TColgp_Array1OfPnt2d pnttg3sol;
TColStd_Array1OfReal par1sol;
TColStd_Array1OfReal par2sol;
TColStd_Array1OfReal par3sol;
TColStd_Array1OfReal pararg1;
TColStd_Array1OfReal pararg2;
TColStd_Array1OfReal pararg3;
};
#endif // _Geom2dGcc_Circ2d3Tan_HeaderFile