1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-04-10 18:51:21 +03:00
occt/src/OpenGl/OpenGl_View_Raytrace.cxx
mzernova 832a6f4412 0031279: Visualization, TKOpenGl - environment background is misplaced within Ray-Tracing
Fixed problem with misplacing background texture in Ray-Tracing.

An environment background is always drawn using a perspective matrix.
2020-06-26 15:07:40 +03:00

3201 lines
129 KiB
C++

// Created on: 2015-02-20
// Created by: Denis BOGOLEPOV
// Copyright (c) 2015 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
#include <OpenGl_View.hxx>
#include <Graphic3d_TextureParams.hxx>
#include <OpenGl_PrimitiveArray.hxx>
#include <OpenGl_VertexBuffer.hxx>
#include <OpenGl_GlCore44.hxx>
#include <OSD_Protection.hxx>
#include <OSD_File.hxx>
#include "../Shaders/Shaders_RaytraceBase_vs.pxx"
#include "../Shaders/Shaders_RaytraceBase_fs.pxx"
#include "../Shaders/Shaders_PathtraceBase_fs.pxx"
#include "../Shaders/Shaders_RaytraceRender_fs.pxx"
#include "../Shaders/Shaders_RaytraceSmooth_fs.pxx"
#include "../Shaders/Shaders_Display_fs.pxx"
#include "../Shaders/Shaders_TangentSpaceNormal_glsl.pxx"
//! Use this macro to output ray-tracing debug info
// #define RAY_TRACE_PRINT_INFO
#ifdef RAY_TRACE_PRINT_INFO
#include <OSD_Timer.hxx>
#endif
namespace
{
static const OpenGl_Vec4 THE_WHITE_COLOR (1.0f, 1.0f, 1.0f, 1.0f);
static const OpenGl_Vec4 THE_BLACK_COLOR (0.0f, 0.0f, 0.0f, 1.0f);
}
namespace
{
//! Defines OpenGL texture samplers.
static const Graphic3d_TextureUnit OpenGl_RT_EnvMapTexture = Graphic3d_TextureUnit_0;
static const Graphic3d_TextureUnit OpenGl_RT_SceneNodeInfoTexture = Graphic3d_TextureUnit_1;
static const Graphic3d_TextureUnit OpenGl_RT_SceneMinPointTexture = Graphic3d_TextureUnit_2;
static const Graphic3d_TextureUnit OpenGl_RT_SceneMaxPointTexture = Graphic3d_TextureUnit_3;
static const Graphic3d_TextureUnit OpenGl_RT_SceneTransformTexture = Graphic3d_TextureUnit_4;
static const Graphic3d_TextureUnit OpenGl_RT_GeometryVertexTexture = Graphic3d_TextureUnit_5;
static const Graphic3d_TextureUnit OpenGl_RT_GeometryNormalTexture = Graphic3d_TextureUnit_6;
static const Graphic3d_TextureUnit OpenGl_RT_GeometryTexCrdTexture = Graphic3d_TextureUnit_7;
static const Graphic3d_TextureUnit OpenGl_RT_GeometryTriangTexture = Graphic3d_TextureUnit_8;
static const Graphic3d_TextureUnit OpenGl_RT_RaytraceMaterialTexture = Graphic3d_TextureUnit_9;
static const Graphic3d_TextureUnit OpenGl_RT_RaytraceLightSrcTexture = Graphic3d_TextureUnit_10;
static const Graphic3d_TextureUnit OpenGl_RT_FsaaInputTexture = Graphic3d_TextureUnit_11;
static const Graphic3d_TextureUnit OpenGl_RT_PrevAccumTexture = Graphic3d_TextureUnit_12;
static const Graphic3d_TextureUnit OpenGl_RT_RaytraceDepthTexture = Graphic3d_TextureUnit_13;
}
// =======================================================================
// function : updateRaytraceGeometry
// purpose : Updates 3D scene geometry for ray-tracing
// =======================================================================
Standard_Boolean OpenGl_View::updateRaytraceGeometry (const RaytraceUpdateMode theMode,
const Standard_Integer theViewId,
const Handle(OpenGl_Context)& theGlContext)
{
// In 'check' mode (OpenGl_GUM_CHECK) the scene geometry is analyzed for
// modifications. This is light-weight procedure performed on each frame
if (theMode == OpenGl_GUM_CHECK)
{
if (myRaytraceLayerListState != myZLayers.ModificationStateOfRaytracable())
{
return updateRaytraceGeometry (OpenGl_GUM_PREPARE, theViewId, theGlContext);
}
}
else if (theMode == OpenGl_GUM_PREPARE)
{
myRaytraceGeometry.ClearMaterials();
myArrayToTrianglesMap.clear();
myIsRaytraceDataValid = Standard_False;
}
// The set of processed structures (reflected to ray-tracing)
// This set is used to remove out-of-date records from the
// hash map of structures
std::set<const OpenGl_Structure*> anElements;
// Set to store all currently visible OpenGL primitive arrays
// applicable for ray-tracing
std::set<Standard_Size> anArrayIDs;
// Set to store all non-raytracable elements allowing tracking
// of changes in OpenGL scene (only for path tracing)
std::set<Standard_Integer> aNonRaytraceIDs;
for (NCollection_List<Handle(Graphic3d_Layer)>::Iterator aLayerIter (myZLayers.Layers()); aLayerIter.More(); aLayerIter.Next())
{
const Handle(OpenGl_Layer)& aLayer = aLayerIter.Value();
if (aLayer->NbStructures() == 0
|| !aLayer->LayerSettings().IsRaytracable()
|| aLayer->LayerSettings().IsImmediate())
{
continue;
}
const Graphic3d_ArrayOfIndexedMapOfStructure& aStructArray = aLayer->ArrayOfStructures();
for (Standard_Integer anIndex = 0; anIndex < aStructArray.Length(); ++anIndex)
{
for (OpenGl_Structure::StructIterator aStructIt (aStructArray.Value (anIndex)); aStructIt.More(); aStructIt.Next())
{
const OpenGl_Structure* aStructure = aStructIt.Value();
if (theMode == OpenGl_GUM_CHECK)
{
if (toUpdateStructure (aStructure))
{
return updateRaytraceGeometry (OpenGl_GUM_PREPARE, theViewId, theGlContext);
}
else if (aStructure->IsVisible() && myRaytraceParameters.GlobalIllumination)
{
aNonRaytraceIDs.insert (aStructure->highlight ? aStructure->Id : -aStructure->Id);
}
}
else if (theMode == OpenGl_GUM_PREPARE)
{
if (!aStructure->IsRaytracable() || !aStructure->IsVisible())
{
continue;
}
else if (!aStructure->ViewAffinity.IsNull() && !aStructure->ViewAffinity->IsVisible (theViewId))
{
continue;
}
for (OpenGl_Structure::GroupIterator aGroupIter (aStructure->Groups()); aGroupIter.More(); aGroupIter.Next())
{
// Extract OpenGL elements from the group (primitives arrays)
for (const OpenGl_ElementNode* aNode = aGroupIter.Value()->FirstNode(); aNode != NULL; aNode = aNode->next)
{
OpenGl_PrimitiveArray* aPrimArray = dynamic_cast<OpenGl_PrimitiveArray*> (aNode->elem);
if (aPrimArray != NULL)
{
anArrayIDs.insert (aPrimArray->GetUID());
}
}
}
}
else if (theMode == OpenGl_GUM_REBUILD)
{
if (!aStructure->IsRaytracable())
{
continue;
}
else if (addRaytraceStructure (aStructure, theGlContext))
{
anElements.insert (aStructure); // structure was processed
}
}
}
}
}
if (theMode == OpenGl_GUM_PREPARE)
{
BVH_ObjectSet<Standard_ShortReal, 3>::BVH_ObjectList anUnchangedObjects;
// Filter out unchanged objects so only their transformations and materials
// will be updated (and newly added objects will be processed from scratch)
for (Standard_Integer anObjIdx = 0; anObjIdx < myRaytraceGeometry.Size(); ++anObjIdx)
{
OpenGl_TriangleSet* aTriangleSet = dynamic_cast<OpenGl_TriangleSet*> (
myRaytraceGeometry.Objects().ChangeValue (anObjIdx).operator->());
if (aTriangleSet == NULL)
{
continue;
}
if (anArrayIDs.find (aTriangleSet->AssociatedPArrayID()) != anArrayIDs.end())
{
anUnchangedObjects.Append (myRaytraceGeometry.Objects().Value (anObjIdx));
myArrayToTrianglesMap[aTriangleSet->AssociatedPArrayID()] = aTriangleSet;
}
}
myRaytraceGeometry.Objects() = anUnchangedObjects;
return updateRaytraceGeometry (OpenGl_GUM_REBUILD, theViewId, theGlContext);
}
else if (theMode == OpenGl_GUM_REBUILD)
{
// Actualize the hash map of structures - remove out-of-date records
std::map<const OpenGl_Structure*, StructState>::iterator anIter = myStructureStates.begin();
while (anIter != myStructureStates.end())
{
if (anElements.find (anIter->first) == anElements.end())
{
myStructureStates.erase (anIter++);
}
else
{
++anIter;
}
}
// Actualize OpenGL layer list state
myRaytraceLayerListState = myZLayers.ModificationStateOfRaytracable();
// Rebuild two-level acceleration structure
myRaytraceGeometry.ProcessAcceleration();
myRaytraceSceneRadius = 2.f /* scale factor */ * std::max (
myRaytraceGeometry.Box().CornerMin().cwiseAbs().maxComp(),
myRaytraceGeometry.Box().CornerMax().cwiseAbs().maxComp());
const BVH_Vec3f aSize = myRaytraceGeometry.Box().Size();
myRaytraceSceneEpsilon = Max (1.0e-6f, 1.0e-4f * aSize.Modulus());
return uploadRaytraceData (theGlContext);
}
if (myRaytraceParameters.GlobalIllumination)
{
Standard_Boolean toRestart =
aNonRaytraceIDs.size() != myNonRaytraceStructureIDs.size();
for (std::set<Standard_Integer>::iterator anID = aNonRaytraceIDs.begin(); anID != aNonRaytraceIDs.end() && !toRestart; ++anID)
{
if (myNonRaytraceStructureIDs.find (*anID) == myNonRaytraceStructureIDs.end())
{
toRestart = Standard_True;
}
}
if (toRestart)
{
myAccumFrames = 0;
}
myNonRaytraceStructureIDs = aNonRaytraceIDs;
}
return Standard_True;
}
// =======================================================================
// function : toUpdateStructure
// purpose : Checks to see if the structure is modified
// =======================================================================
Standard_Boolean OpenGl_View::toUpdateStructure (const OpenGl_Structure* theStructure)
{
if (!theStructure->IsRaytracable())
{
if (theStructure->ModificationState() > 0)
{
theStructure->ResetModificationState();
return Standard_True; // ray-trace element was removed - need to rebuild
}
return Standard_False; // did not contain ray-trace elements
}
std::map<const OpenGl_Structure*, StructState>::iterator aStructState = myStructureStates.find (theStructure);
if (aStructState == myStructureStates.end() || aStructState->second.StructureState != theStructure->ModificationState())
{
return Standard_True;
}
else if (theStructure->InstancedStructure() != NULL)
{
return aStructState->second.InstancedState != theStructure->InstancedStructure()->ModificationState();
}
return Standard_False;
}
// =======================================================================
// function : buildTextureTransform
// purpose : Constructs texture transformation matrix
// =======================================================================
void buildTextureTransform (const Handle(Graphic3d_TextureParams)& theParams, BVH_Mat4f& theMatrix)
{
theMatrix.InitIdentity();
if (theParams.IsNull())
{
return;
}
// Apply scaling
const Graphic3d_Vec2& aScale = theParams->Scale();
theMatrix.ChangeValue (0, 0) *= aScale.x();
theMatrix.ChangeValue (1, 0) *= aScale.x();
theMatrix.ChangeValue (2, 0) *= aScale.x();
theMatrix.ChangeValue (3, 0) *= aScale.x();
theMatrix.ChangeValue (0, 1) *= aScale.y();
theMatrix.ChangeValue (1, 1) *= aScale.y();
theMatrix.ChangeValue (2, 1) *= aScale.y();
theMatrix.ChangeValue (3, 1) *= aScale.y();
// Apply translation
const Graphic3d_Vec2 aTrans = -theParams->Translation();
theMatrix.ChangeValue (0, 3) = theMatrix.GetValue (0, 0) * aTrans.x() +
theMatrix.GetValue (0, 1) * aTrans.y();
theMatrix.ChangeValue (1, 3) = theMatrix.GetValue (1, 0) * aTrans.x() +
theMatrix.GetValue (1, 1) * aTrans.y();
theMatrix.ChangeValue (2, 3) = theMatrix.GetValue (2, 0) * aTrans.x() +
theMatrix.GetValue (2, 1) * aTrans.y();
// Apply rotation
const Standard_ShortReal aSin = std::sin (
-theParams->Rotation() * static_cast<Standard_ShortReal> (M_PI / 180.0));
const Standard_ShortReal aCos = std::cos (
-theParams->Rotation() * static_cast<Standard_ShortReal> (M_PI / 180.0));
BVH_Mat4f aRotationMat;
aRotationMat.SetValue (0, 0, aCos);
aRotationMat.SetValue (1, 1, aCos);
aRotationMat.SetValue (0, 1, -aSin);
aRotationMat.SetValue (1, 0, aSin);
theMatrix = theMatrix * aRotationMat;
}
// =======================================================================
// function : convertMaterial
// purpose : Creates ray-tracing material properties
// =======================================================================
OpenGl_RaytraceMaterial OpenGl_View::convertMaterial (const OpenGl_Aspects* theAspect,
const Handle(OpenGl_Context)& theGlContext)
{
OpenGl_RaytraceMaterial aResMat;
const Graphic3d_MaterialAspect& aSrcMat = theAspect->Aspect()->FrontMaterial();
const OpenGl_Vec3& aMatCol = theAspect->Aspect()->InteriorColor();
const float aShine = 128.0f * float(aSrcMat.Shininess());
const OpenGl_Vec3& aSrcAmb = aSrcMat.AmbientColor();
const OpenGl_Vec3& aSrcDif = aSrcMat.DiffuseColor();
const OpenGl_Vec3& aSrcSpe = aSrcMat.SpecularColor();
const OpenGl_Vec3& aSrcEms = aSrcMat.EmissiveColor();
switch (aSrcMat.MaterialType())
{
case Graphic3d_MATERIAL_ASPECT:
{
aResMat.Ambient .SetValues (aSrcAmb * aMatCol, 1.0f);
aResMat.Diffuse .SetValues (aSrcDif * aMatCol, -1.0f); // -1 is no texture
aResMat.Emission.SetValues (aSrcEms * aMatCol, 1.0f);
break;
}
case Graphic3d_MATERIAL_PHYSIC:
{
aResMat.Ambient .SetValues (aSrcAmb, 1.0f);
aResMat.Diffuse .SetValues (aSrcDif, -1.0f); // -1 is no texture
aResMat.Emission.SetValues (aSrcEms, 1.0f);
break;
}
}
{
// interior color is always ignored for Specular
aResMat.Specular.SetValues (aSrcSpe, aShine);
const Standard_ShortReal aMaxRefl = Max (aResMat.Diffuse.x() + aResMat.Specular.x(),
Max (aResMat.Diffuse.y() + aResMat.Specular.y(),
aResMat.Diffuse.z() + aResMat.Specular.z()));
const Standard_ShortReal aReflectionScale = 0.75f / aMaxRefl;
aResMat.Reflection.SetValues (aSrcSpe * aReflectionScale, 0.0f);
}
const float anIndex = (float )aSrcMat.RefractionIndex();
aResMat.Transparency = BVH_Vec4f (aSrcMat.Alpha(), aSrcMat.Transparency(),
anIndex == 0 ? 1.0f : anIndex,
anIndex == 0 ? 1.0f : 1.0f / anIndex);
aResMat.Ambient = theGlContext->Vec4FromQuantityColor (aResMat.Ambient);
aResMat.Diffuse = theGlContext->Vec4FromQuantityColor (aResMat.Diffuse);
aResMat.Specular = theGlContext->Vec4FromQuantityColor (aResMat.Specular);
aResMat.Emission = theGlContext->Vec4FromQuantityColor (aResMat.Emission);
// Serialize physically-based material properties
const Graphic3d_BSDF& aBSDF = aSrcMat.BSDF();
aResMat.BSDF.Kc = aBSDF.Kc;
aResMat.BSDF.Ks = aBSDF.Ks;
aResMat.BSDF.Kd = BVH_Vec4f (aBSDF.Kd, -1.0f); // no base color texture
aResMat.BSDF.Kt = BVH_Vec4f (aBSDF.Kt, -1.0f); // no metallic-roughness texture
aResMat.BSDF.Le = BVH_Vec4f (aBSDF.Le, -1.0f); // no emissive texture
aResMat.BSDF.Absorption = aBSDF.Absorption;
aResMat.BSDF.FresnelCoat = aBSDF.FresnelCoat.Serialize ();
aResMat.BSDF.FresnelBase = aBSDF.FresnelBase.Serialize ();
aResMat.BSDF.FresnelBase.w() = -1.0; // no normal map texture
// Handle material textures
if (!theAspect->Aspect()->ToMapTexture())
{
return aResMat;
}
const Handle(OpenGl_TextureSet)& aTextureSet = theAspect->TextureSet (theGlContext);
if (aTextureSet.IsNull()
|| aTextureSet->IsEmpty()
|| aTextureSet->First().IsNull())
{
return aResMat;
}
if (theGlContext->HasRayTracingTextures())
{
// write texture ID to diffuse w-components
for (OpenGl_TextureSet::Iterator aTexIter (aTextureSet); aTexIter.More(); aTexIter.Next())
{
const Handle(OpenGl_Texture)& aTexture = aTexIter.Value();
if (aTexIter.Unit() == Graphic3d_TextureUnit_BaseColor)
{
buildTextureTransform (aTexture->Sampler()->Parameters(), aResMat.TextureTransform);
aResMat.Diffuse.w() = aResMat.BSDF.Kd.w() = static_cast<Standard_ShortReal> (myRaytraceGeometry.AddTexture (aTexture));
}
else if (aTexIter.Unit() == Graphic3d_TextureUnit_MetallicRoughness)
{
buildTextureTransform (aTexture->Sampler()->Parameters(), aResMat.TextureTransform);
aResMat.BSDF.Kt.w() = static_cast<Standard_ShortReal> (myRaytraceGeometry.AddTexture (aTexture));
}
else if (aTexIter.Unit() == Graphic3d_TextureUnit_Emissive)
{
buildTextureTransform (aTexture->Sampler()->Parameters(), aResMat.TextureTransform);
aResMat.BSDF.Le.w() = static_cast<Standard_ShortReal> (myRaytraceGeometry.AddTexture (aTexture));
}
else if (aTexIter.Unit() == Graphic3d_TextureUnit_Normal)
{
buildTextureTransform (aTexture->Sampler()->Parameters(), aResMat.TextureTransform);
aResMat.BSDF.FresnelBase.w() = static_cast<Standard_ShortReal> (myRaytraceGeometry.AddTexture (aTexture));
}
}
}
else if (!myIsRaytraceWarnTextures)
{
theGlContext->PushMessage (GL_DEBUG_SOURCE_APPLICATION, GL_DEBUG_TYPE_PORTABILITY, 0, GL_DEBUG_SEVERITY_HIGH,
"Warning: texturing in Ray-Trace requires GL_ARB_bindless_texture extension which is missing. "
"Please try to update graphics card driver. At the moment textures will be ignored.");
myIsRaytraceWarnTextures = Standard_True;
}
return aResMat;
}
// =======================================================================
// function : addRaytraceStructure
// purpose : Adds OpenGL structure to ray-traced scene geometry
// =======================================================================
Standard_Boolean OpenGl_View::addRaytraceStructure (const OpenGl_Structure* theStructure,
const Handle(OpenGl_Context)& theGlContext)
{
if (!theStructure->IsVisible())
{
myStructureStates[theStructure] = StructState (theStructure);
return Standard_True;
}
// Get structure material
OpenGl_RaytraceMaterial aDefaultMaterial;
Standard_Boolean aResult = addRaytraceGroups (theStructure, aDefaultMaterial, theStructure->Transformation(), theGlContext);
// Process all connected OpenGL structures
const OpenGl_Structure* anInstanced = theStructure->InstancedStructure();
if (anInstanced != NULL && anInstanced->IsRaytracable())
{
aResult &= addRaytraceGroups (anInstanced, aDefaultMaterial, theStructure->Transformation(), theGlContext);
}
myStructureStates[theStructure] = StructState (theStructure);
return aResult;
}
// =======================================================================
// function : addRaytraceGroups
// purpose : Adds OpenGL groups to ray-traced scene geometry
// =======================================================================
Standard_Boolean OpenGl_View::addRaytraceGroups (const OpenGl_Structure* theStructure,
const OpenGl_RaytraceMaterial& theStructMat,
const Handle(TopLoc_Datum3D)& theTrsf,
const Handle(OpenGl_Context)& theGlContext)
{
OpenGl_Mat4 aMat4;
for (OpenGl_Structure::GroupIterator aGroupIter (theStructure->Groups()); aGroupIter.More(); aGroupIter.Next())
{
// Get group material
OpenGl_RaytraceMaterial aGroupMaterial;
if (aGroupIter.Value()->GlAspects() != NULL)
{
aGroupMaterial = convertMaterial (aGroupIter.Value()->GlAspects(), theGlContext);
}
Standard_Integer aMatID = static_cast<Standard_Integer> (myRaytraceGeometry.Materials.size());
// Use group material if available, otherwise use structure material
myRaytraceGeometry.Materials.push_back (aGroupIter.Value()->GlAspects() != NULL ? aGroupMaterial : theStructMat);
// Add OpenGL elements from group (extract primitives arrays and aspects)
for (const OpenGl_ElementNode* aNode = aGroupIter.Value()->FirstNode(); aNode != NULL; aNode = aNode->next)
{
OpenGl_Aspects* anAspect = dynamic_cast<OpenGl_Aspects*> (aNode->elem);
if (anAspect != NULL)
{
aMatID = static_cast<Standard_Integer> (myRaytraceGeometry.Materials.size());
OpenGl_RaytraceMaterial aMaterial = convertMaterial (anAspect, theGlContext);
myRaytraceGeometry.Materials.push_back (aMaterial);
}
else
{
OpenGl_PrimitiveArray* aPrimArray = dynamic_cast<OpenGl_PrimitiveArray*> (aNode->elem);
if (aPrimArray != NULL)
{
std::map<Standard_Size, OpenGl_TriangleSet*>::iterator aSetIter = myArrayToTrianglesMap.find (aPrimArray->GetUID());
if (aSetIter != myArrayToTrianglesMap.end())
{
OpenGl_TriangleSet* aSet = aSetIter->second;
opencascade::handle<BVH_Transform<Standard_ShortReal, 4> > aTransform = new BVH_Transform<Standard_ShortReal, 4>();
if (!theTrsf.IsNull())
{
theTrsf->Trsf().GetMat4 (aMat4);
aTransform->SetTransform (aMat4);
}
aSet->SetProperties (aTransform);
if (aSet->MaterialIndex() != OpenGl_TriangleSet::INVALID_MATERIAL && aSet->MaterialIndex() != aMatID)
{
aSet->SetMaterialIndex (aMatID);
}
}
else
{
if (Handle(OpenGl_TriangleSet) aSet = addRaytracePrimitiveArray (aPrimArray, aMatID, 0))
{
opencascade::handle<BVH_Transform<Standard_ShortReal, 4> > aTransform = new BVH_Transform<Standard_ShortReal, 4>();
if (!theTrsf.IsNull())
{
theTrsf->Trsf().GetMat4 (aMat4);
aTransform->SetTransform (aMat4);
}
aSet->SetProperties (aTransform);
myRaytraceGeometry.Objects().Append (aSet);
}
}
}
}
}
}
return Standard_True;
}
// =======================================================================
// function : addRaytracePrimitiveArray
// purpose : Adds OpenGL primitive array to ray-traced scene geometry
// =======================================================================
Handle(OpenGl_TriangleSet) OpenGl_View::addRaytracePrimitiveArray (const OpenGl_PrimitiveArray* theArray,
const Standard_Integer theMaterial,
const OpenGl_Mat4* theTransform)
{
const Handle(Graphic3d_BoundBuffer)& aBounds = theArray->Bounds();
const Handle(Graphic3d_IndexBuffer)& anIndices = theArray->Indices();
const Handle(Graphic3d_Buffer)& anAttribs = theArray->Attributes();
if (theArray->DrawMode() < GL_TRIANGLES
#ifndef GL_ES_VERSION_2_0
|| theArray->DrawMode() > GL_POLYGON
#else
|| theArray->DrawMode() > GL_TRIANGLE_FAN
#endif
|| anAttribs.IsNull())
{
return Handle(OpenGl_TriangleSet)();
}
OpenGl_Mat4 aNormalMatrix;
if (theTransform != NULL)
{
Standard_ASSERT_RETURN (theTransform->Inverted (aNormalMatrix),
"Error: Failed to compute normal transformation matrix", NULL);
aNormalMatrix.Transpose();
}
Handle(OpenGl_TriangleSet) aSet = new OpenGl_TriangleSet (theArray->GetUID(), myRaytraceBVHBuilder);
{
aSet->Vertices.reserve (anAttribs->NbElements);
aSet->Normals.reserve (anAttribs->NbElements);
aSet->TexCrds.reserve (anAttribs->NbElements);
const size_t aVertFrom = aSet->Vertices.size();
Standard_Integer anAttribIndex = 0;
Standard_Size anAttribStride = 0;
if (const Standard_Byte* aPosData = anAttribs->AttributeData (Graphic3d_TOA_POS, anAttribIndex, anAttribStride))
{
const Graphic3d_Attribute& anAttrib = anAttribs->Attribute (anAttribIndex);
if (anAttrib.DataType == Graphic3d_TOD_VEC2
|| anAttrib.DataType == Graphic3d_TOD_VEC3
|| anAttrib.DataType == Graphic3d_TOD_VEC4)
{
for (Standard_Integer aVertIter = 0; aVertIter < anAttribs->NbElements; ++aVertIter)
{
const float* aCoords = reinterpret_cast<const float*> (aPosData + anAttribStride * aVertIter);
aSet->Vertices.push_back (BVH_Vec3f (aCoords[0], aCoords[1], anAttrib.DataType != Graphic3d_TOD_VEC2 ? aCoords[2] : 0.0f));
}
}
}
if (const Standard_Byte* aNormData = anAttribs->AttributeData (Graphic3d_TOA_NORM, anAttribIndex, anAttribStride))
{
const Graphic3d_Attribute& anAttrib = anAttribs->Attribute (anAttribIndex);
if (anAttrib.DataType == Graphic3d_TOD_VEC3
|| anAttrib.DataType == Graphic3d_TOD_VEC4)
{
for (Standard_Integer aVertIter = 0; aVertIter < anAttribs->NbElements; ++aVertIter)
{
aSet->Normals.push_back (*reinterpret_cast<const Graphic3d_Vec3*> (aNormData + anAttribStride * aVertIter));
}
}
}
if (const Standard_Byte* aTexData = anAttribs->AttributeData (Graphic3d_TOA_UV, anAttribIndex, anAttribStride))
{
const Graphic3d_Attribute& anAttrib = anAttribs->Attribute (anAttribIndex);
if (anAttrib.DataType == Graphic3d_TOD_VEC2)
{
for (Standard_Integer aVertIter = 0; aVertIter < anAttribs->NbElements; ++aVertIter)
{
aSet->TexCrds.push_back (*reinterpret_cast<const Graphic3d_Vec2*> (aTexData + anAttribStride * aVertIter));
}
}
}
if (aSet->Normals.size() != aSet->Vertices.size())
{
for (Standard_Integer aVertIter = 0; aVertIter < anAttribs->NbElements; ++aVertIter)
{
aSet->Normals.push_back (BVH_Vec3f());
}
}
if (aSet->TexCrds.size() != aSet->Vertices.size())
{
for (Standard_Integer aVertIter = 0; aVertIter < anAttribs->NbElements; ++aVertIter)
{
aSet->TexCrds.push_back (BVH_Vec2f());
}
}
if (theTransform != NULL)
{
for (size_t aVertIter = aVertFrom; aVertIter < aSet->Vertices.size(); ++aVertIter)
{
BVH_Vec3f& aVertex = aSet->Vertices[aVertIter];
BVH_Vec4f aTransVertex = *theTransform *
BVH_Vec4f (aVertex.x(), aVertex.y(), aVertex.z(), 1.f);
aVertex = BVH_Vec3f (aTransVertex.x(), aTransVertex.y(), aTransVertex.z());
}
for (size_t aVertIter = aVertFrom; aVertIter < aSet->Normals.size(); ++aVertIter)
{
BVH_Vec3f& aNormal = aSet->Normals[aVertIter];
BVH_Vec4f aTransNormal = aNormalMatrix *
BVH_Vec4f (aNormal.x(), aNormal.y(), aNormal.z(), 0.f);
aNormal = BVH_Vec3f (aTransNormal.x(), aTransNormal.y(), aTransNormal.z());
}
}
if (!aBounds.IsNull())
{
for (Standard_Integer aBound = 0, aBoundStart = 0; aBound < aBounds->NbBounds; ++aBound)
{
const Standard_Integer aVertNum = aBounds->Bounds[aBound];
if (!addRaytraceVertexIndices (*aSet, theMaterial, aVertNum, aBoundStart, *theArray))
{
aSet.Nullify();
return Handle(OpenGl_TriangleSet)();
}
aBoundStart += aVertNum;
}
}
else
{
const Standard_Integer aVertNum = !anIndices.IsNull() ? anIndices->NbElements : anAttribs->NbElements;
if (!addRaytraceVertexIndices (*aSet, theMaterial, aVertNum, 0, *theArray))
{
aSet.Nullify();
return Handle(OpenGl_TriangleSet)();
}
}
}
if (aSet->Size() != 0)
{
aSet->MarkDirty();
}
return aSet;
}
// =======================================================================
// function : addRaytraceVertexIndices
// purpose : Adds vertex indices to ray-traced scene geometry
// =======================================================================
Standard_Boolean OpenGl_View::addRaytraceVertexIndices (OpenGl_TriangleSet& theSet,
const Standard_Integer theMatID,
const Standard_Integer theCount,
const Standard_Integer theOffset,
const OpenGl_PrimitiveArray& theArray)
{
switch (theArray.DrawMode())
{
case GL_TRIANGLES: return addRaytraceTriangleArray (theSet, theMatID, theCount, theOffset, theArray.Indices());
case GL_TRIANGLE_FAN: return addRaytraceTriangleFanArray (theSet, theMatID, theCount, theOffset, theArray.Indices());
case GL_TRIANGLE_STRIP: return addRaytraceTriangleStripArray (theSet, theMatID, theCount, theOffset, theArray.Indices());
#if !defined(GL_ES_VERSION_2_0)
case GL_QUAD_STRIP: return addRaytraceQuadrangleStripArray (theSet, theMatID, theCount, theOffset, theArray.Indices());
case GL_QUADS: return addRaytraceQuadrangleArray (theSet, theMatID, theCount, theOffset, theArray.Indices());
case GL_POLYGON: return addRaytracePolygonArray (theSet, theMatID, theCount, theOffset, theArray.Indices());
#endif
}
return Standard_False;
}
// =======================================================================
// function : addRaytraceTriangleArray
// purpose : Adds OpenGL triangle array to ray-traced scene geometry
// =======================================================================
Standard_Boolean OpenGl_View::addRaytraceTriangleArray (OpenGl_TriangleSet& theSet,
const Standard_Integer theMatID,
const Standard_Integer theCount,
const Standard_Integer theOffset,
const Handle(Graphic3d_IndexBuffer)& theIndices)
{
if (theCount < 3)
{
return Standard_True;
}
theSet.Elements.reserve (theSet.Elements.size() + theCount / 3);
if (!theIndices.IsNull())
{
for (Standard_Integer aVert = theOffset; aVert < theOffset + theCount - 2; aVert += 3)
{
theSet.Elements.push_back (BVH_Vec4i (theIndices->Index (aVert + 0),
theIndices->Index (aVert + 1),
theIndices->Index (aVert + 2),
theMatID));
}
}
else
{
for (Standard_Integer aVert = theOffset; aVert < theOffset + theCount - 2; aVert += 3)
{
theSet.Elements.push_back (BVH_Vec4i (aVert + 0, aVert + 1, aVert + 2, theMatID));
}
}
return Standard_True;
}
// =======================================================================
// function : addRaytraceTriangleFanArray
// purpose : Adds OpenGL triangle fan array to ray-traced scene geometry
// =======================================================================
Standard_Boolean OpenGl_View::addRaytraceTriangleFanArray (OpenGl_TriangleSet& theSet,
const Standard_Integer theMatID,
const Standard_Integer theCount,
const Standard_Integer theOffset,
const Handle(Graphic3d_IndexBuffer)& theIndices)
{
if (theCount < 3)
{
return Standard_True;
}
theSet.Elements.reserve (theSet.Elements.size() + theCount - 2);
if (!theIndices.IsNull())
{
for (Standard_Integer aVert = theOffset; aVert < theOffset + theCount - 2; ++aVert)
{
theSet.Elements.push_back (BVH_Vec4i (theIndices->Index (theOffset),
theIndices->Index (aVert + 1),
theIndices->Index (aVert + 2),
theMatID));
}
}
else
{
for (Standard_Integer aVert = theOffset; aVert < theOffset + theCount - 2; ++aVert)
{
theSet.Elements.push_back (BVH_Vec4i (theOffset,
aVert + 1,
aVert + 2,
theMatID));
}
}
return Standard_True;
}
// =======================================================================
// function : addRaytraceTriangleStripArray
// purpose : Adds OpenGL triangle strip array to ray-traced scene geometry
// =======================================================================
Standard_Boolean OpenGl_View::addRaytraceTriangleStripArray (OpenGl_TriangleSet& theSet,
const Standard_Integer theMatID,
const Standard_Integer theCount,
const Standard_Integer theOffset,
const Handle(Graphic3d_IndexBuffer)& theIndices)
{
if (theCount < 3)
{
return Standard_True;
}
theSet.Elements.reserve (theSet.Elements.size() + theCount - 2);
if (!theIndices.IsNull())
{
for (Standard_Integer aVert = theOffset, aCW = 0; aVert < theOffset + theCount - 2; ++aVert, aCW = (aCW + 1) % 2)
{
theSet.Elements.push_back (BVH_Vec4i (theIndices->Index (aVert + (aCW ? 1 : 0)),
theIndices->Index (aVert + (aCW ? 0 : 1)),
theIndices->Index (aVert + 2),
theMatID));
}
}
else
{
for (Standard_Integer aVert = theOffset, aCW = 0; aVert < theOffset + theCount - 2; ++aVert, aCW = (aCW + 1) % 2)
{
theSet.Elements.push_back (BVH_Vec4i (aVert + (aCW ? 1 : 0),
aVert + (aCW ? 0 : 1),
aVert + 2,
theMatID));
}
}
return Standard_True;
}
// =======================================================================
// function : addRaytraceQuadrangleArray
// purpose : Adds OpenGL quad array to ray-traced scene geometry
// =======================================================================
Standard_Boolean OpenGl_View::addRaytraceQuadrangleArray (OpenGl_TriangleSet& theSet,
const Standard_Integer theMatID,
const Standard_Integer theCount,
const Standard_Integer theOffset,
const Handle(Graphic3d_IndexBuffer)& theIndices)
{
if (theCount < 4)
{
return Standard_True;
}
theSet.Elements.reserve (theSet.Elements.size() + theCount / 2);
if (!theIndices.IsNull())
{
for (Standard_Integer aVert = theOffset; aVert < theOffset + theCount - 3; aVert += 4)
{
theSet.Elements.push_back (BVH_Vec4i (theIndices->Index (aVert + 0),
theIndices->Index (aVert + 1),
theIndices->Index (aVert + 2),
theMatID));
theSet.Elements.push_back (BVH_Vec4i (theIndices->Index (aVert + 0),
theIndices->Index (aVert + 2),
theIndices->Index (aVert + 3),
theMatID));
}
}
else
{
for (Standard_Integer aVert = theOffset; aVert < theOffset + theCount - 3; aVert += 4)
{
theSet.Elements.push_back (BVH_Vec4i (aVert + 0, aVert + 1, aVert + 2,
theMatID));
theSet.Elements.push_back (BVH_Vec4i (aVert + 0, aVert + 2, aVert + 3,
theMatID));
}
}
return Standard_True;
}
// =======================================================================
// function : addRaytraceQuadrangleStripArray
// purpose : Adds OpenGL quad strip array to ray-traced scene geometry
// =======================================================================
Standard_Boolean OpenGl_View::addRaytraceQuadrangleStripArray (OpenGl_TriangleSet& theSet,
const Standard_Integer theMatID,
const Standard_Integer theCount,
const Standard_Integer theOffset,
const Handle(Graphic3d_IndexBuffer)& theIndices)
{
if (theCount < 4)
{
return Standard_True;
}
theSet.Elements.reserve (theSet.Elements.size() + 2 * theCount - 6);
if (!theIndices.IsNull())
{
for (Standard_Integer aVert = theOffset; aVert < theOffset + theCount - 3; aVert += 2)
{
theSet.Elements.push_back (BVH_Vec4i (theIndices->Index (aVert + 0),
theIndices->Index (aVert + 1),
theIndices->Index (aVert + 2),
theMatID));
theSet.Elements.push_back (BVH_Vec4i (theIndices->Index (aVert + 1),
theIndices->Index (aVert + 3),
theIndices->Index (aVert + 2),
theMatID));
}
}
else
{
for (Standard_Integer aVert = theOffset; aVert < theOffset + theCount - 3; aVert += 2)
{
theSet.Elements.push_back (BVH_Vec4i (aVert + 0,
aVert + 1,
aVert + 2,
theMatID));
theSet.Elements.push_back (BVH_Vec4i (aVert + 1,
aVert + 3,
aVert + 2,
theMatID));
}
}
return Standard_True;
}
// =======================================================================
// function : addRaytracePolygonArray
// purpose : Adds OpenGL polygon array to ray-traced scene geometry
// =======================================================================
Standard_Boolean OpenGl_View::addRaytracePolygonArray (OpenGl_TriangleSet& theSet,
const Standard_Integer theMatID,
const Standard_Integer theCount,
const Standard_Integer theOffset,
const Handle(Graphic3d_IndexBuffer)& theIndices)
{
if (theCount < 3)
{
return Standard_True;
}
theSet.Elements.reserve (theSet.Elements.size() + theCount - 2);
if (!theIndices.IsNull())
{
for (Standard_Integer aVert = theOffset; aVert < theOffset + theCount - 2; ++aVert)
{
theSet.Elements.push_back (BVH_Vec4i (theIndices->Index (theOffset),
theIndices->Index (aVert + 1),
theIndices->Index (aVert + 2),
theMatID));
}
}
else
{
for (Standard_Integer aVert = theOffset; aVert < theOffset + theCount - 2; ++aVert)
{
theSet.Elements.push_back (BVH_Vec4i (theOffset,
aVert + 1,
aVert + 2,
theMatID));
}
}
return Standard_True;
}
const TCollection_AsciiString OpenGl_View::ShaderSource::EMPTY_PREFIX;
// =======================================================================
// function : Source
// purpose : Returns shader source combined with prefix
// =======================================================================
TCollection_AsciiString OpenGl_View::ShaderSource::Source() const
{
const TCollection_AsciiString aVersion = "#version 140";
if (myPrefix.IsEmpty())
{
return aVersion + "\n" + mySource;
}
return aVersion + "\n" + myPrefix + "\n" + mySource;
}
// =======================================================================
// function : LoadFromFiles
// purpose : Loads shader source from specified files
// =======================================================================
Standard_Boolean OpenGl_View::ShaderSource::LoadFromFiles (const TCollection_AsciiString* theFileNames,
const TCollection_AsciiString& thePrefix)
{
myError.Clear();
mySource.Clear();
myPrefix = thePrefix;
TCollection_AsciiString aMissingFiles;
for (Standard_Integer anIndex = 0; !theFileNames[anIndex].IsEmpty(); ++anIndex)
{
OSD_File aFile (theFileNames[anIndex]);
if (aFile.Exists())
{
aFile.Open (OSD_ReadOnly, OSD_Protection());
}
if (!aFile.IsOpen())
{
if (!aMissingFiles.IsEmpty())
{
aMissingFiles += ", ";
}
aMissingFiles += TCollection_AsciiString("'") + theFileNames[anIndex] + "'";
continue;
}
else if (!aMissingFiles.IsEmpty())
{
aFile.Close();
continue;
}
TCollection_AsciiString aSource;
aFile.Read (aSource, (Standard_Integer) aFile.Size());
if (!aSource.IsEmpty())
{
mySource += TCollection_AsciiString ("\n") + aSource;
}
aFile.Close();
}
if (!aMissingFiles.IsEmpty())
{
myError = TCollection_AsciiString("Shader files ") + aMissingFiles + " are missing or inaccessible";
return Standard_False;
}
return Standard_True;
}
// =======================================================================
// function : LoadFromStrings
// purpose :
// =======================================================================
Standard_Boolean OpenGl_View::ShaderSource::LoadFromStrings (const TCollection_AsciiString* theStrings,
const TCollection_AsciiString& thePrefix)
{
myError.Clear();
mySource.Clear();
myPrefix = thePrefix;
for (Standard_Integer anIndex = 0; !theStrings[anIndex].IsEmpty(); ++anIndex)
{
TCollection_AsciiString aSource = theStrings[anIndex];
if (!aSource.IsEmpty())
{
mySource += TCollection_AsciiString ("\n") + aSource;
}
}
return Standard_True;
}
// =======================================================================
// function : generateShaderPrefix
// purpose : Generates shader prefix based on current ray-tracing options
// =======================================================================
TCollection_AsciiString OpenGl_View::generateShaderPrefix (const Handle(OpenGl_Context)& theGlContext) const
{
TCollection_AsciiString aPrefixString =
TCollection_AsciiString ("#define STACK_SIZE ") + TCollection_AsciiString (myRaytraceParameters.StackSize) + "\n" +
TCollection_AsciiString ("#define NB_BOUNCES ") + TCollection_AsciiString (myRaytraceParameters.NbBounces);
if (myRaytraceParameters.TransparentShadows)
{
aPrefixString += TCollection_AsciiString ("\n#define TRANSPARENT_SHADOWS");
}
if (!theGlContext->ToRenderSRGB())
{
aPrefixString += TCollection_AsciiString ("\n#define THE_SHIFT_sRGB");
}
// If OpenGL driver supports bindless textures and texturing
// is actually used, activate texturing in ray-tracing mode
if (myRaytraceParameters.UseBindlessTextures && theGlContext->arbTexBindless != NULL)
{
aPrefixString += TCollection_AsciiString ("\n#define USE_TEXTURES") +
TCollection_AsciiString ("\n#define MAX_TEX_NUMBER ") + TCollection_AsciiString (OpenGl_RaytraceGeometry::MAX_TEX_NUMBER);
}
if (myRaytraceParameters.GlobalIllumination) // path tracing activated
{
aPrefixString += TCollection_AsciiString ("\n#define PATH_TRACING");
if (myRaytraceParameters.AdaptiveScreenSampling) // adaptive screen sampling requested
{
if (theGlContext->IsGlGreaterEqual (4, 4))
{
aPrefixString += TCollection_AsciiString ("\n#define ADAPTIVE_SAMPLING");
if (myRaytraceParameters.AdaptiveScreenSamplingAtomic
&& theGlContext->CheckExtension ("GL_NV_shader_atomic_float"))
{
aPrefixString += TCollection_AsciiString ("\n#define ADAPTIVE_SAMPLING_ATOMIC");
}
}
}
if (myRaytraceParameters.TwoSidedBsdfModels) // two-sided BSDFs requested
{
aPrefixString += TCollection_AsciiString ("\n#define TWO_SIDED_BXDF");
}
switch (myRaytraceParameters.ToneMappingMethod)
{
case Graphic3d_ToneMappingMethod_Disabled:
break;
case Graphic3d_ToneMappingMethod_Filmic:
aPrefixString += TCollection_AsciiString ("\n#define TONE_MAPPING_FILMIC");
break;
}
}
if (myRaytraceParameters.ToIgnoreNormalMap)
{
aPrefixString += TCollection_AsciiString("\n#define IGNORE_NORMAL_MAP");
}
if (myRaytraceParameters.CubemapForBack)
{
aPrefixString += TCollection_AsciiString("\n#define BACKGROUND_CUBEMAP");
}
if (myRaytraceParameters.DepthOfField)
{
aPrefixString += TCollection_AsciiString("\n#define DEPTH_OF_FIELD");
}
return aPrefixString;
}
// =======================================================================
// function : safeFailBack
// purpose : Performs safe exit when shaders initialization fails
// =======================================================================
Standard_Boolean OpenGl_View::safeFailBack (const TCollection_ExtendedString& theMessage,
const Handle(OpenGl_Context)& theGlContext)
{
theGlContext->PushMessage (GL_DEBUG_SOURCE_APPLICATION,
GL_DEBUG_TYPE_ERROR, 0, GL_DEBUG_SEVERITY_HIGH, theMessage);
myRaytraceInitStatus = OpenGl_RT_FAIL;
releaseRaytraceResources (theGlContext);
return Standard_False;
}
// =======================================================================
// function : initShader
// purpose : Creates new shader object with specified source
// =======================================================================
Handle(OpenGl_ShaderObject) OpenGl_View::initShader (const GLenum theType,
const ShaderSource& theSource,
const Handle(OpenGl_Context)& theGlContext)
{
Handle(OpenGl_ShaderObject) aShader = new OpenGl_ShaderObject (theType);
if (!aShader->Create (theGlContext))
{
theGlContext->PushMessage (GL_DEBUG_SOURCE_APPLICATION, GL_DEBUG_TYPE_ERROR, 0, GL_DEBUG_SEVERITY_HIGH,
TCollection_ExtendedString ("Error: Failed to create ") +
(theType == GL_VERTEX_SHADER ? "vertex" : "fragment") + " shader object");
aShader->Release (theGlContext.get());
return Handle(OpenGl_ShaderObject)();
}
if (!aShader->LoadAndCompile (theGlContext, "", theSource.Source()))
{
aShader->Release (theGlContext.get());
return Handle(OpenGl_ShaderObject)();
}
return aShader;
}
// =======================================================================
// function : initProgram
// purpose : Creates GLSL program from the given shader objects
// =======================================================================
Handle(OpenGl_ShaderProgram) OpenGl_View::initProgram (const Handle(OpenGl_Context)& theGlContext,
const Handle(OpenGl_ShaderObject)& theVertShader,
const Handle(OpenGl_ShaderObject)& theFragShader,
const TCollection_AsciiString& theName)
{
const TCollection_AsciiString anId = TCollection_AsciiString("occt_rt_") + theName;
Handle(OpenGl_ShaderProgram) aProgram = new OpenGl_ShaderProgram(Handle(Graphic3d_ShaderProgram)(), anId);
if (!aProgram->Create (theGlContext))
{
theVertShader->Release (theGlContext.operator->());
theGlContext->PushMessage (GL_DEBUG_SOURCE_APPLICATION,
GL_DEBUG_TYPE_ERROR, 0, GL_DEBUG_SEVERITY_HIGH, "Failed to create shader program");
return Handle(OpenGl_ShaderProgram)();
}
if (!aProgram->AttachShader (theGlContext, theVertShader)
|| !aProgram->AttachShader (theGlContext, theFragShader))
{
theVertShader->Release (theGlContext.operator->());
theGlContext->PushMessage (GL_DEBUG_SOURCE_APPLICATION,
GL_DEBUG_TYPE_ERROR, 0, GL_DEBUG_SEVERITY_HIGH, "Failed to attach shader objects");
return Handle(OpenGl_ShaderProgram)();
}
aProgram->SetAttributeName (theGlContext, Graphic3d_TOA_POS, "occVertex");
TCollection_AsciiString aLinkLog;
if (!aProgram->Link (theGlContext))
{
aProgram->FetchInfoLog (theGlContext, aLinkLog);
const TCollection_ExtendedString aMessage = TCollection_ExtendedString (
"Failed to link shader program:\n") + aLinkLog;
theGlContext->PushMessage (GL_DEBUG_SOURCE_APPLICATION,
GL_DEBUG_TYPE_ERROR, 0, GL_DEBUG_SEVERITY_HIGH, aMessage);
return Handle(OpenGl_ShaderProgram)();
}
else if (theGlContext->caps->glslWarnings)
{
aProgram->FetchInfoLog (theGlContext, aLinkLog);
if (!aLinkLog.IsEmpty() && !aLinkLog.IsEqual ("No errors.\n"))
{
const TCollection_ExtendedString aMessage = TCollection_ExtendedString (
"Shader program was linked with following warnings:\n") + aLinkLog;
theGlContext->PushMessage (GL_DEBUG_SOURCE_APPLICATION,
GL_DEBUG_TYPE_PORTABILITY, 0, GL_DEBUG_SEVERITY_LOW, aMessage);
}
}
return aProgram;
}
// =======================================================================
// function : initRaytraceResources
// purpose : Initializes OpenGL/GLSL shader programs
// =======================================================================
Standard_Boolean OpenGl_View::initRaytraceResources (const Standard_Integer theSizeX,
const Standard_Integer theSizeY,
const Handle(OpenGl_Context)& theGlContext)
{
if (myRaytraceInitStatus == OpenGl_RT_FAIL)
{
return Standard_False;
}
Standard_Boolean aToRebuildShaders = Standard_False;
if (myRenderParams.RebuildRayTracingShaders) // requires complete re-initialization
{
myRaytraceInitStatus = OpenGl_RT_NONE;
releaseRaytraceResources (theGlContext, Standard_True);
myRenderParams.RebuildRayTracingShaders = Standard_False; // clear rebuilding flag
}
if (myRaytraceInitStatus == OpenGl_RT_INIT)
{
if (!myIsRaytraceDataValid)
{
return Standard_True;
}
const Standard_Integer aRequiredStackSize =
myRaytraceGeometry.TopLevelTreeDepth() + myRaytraceGeometry.BotLevelTreeDepth();
if (myRaytraceParameters.StackSize < aRequiredStackSize)
{
myRaytraceParameters.StackSize = Max (aRequiredStackSize, THE_DEFAULT_STACK_SIZE);
aToRebuildShaders = Standard_True;
}
else
{
if (aRequiredStackSize < myRaytraceParameters.StackSize)
{
if (myRaytraceParameters.StackSize > THE_DEFAULT_STACK_SIZE)
{
myRaytraceParameters.StackSize = Max (aRequiredStackSize, THE_DEFAULT_STACK_SIZE);
aToRebuildShaders = Standard_True;
}
}
}
if (myRenderParams.RaytracingDepth != myRaytraceParameters.NbBounces
|| myRenderParams.IsTransparentShadowEnabled != myRaytraceParameters.TransparentShadows
|| myRenderParams.IsGlobalIlluminationEnabled != myRaytraceParameters.GlobalIllumination
|| myRenderParams.TwoSidedBsdfModels != myRaytraceParameters.TwoSidedBsdfModels
|| myRaytraceGeometry.HasTextures() != myRaytraceParameters.UseBindlessTextures
|| myRenderParams.ToIgnoreNormalMapInRayTracing != myRaytraceParameters.ToIgnoreNormalMap)
{
myRaytraceParameters.NbBounces = myRenderParams.RaytracingDepth;
myRaytraceParameters.TransparentShadows = myRenderParams.IsTransparentShadowEnabled;
myRaytraceParameters.GlobalIllumination = myRenderParams.IsGlobalIlluminationEnabled;
myRaytraceParameters.TwoSidedBsdfModels = myRenderParams.TwoSidedBsdfModels;
myRaytraceParameters.UseBindlessTextures = myRaytraceGeometry.HasTextures();
myRaytraceParameters.ToIgnoreNormalMap = myRenderParams.ToIgnoreNormalMapInRayTracing;
aToRebuildShaders = Standard_True;
}
if (myRenderParams.AdaptiveScreenSampling != myRaytraceParameters.AdaptiveScreenSampling
|| myRenderParams.AdaptiveScreenSamplingAtomic != myRaytraceParameters.AdaptiveScreenSamplingAtomic)
{
myRaytraceParameters.AdaptiveScreenSampling = myRenderParams.AdaptiveScreenSampling;
myRaytraceParameters.AdaptiveScreenSamplingAtomic = myRenderParams.AdaptiveScreenSamplingAtomic;
if (myRenderParams.AdaptiveScreenSampling) // adaptive sampling was requested
{
if (!theGlContext->HasRayTracingAdaptiveSampling())
{
// disable the feature if it is not supported
myRaytraceParameters.AdaptiveScreenSampling = myRenderParams.AdaptiveScreenSampling = Standard_False;
theGlContext->PushMessage (GL_DEBUG_SOURCE_APPLICATION, GL_DEBUG_TYPE_PORTABILITY, 0, GL_DEBUG_SEVERITY_LOW,
"Adaptive sampling is not supported (OpenGL 4.4 is missing)");
}
else if (myRaytraceParameters.AdaptiveScreenSamplingAtomic
&& !theGlContext->HasRayTracingAdaptiveSamplingAtomic())
{
// disable the feature if it is not supported
myRaytraceParameters.AdaptiveScreenSamplingAtomic = myRenderParams.AdaptiveScreenSamplingAtomic = Standard_False;
theGlContext->PushMessage (GL_DEBUG_SOURCE_APPLICATION, GL_DEBUG_TYPE_PORTABILITY, 0, GL_DEBUG_SEVERITY_LOW,
"Atomic adaptive sampling is not supported (GL_NV_shader_atomic_float is missing)");
}
}
aToRebuildShaders = Standard_True;
}
myTileSampler.SetSize (myRenderParams, myRaytraceParameters.AdaptiveScreenSampling ? Graphic3d_Vec2i (theSizeX, theSizeY) : Graphic3d_Vec2i (0, 0));
const bool isCubemapForBack = !myBackgroundCubeMap.IsNull();
if (myRaytraceParameters.CubemapForBack != isCubemapForBack)
{
myRaytraceParameters.CubemapForBack = isCubemapForBack;
aToRebuildShaders = Standard_True;
}
const bool toEnableDof = !myCamera->IsOrthographic() && myRaytraceParameters.GlobalIllumination;
if (myRaytraceParameters.DepthOfField != toEnableDof)
{
myRaytraceParameters.DepthOfField = toEnableDof;
aToRebuildShaders = Standard_True;
}
if (myRenderParams.ToneMappingMethod != myRaytraceParameters.ToneMappingMethod)
{
myRaytraceParameters.ToneMappingMethod = myRenderParams.ToneMappingMethod;
aToRebuildShaders = true;
}
if (aToRebuildShaders)
{
// Reject accumulated frames
myAccumFrames = 0;
// Environment map should be updated
myToUpdateEnvironmentMap = Standard_True;
const TCollection_AsciiString aPrefixString = generateShaderPrefix (theGlContext);
#ifdef RAY_TRACE_PRINT_INFO
std::cout << "GLSL prefix string:" << std::endl << aPrefixString << std::endl;
#endif
myRaytraceShaderSource.SetPrefix (aPrefixString);
myPostFSAAShaderSource.SetPrefix (aPrefixString);
myOutImageShaderSource.SetPrefix (aPrefixString);
if (!myRaytraceShader->LoadAndCompile (theGlContext, myRaytraceProgram->ResourceId(), myRaytraceShaderSource.Source())
|| !myPostFSAAShader->LoadAndCompile (theGlContext, myPostFSAAProgram->ResourceId(), myPostFSAAShaderSource.Source())
|| !myOutImageShader->LoadAndCompile (theGlContext, myOutImageProgram->ResourceId(), myOutImageShaderSource.Source()))
{
return safeFailBack ("Failed to compile ray-tracing fragment shaders", theGlContext);
}
myRaytraceProgram->SetAttributeName (theGlContext, Graphic3d_TOA_POS, "occVertex");
myPostFSAAProgram->SetAttributeName (theGlContext, Graphic3d_TOA_POS, "occVertex");
myOutImageProgram->SetAttributeName (theGlContext, Graphic3d_TOA_POS, "occVertex");
if (!myRaytraceProgram->Link (theGlContext)
|| !myPostFSAAProgram->Link (theGlContext)
|| !myOutImageProgram->Link (theGlContext))
{
return safeFailBack ("Failed to initialize vertex attributes for ray-tracing program", theGlContext);
}
}
}
if (myRaytraceInitStatus == OpenGl_RT_NONE)
{
myAccumFrames = 0; // accumulation should be restarted
if (!theGlContext->IsGlGreaterEqual (3, 1))
{
return safeFailBack ("Ray-tracing requires OpenGL 3.1 and higher", theGlContext);
}
else if (!theGlContext->arbTboRGB32)
{
return safeFailBack ("Ray-tracing requires OpenGL 4.0+ or GL_ARB_texture_buffer_object_rgb32 extension", theGlContext);
}
else if (!theGlContext->arbFBOBlit)
{
return safeFailBack ("Ray-tracing requires EXT_framebuffer_blit extension", theGlContext);
}
myRaytraceParameters.NbBounces = myRenderParams.RaytracingDepth;
const TCollection_AsciiString aShaderFolder = Graphic3d_ShaderProgram::ShadersFolder();
if (myIsRaytraceDataValid)
{
myRaytraceParameters.StackSize = Max (THE_DEFAULT_STACK_SIZE,
myRaytraceGeometry.TopLevelTreeDepth() + myRaytraceGeometry.BotLevelTreeDepth());
}
const TCollection_AsciiString aPrefixString = generateShaderPrefix (theGlContext);
#ifdef RAY_TRACE_PRINT_INFO
std::cout << "GLSL prefix string:" << std::endl << aPrefixString << std::endl;
#endif
ShaderSource aBasicVertShaderSrc;
{
if (!aShaderFolder.IsEmpty())
{
const TCollection_AsciiString aFiles[] = { aShaderFolder + "/RaytraceBase.vs", "" };
if (!aBasicVertShaderSrc.LoadFromFiles (aFiles))
{
return safeFailBack (aBasicVertShaderSrc.ErrorDescription(), theGlContext);
}
}
else
{
const TCollection_AsciiString aSrcShaders[] = { Shaders_RaytraceBase_vs, "" };
aBasicVertShaderSrc.LoadFromStrings (aSrcShaders);
}
}
{
if (!aShaderFolder.IsEmpty())
{
const TCollection_AsciiString aFiles[] = { aShaderFolder + "/RaytraceBase.fs",
aShaderFolder + "/TangentSpaceNormal.glsl",
aShaderFolder + "/PathtraceBase.fs",
aShaderFolder + "/RaytraceRender.fs",
"" };
if (!myRaytraceShaderSource.LoadFromFiles (aFiles, aPrefixString))
{
return safeFailBack (myRaytraceShaderSource.ErrorDescription(), theGlContext);
}
}
else
{
const TCollection_AsciiString aSrcShaders[] = { Shaders_RaytraceBase_fs,
Shaders_TangentSpaceNormal_glsl,
Shaders_PathtraceBase_fs,
Shaders_RaytraceRender_fs,
"" };
myRaytraceShaderSource.LoadFromStrings (aSrcShaders, aPrefixString);
}
Handle(OpenGl_ShaderObject) aBasicVertShader = initShader (GL_VERTEX_SHADER, aBasicVertShaderSrc, theGlContext);
if (aBasicVertShader.IsNull())
{
return safeFailBack ("Failed to initialize ray-trace vertex shader", theGlContext);
}
myRaytraceShader = initShader (GL_FRAGMENT_SHADER, myRaytraceShaderSource, theGlContext);
if (myRaytraceShader.IsNull())
{
aBasicVertShader->Release (theGlContext.operator->());
return safeFailBack ("Failed to initialize ray-trace fragment shader", theGlContext);
}
myRaytraceProgram = initProgram (theGlContext, aBasicVertShader, myRaytraceShader, "main");
if (myRaytraceProgram.IsNull())
{
return safeFailBack ("Failed to initialize ray-trace shader program", theGlContext);
}
}
{
if (!aShaderFolder.IsEmpty())
{
const TCollection_AsciiString aFiles[] = { aShaderFolder + "/RaytraceBase.fs", aShaderFolder + "/RaytraceSmooth.fs", "" };
if (!myPostFSAAShaderSource.LoadFromFiles (aFiles, aPrefixString))
{
return safeFailBack (myPostFSAAShaderSource.ErrorDescription(), theGlContext);
}
}
else
{
const TCollection_AsciiString aSrcShaders[] = { Shaders_RaytraceBase_fs, Shaders_RaytraceSmooth_fs, "" };
myPostFSAAShaderSource.LoadFromStrings (aSrcShaders, aPrefixString);
}
Handle(OpenGl_ShaderObject) aBasicVertShader = initShader (GL_VERTEX_SHADER, aBasicVertShaderSrc, theGlContext);
if (aBasicVertShader.IsNull())
{
return safeFailBack ("Failed to initialize FSAA vertex shader", theGlContext);
}
myPostFSAAShader = initShader (GL_FRAGMENT_SHADER, myPostFSAAShaderSource, theGlContext);
if (myPostFSAAShader.IsNull())
{
aBasicVertShader->Release (theGlContext.operator->());
return safeFailBack ("Failed to initialize FSAA fragment shader", theGlContext);
}
myPostFSAAProgram = initProgram (theGlContext, aBasicVertShader, myPostFSAAShader, "fsaa");
if (myPostFSAAProgram.IsNull())
{
return safeFailBack ("Failed to initialize FSAA shader program", theGlContext);
}
}
{
if (!aShaderFolder.IsEmpty())
{
const TCollection_AsciiString aFiles[] = { aShaderFolder + "/Display.fs", "" };
if (!myOutImageShaderSource.LoadFromFiles (aFiles, aPrefixString))
{
return safeFailBack (myOutImageShaderSource.ErrorDescription(), theGlContext);
}
}
else
{
const TCollection_AsciiString aSrcShaders[] = { Shaders_Display_fs, "" };
myOutImageShaderSource.LoadFromStrings (aSrcShaders, aPrefixString);
}
Handle(OpenGl_ShaderObject) aBasicVertShader = initShader (GL_VERTEX_SHADER, aBasicVertShaderSrc, theGlContext);
if (aBasicVertShader.IsNull())
{
return safeFailBack ("Failed to set vertex shader source", theGlContext);
}
myOutImageShader = initShader (GL_FRAGMENT_SHADER, myOutImageShaderSource, theGlContext);
if (myOutImageShader.IsNull())
{
aBasicVertShader->Release (theGlContext.operator->());
return safeFailBack ("Failed to set display fragment shader source", theGlContext);
}
myOutImageProgram = initProgram (theGlContext, aBasicVertShader, myOutImageShader, "out");
if (myOutImageProgram.IsNull())
{
return safeFailBack ("Failed to initialize display shader program", theGlContext);
}
}
}
if (myRaytraceInitStatus == OpenGl_RT_NONE || aToRebuildShaders)
{
for (Standard_Integer anIndex = 0; anIndex < 2; ++anIndex)
{
Handle(OpenGl_ShaderProgram)& aShaderProgram =
(anIndex == 0) ? myRaytraceProgram : myPostFSAAProgram;
theGlContext->BindProgram (aShaderProgram);
aShaderProgram->SetSampler (theGlContext,
"uSceneMinPointTexture", OpenGl_RT_SceneMinPointTexture);
aShaderProgram->SetSampler (theGlContext,
"uSceneMaxPointTexture", OpenGl_RT_SceneMaxPointTexture);
aShaderProgram->SetSampler (theGlContext,
"uSceneNodeInfoTexture", OpenGl_RT_SceneNodeInfoTexture);
aShaderProgram->SetSampler (theGlContext,
"uGeometryVertexTexture", OpenGl_RT_GeometryVertexTexture);
aShaderProgram->SetSampler (theGlContext,
"uGeometryNormalTexture", OpenGl_RT_GeometryNormalTexture);
aShaderProgram->SetSampler (theGlContext,
"uGeometryTexCrdTexture", OpenGl_RT_GeometryTexCrdTexture);
aShaderProgram->SetSampler (theGlContext,
"uGeometryTriangTexture", OpenGl_RT_GeometryTriangTexture);
aShaderProgram->SetSampler (theGlContext,
"uSceneTransformTexture", OpenGl_RT_SceneTransformTexture);
aShaderProgram->SetSampler (theGlContext,
"uEnvMapTexture", OpenGl_RT_EnvMapTexture);
aShaderProgram->SetSampler (theGlContext,
"uRaytraceMaterialTexture", OpenGl_RT_RaytraceMaterialTexture);
aShaderProgram->SetSampler (theGlContext,
"uRaytraceLightSrcTexture", OpenGl_RT_RaytraceLightSrcTexture);
if (anIndex == 1)
{
aShaderProgram->SetSampler (theGlContext,
"uFSAAInputTexture", OpenGl_RT_FsaaInputTexture);
}
else
{
aShaderProgram->SetSampler (theGlContext,
"uAccumTexture", OpenGl_RT_PrevAccumTexture);
}
myUniformLocations[anIndex][OpenGl_RT_aPosition] =
aShaderProgram->GetAttributeLocation (theGlContext, "occVertex");
myUniformLocations[anIndex][OpenGl_RT_uOriginLB] =
aShaderProgram->GetUniformLocation (theGlContext, "uOriginLB");
myUniformLocations[anIndex][OpenGl_RT_uOriginRB] =
aShaderProgram->GetUniformLocation (theGlContext, "uOriginRB");
myUniformLocations[anIndex][OpenGl_RT_uOriginLT] =
aShaderProgram->GetUniformLocation (theGlContext, "uOriginLT");
myUniformLocations[anIndex][OpenGl_RT_uOriginRT] =
aShaderProgram->GetUniformLocation (theGlContext, "uOriginRT");
myUniformLocations[anIndex][OpenGl_RT_uDirectLB] =
aShaderProgram->GetUniformLocation (theGlContext, "uDirectLB");
myUniformLocations[anIndex][OpenGl_RT_uDirectRB] =
aShaderProgram->GetUniformLocation (theGlContext, "uDirectRB");
myUniformLocations[anIndex][OpenGl_RT_uDirectLT] =
aShaderProgram->GetUniformLocation (theGlContext, "uDirectLT");
myUniformLocations[anIndex][OpenGl_RT_uDirectRT] =
aShaderProgram->GetUniformLocation (theGlContext, "uDirectRT");
myUniformLocations[anIndex][OpenGl_RT_uViewPrMat] =
aShaderProgram->GetUniformLocation (theGlContext, "uViewMat");
myUniformLocations[anIndex][OpenGl_RT_uUnviewMat] =
aShaderProgram->GetUniformLocation (theGlContext, "uUnviewMat");
myUniformLocations[anIndex][OpenGl_RT_uSceneRad] =
aShaderProgram->GetUniformLocation (theGlContext, "uSceneRadius");
myUniformLocations[anIndex][OpenGl_RT_uSceneEps] =
aShaderProgram->GetUniformLocation (theGlContext, "uSceneEpsilon");
myUniformLocations[anIndex][OpenGl_RT_uLightCount] =
aShaderProgram->GetUniformLocation (theGlContext, "uLightCount");
myUniformLocations[anIndex][OpenGl_RT_uLightAmbnt] =
aShaderProgram->GetUniformLocation (theGlContext, "uGlobalAmbient");
myUniformLocations[anIndex][OpenGl_RT_uOffsetX] =
aShaderProgram->GetUniformLocation (theGlContext, "uOffsetX");
myUniformLocations[anIndex][OpenGl_RT_uOffsetY] =
aShaderProgram->GetUniformLocation (theGlContext, "uOffsetY");
myUniformLocations[anIndex][OpenGl_RT_uSamples] =
aShaderProgram->GetUniformLocation (theGlContext, "uSamples");
myUniformLocations[anIndex][OpenGl_RT_uTexSamplersArray] =
aShaderProgram->GetUniformLocation (theGlContext, "uTextureSamplers");
myUniformLocations[anIndex][OpenGl_RT_uShadowsEnabled] =
aShaderProgram->GetUniformLocation (theGlContext, "uShadowsEnabled");
myUniformLocations[anIndex][OpenGl_RT_uReflectEnabled] =
aShaderProgram->GetUniformLocation (theGlContext, "uReflectEnabled");
myUniformLocations[anIndex][OpenGl_RT_uEnvMapEnabled] =
aShaderProgram->GetUniformLocation (theGlContext, "uEnvMapEnabled");
myUniformLocations[anIndex][OpenGl_RT_uEnvMapForBack] =
aShaderProgram->GetUniformLocation (theGlContext, "uEnvMapForBack");
myUniformLocations[anIndex][OpenGl_RT_uBlockedRngEnabled] =
aShaderProgram->GetUniformLocation (theGlContext, "uBlockedRngEnabled");
myUniformLocations[anIndex][OpenGl_RT_uWinSizeX] =
aShaderProgram->GetUniformLocation (theGlContext, "uWinSizeX");
myUniformLocations[anIndex][OpenGl_RT_uWinSizeY] =
aShaderProgram->GetUniformLocation (theGlContext, "uWinSizeY");
myUniformLocations[anIndex][OpenGl_RT_uAccumSamples] =
aShaderProgram->GetUniformLocation (theGlContext, "uAccumSamples");
myUniformLocations[anIndex][OpenGl_RT_uFrameRndSeed] =
aShaderProgram->GetUniformLocation (theGlContext, "uFrameRndSeed");
myUniformLocations[anIndex][OpenGl_RT_uRenderImage] =
aShaderProgram->GetUniformLocation (theGlContext, "uRenderImage");
myUniformLocations[anIndex][OpenGl_RT_uTilesImage] =
aShaderProgram->GetUniformLocation (theGlContext, "uTilesImage");
myUniformLocations[anIndex][OpenGl_RT_uOffsetImage] =
aShaderProgram->GetUniformLocation (theGlContext, "uOffsetImage");
myUniformLocations[anIndex][OpenGl_RT_uTileSize] =
aShaderProgram->GetUniformLocation (theGlContext, "uTileSize");
myUniformLocations[anIndex][OpenGl_RT_uVarianceScaleFactor] =
aShaderProgram->GetUniformLocation (theGlContext, "uVarianceScaleFactor");
myUniformLocations[anIndex][OpenGl_RT_uBackColorTop] =
aShaderProgram->GetUniformLocation (theGlContext, "uBackColorTop");
myUniformLocations[anIndex][OpenGl_RT_uBackColorBot] =
aShaderProgram->GetUniformLocation (theGlContext, "uBackColorBot");
myUniformLocations[anIndex][OpenGl_RT_uMaxRadiance] =
aShaderProgram->GetUniformLocation (theGlContext, "uMaxRadiance");
}
theGlContext->BindProgram (myOutImageProgram);
myOutImageProgram->SetSampler (theGlContext,
"uInputTexture", OpenGl_RT_PrevAccumTexture);
myOutImageProgram->SetSampler (theGlContext,
"uDepthTexture", OpenGl_RT_RaytraceDepthTexture);
theGlContext->BindProgram (NULL);
}
if (myRaytraceInitStatus != OpenGl_RT_NONE)
{
return myRaytraceInitStatus == OpenGl_RT_INIT;
}
const GLfloat aVertices[] = { -1.f, -1.f, 0.f,
-1.f, 1.f, 0.f,
1.f, 1.f, 0.f,
1.f, 1.f, 0.f,
1.f, -1.f, 0.f,
-1.f, -1.f, 0.f };
myRaytraceScreenQuad.Init (theGlContext, 3, 6, aVertices);
myRaytraceInitStatus = OpenGl_RT_INIT; // initialized in normal way
return Standard_True;
}
// =======================================================================
// function : nullifyResource
// purpose : Releases OpenGL resource
// =======================================================================
template <class T>
inline void nullifyResource (const Handle(OpenGl_Context)& theGlContext, Handle(T)& theResource)
{
if (!theResource.IsNull())
{
theResource->Release (theGlContext.get());
theResource.Nullify();
}
}
// =======================================================================
// function : releaseRaytraceResources
// purpose : Releases OpenGL/GLSL shader programs
// =======================================================================
void OpenGl_View::releaseRaytraceResources (const Handle(OpenGl_Context)& theGlContext, const Standard_Boolean theToRebuild)
{
// release shader resources
nullifyResource (theGlContext, myRaytraceShader);
nullifyResource (theGlContext, myPostFSAAShader);
nullifyResource (theGlContext, myRaytraceProgram);
nullifyResource (theGlContext, myPostFSAAProgram);
nullifyResource (theGlContext, myOutImageProgram);
if (!theToRebuild) // complete release
{
myRaytraceFBO1[0]->Release (theGlContext.get());
myRaytraceFBO1[1]->Release (theGlContext.get());
myRaytraceFBO2[0]->Release (theGlContext.get());
myRaytraceFBO2[1]->Release (theGlContext.get());
nullifyResource (theGlContext, myRaytraceOutputTexture[0]);
nullifyResource (theGlContext, myRaytraceOutputTexture[1]);
nullifyResource (theGlContext, myRaytraceTileOffsetsTexture[0]);
nullifyResource (theGlContext, myRaytraceTileOffsetsTexture[1]);
nullifyResource (theGlContext, myRaytraceVisualErrorTexture[0]);
nullifyResource (theGlContext, myRaytraceVisualErrorTexture[1]);
nullifyResource (theGlContext, myRaytraceTileSamplesTexture[0]);
nullifyResource (theGlContext, myRaytraceTileSamplesTexture[1]);
nullifyResource (theGlContext, mySceneNodeInfoTexture);
nullifyResource (theGlContext, mySceneMinPointTexture);
nullifyResource (theGlContext, mySceneMaxPointTexture);
nullifyResource (theGlContext, myGeometryVertexTexture);
nullifyResource (theGlContext, myGeometryNormalTexture);
nullifyResource (theGlContext, myGeometryTexCrdTexture);
nullifyResource (theGlContext, myGeometryTriangTexture);
nullifyResource (theGlContext, mySceneTransformTexture);
nullifyResource (theGlContext, myRaytraceLightSrcTexture);
nullifyResource (theGlContext, myRaytraceMaterialTexture);
myRaytraceGeometry.ReleaseResources (theGlContext);
if (myRaytraceScreenQuad.IsValid ())
{
myRaytraceScreenQuad.Release (theGlContext.get());
}
}
}
// =======================================================================
// function : updateRaytraceBuffers
// purpose : Updates auxiliary OpenGL frame buffers.
// =======================================================================
Standard_Boolean OpenGl_View::updateRaytraceBuffers (const Standard_Integer theSizeX,
const Standard_Integer theSizeY,
const Handle(OpenGl_Context)& theGlContext)
{
// Auxiliary buffers are not used
if (!myRaytraceParameters.GlobalIllumination && !myRenderParams.IsAntialiasingEnabled)
{
myRaytraceFBO1[0]->Release (theGlContext.operator->());
myRaytraceFBO2[0]->Release (theGlContext.operator->());
myRaytraceFBO1[1]->Release (theGlContext.operator->());
myRaytraceFBO2[1]->Release (theGlContext.operator->());
return Standard_True;
}
if (myRaytraceParameters.AdaptiveScreenSampling)
{
Graphic3d_Vec2i aMaxViewport = myTileSampler.OffsetTilesViewportMax().cwiseMax (Graphic3d_Vec2i (theSizeX, theSizeY));
myRaytraceFBO1[0]->InitLazy (theGlContext, aMaxViewport.x(), aMaxViewport.y(), GL_RGBA32F, myFboDepthFormat);
myRaytraceFBO2[0]->InitLazy (theGlContext, aMaxViewport.x(), aMaxViewport.y(), GL_RGBA32F, myFboDepthFormat);
if (myRaytraceFBO1[1]->IsValid()) // second FBO not needed
{
myRaytraceFBO1[1]->Release (theGlContext.operator->());
myRaytraceFBO2[1]->Release (theGlContext.operator->());
}
}
for (int aViewIter = 0; aViewIter < 2; ++aViewIter)
{
if (myRaytraceTileOffsetsTexture[aViewIter].IsNull())
{
myRaytraceOutputTexture[aViewIter] = new OpenGl_Texture();
myRaytraceVisualErrorTexture[aViewIter] = new OpenGl_Texture();
myRaytraceTileSamplesTexture[aViewIter] = new OpenGl_Texture();
myRaytraceTileOffsetsTexture[aViewIter] = new OpenGl_Texture();
}
if (aViewIter == 1
&& myCamera->ProjectionType() != Graphic3d_Camera::Projection_Stereo)
{
myRaytraceFBO1[1]->Release (theGlContext.operator->());
myRaytraceFBO2[1]->Release (theGlContext.operator->());
myRaytraceOutputTexture[1]->Release (theGlContext.operator->());
myRaytraceVisualErrorTexture[1]->Release (theGlContext.operator->());
myRaytraceTileOffsetsTexture[1]->Release (theGlContext.operator->());
continue;
}
if (myRaytraceParameters.AdaptiveScreenSampling)
{
if (myRaytraceOutputTexture[aViewIter]->SizeX() / 3 == theSizeX
&& myRaytraceOutputTexture[aViewIter]->SizeY() / 2 == theSizeY
&& myRaytraceVisualErrorTexture[aViewIter]->SizeX() == myTileSampler.NbTilesX()
&& myRaytraceVisualErrorTexture[aViewIter]->SizeY() == myTileSampler.NbTilesY())
{
if (myRaytraceParameters.AdaptiveScreenSamplingAtomic)
{
continue; // offsets texture is dynamically resized
}
else if (myRaytraceTileSamplesTexture[aViewIter]->SizeX() == myTileSampler.NbTilesX()
&& myRaytraceTileSamplesTexture[aViewIter]->SizeY() == myTileSampler.NbTilesY())
{
continue;
}
}
myAccumFrames = 0;
// Due to limitations of OpenGL image load-store extension
// atomic operations are supported only for single-channel
// images, so we define GL_R32F image. It is used as array
// of 6D floating point vectors:
// 0 - R color channel
// 1 - G color channel
// 2 - B color channel
// 3 - hit time transformed into OpenGL NDC space
// 4 - luminance accumulated for odd samples only
myRaytraceOutputTexture[aViewIter]->InitRectangle (theGlContext, theSizeX * 3, theSizeY * 2, OpenGl_TextureFormat::Create<GLfloat, 1>());
// workaround for some NVIDIA drivers
myRaytraceVisualErrorTexture[aViewIter]->Release (theGlContext.operator->());
myRaytraceTileSamplesTexture[aViewIter]->Release (theGlContext.operator->());
myRaytraceVisualErrorTexture[aViewIter]->Init (theGlContext,
OpenGl_TextureFormat::FindSizedFormat (theGlContext, GL_R32I),
Graphic3d_Vec2i (myTileSampler.NbTilesX(), myTileSampler.NbTilesY()),
Graphic3d_TOT_2D);
if (!myRaytraceParameters.AdaptiveScreenSamplingAtomic)
{
myRaytraceTileSamplesTexture[aViewIter]->Init (theGlContext,
OpenGl_TextureFormat::FindSizedFormat (theGlContext, GL_R32I),
Graphic3d_Vec2i (myTileSampler.NbTilesX(), myTileSampler.NbTilesY()),
Graphic3d_TOT_2D);
}
}
else // non-adaptive mode
{
if (myRaytraceFBO1[aViewIter]->GetSizeX() != theSizeX
|| myRaytraceFBO1[aViewIter]->GetSizeY() != theSizeY)
{
myAccumFrames = 0; // accumulation should be restarted
}
myRaytraceFBO1[aViewIter]->InitLazy (theGlContext, theSizeX, theSizeY, GL_RGBA32F, myFboDepthFormat);
myRaytraceFBO2[aViewIter]->InitLazy (theGlContext, theSizeX, theSizeY, GL_RGBA32F, myFboDepthFormat);
}
}
return Standard_True;
}
// =======================================================================
// function : updateCamera
// purpose : Generates viewing rays for corners of screen quad
// =======================================================================
void OpenGl_View::updateCamera (const OpenGl_Mat4& theOrientation,
const OpenGl_Mat4& theViewMapping,
OpenGl_Vec3* theOrigins,
OpenGl_Vec3* theDirects,
OpenGl_Mat4& theViewPr,
OpenGl_Mat4& theUnview)
{
// compute view-projection matrix
theViewPr = theViewMapping * theOrientation;
// compute inverse view-projection matrix
theViewPr.Inverted (theUnview);
Standard_Integer aOriginIndex = 0;
Standard_Integer aDirectIndex = 0;
for (Standard_Integer aY = -1; aY <= 1; aY += 2)
{
for (Standard_Integer aX = -1; aX <= 1; aX += 2)
{
OpenGl_Vec4 aOrigin (GLfloat(aX),
GLfloat(aY),
-1.0f,
1.0f);
aOrigin = theUnview * aOrigin;
aOrigin.x() = aOrigin.x() / aOrigin.w();
aOrigin.y() = aOrigin.y() / aOrigin.w();
aOrigin.z() = aOrigin.z() / aOrigin.w();
OpenGl_Vec4 aDirect (GLfloat(aX),
GLfloat(aY),
1.0f,
1.0f);
aDirect = theUnview * aDirect;
aDirect.x() = aDirect.x() / aDirect.w();
aDirect.y() = aDirect.y() / aDirect.w();
aDirect.z() = aDirect.z() / aDirect.w();
aDirect = aDirect - aOrigin;
theOrigins[aOriginIndex++] = OpenGl_Vec3 (static_cast<GLfloat> (aOrigin.x()),
static_cast<GLfloat> (aOrigin.y()),
static_cast<GLfloat> (aOrigin.z()));
theDirects[aDirectIndex++] = OpenGl_Vec3 (static_cast<GLfloat> (aDirect.x()),
static_cast<GLfloat> (aDirect.y()),
static_cast<GLfloat> (aDirect.z()));
}
}
}
// =======================================================================
// function : updatePerspCameraPT
// purpose : Generates viewing rays (path tracing, perspective camera)
// =======================================================================
void OpenGl_View::updatePerspCameraPT (const OpenGl_Mat4& theOrientation,
const OpenGl_Mat4& theViewMapping,
Graphic3d_Camera::Projection theProjection,
OpenGl_Mat4& theViewPr,
OpenGl_Mat4& theUnview,
const int theWinSizeX,
const int theWinSizeY)
{
// compute view-projection matrix
theViewPr = theViewMapping * theOrientation;
// compute inverse view-projection matrix
theViewPr.Inverted(theUnview);
// get camera stereo params
float anIOD = myCamera->GetIODType() == Graphic3d_Camera::IODType_Relative
? static_cast<float> (myCamera->IOD() * myCamera->Distance())
: static_cast<float> (myCamera->IOD());
float aZFocus = myCamera->ZFocusType() == Graphic3d_Camera::FocusType_Relative
? static_cast<float> (myCamera->ZFocus() * myCamera->Distance())
: static_cast<float> (myCamera->ZFocus());
// get camera view vectors
const gp_Pnt anOrig = myCamera->Eye();
myEyeOrig = OpenGl_Vec3 (static_cast<float> (anOrig.X()),
static_cast<float> (anOrig.Y()),
static_cast<float> (anOrig.Z()));
const gp_Dir aView = myCamera->Direction();
OpenGl_Vec3 anEyeViewMono = OpenGl_Vec3 (static_cast<float> (aView.X()),
static_cast<float> (aView.Y()),
static_cast<float> (aView.Z()));
const gp_Dir anUp = myCamera->Up();
myEyeVert = OpenGl_Vec3 (static_cast<float> (anUp.X()),
static_cast<float> (anUp.Y()),
static_cast<float> (anUp.Z()));
myEyeSide = OpenGl_Vec3::Cross (anEyeViewMono, myEyeVert);
const double aScaleY = tan (myCamera->FOVy() / 360 * M_PI);
const double aScaleX = theWinSizeX * aScaleY / theWinSizeY;
myEyeSize = OpenGl_Vec2 (static_cast<float> (aScaleX),
static_cast<float> (aScaleY));
if (theProjection == Graphic3d_Camera::Projection_Perspective)
{
myEyeView = anEyeViewMono;
}
else // stereo camera
{
// compute z-focus point
OpenGl_Vec3 aZFocusPoint = myEyeOrig + anEyeViewMono * aZFocus;
// compute stereo camera shift
float aDx = theProjection == Graphic3d_Camera::Projection_MonoRightEye ? 0.5f * anIOD : -0.5f * anIOD;
myEyeOrig += myEyeSide.Normalized() * aDx;
// estimate new camera direction vector and correct its length
myEyeView = (aZFocusPoint - myEyeOrig).Normalized();
myEyeView *= 1.f / anEyeViewMono.Dot (myEyeView);
}
}
// =======================================================================
// function : uploadRaytraceData
// purpose : Uploads ray-trace data to the GPU
// =======================================================================
Standard_Boolean OpenGl_View::uploadRaytraceData (const Handle(OpenGl_Context)& theGlContext)
{
if (!theGlContext->IsGlGreaterEqual (3, 1))
{
#ifdef RAY_TRACE_PRINT_INFO
std::cout << "Error: OpenGL version is less than 3.1" << std::endl;
#endif
return Standard_False;
}
myAccumFrames = 0; // accumulation should be restarted
/////////////////////////////////////////////////////////////////////////////
// Prepare OpenGL textures
if (theGlContext->arbTexBindless != NULL)
{
// If OpenGL driver supports bindless textures we need
// to get unique 64- bit handles for using on the GPU
if (!myRaytraceGeometry.UpdateTextureHandles (theGlContext))
{
#ifdef RAY_TRACE_PRINT_INFO
std::cout << "Error: Failed to get OpenGL texture handles" << std::endl;
#endif
return Standard_False;
}
}
/////////////////////////////////////////////////////////////////////////////
// Create OpenGL BVH buffers
if (mySceneNodeInfoTexture.IsNull()) // create scene BVH buffers
{
mySceneNodeInfoTexture = new OpenGl_TextureBufferArb;
mySceneMinPointTexture = new OpenGl_TextureBufferArb;
mySceneMaxPointTexture = new OpenGl_TextureBufferArb;
mySceneTransformTexture = new OpenGl_TextureBufferArb;
if (!mySceneNodeInfoTexture->Create (theGlContext)
|| !mySceneMinPointTexture->Create (theGlContext)
|| !mySceneMaxPointTexture->Create (theGlContext)
|| !mySceneTransformTexture->Create (theGlContext))
{
#ifdef RAY_TRACE_PRINT_INFO
std::cout << "Error: Failed to create scene BVH buffers" << std::endl;
#endif
return Standard_False;
}
}
if (myGeometryVertexTexture.IsNull()) // create geometry buffers
{
myGeometryVertexTexture = new OpenGl_TextureBufferArb;
myGeometryNormalTexture = new OpenGl_TextureBufferArb;
myGeometryTexCrdTexture = new OpenGl_TextureBufferArb;
myGeometryTriangTexture = new OpenGl_TextureBufferArb;
if (!myGeometryVertexTexture->Create (theGlContext)
|| !myGeometryNormalTexture->Create (theGlContext)
|| !myGeometryTexCrdTexture->Create (theGlContext)
|| !myGeometryTriangTexture->Create (theGlContext))
{
#ifdef RAY_TRACE_PRINT_INFO
std::cout << "Error: Failed to create buffers for triangulation data" << std::endl;
#endif
return Standard_False;
}
}
if (myRaytraceMaterialTexture.IsNull()) // create material buffer
{
myRaytraceMaterialTexture = new OpenGl_TextureBufferArb;
if (!myRaytraceMaterialTexture->Create (theGlContext))
{
#ifdef RAY_TRACE_PRINT_INFO
std::cout << "Error: Failed to create buffers for material data" << std::endl;
#endif
return Standard_False;
}
}
/////////////////////////////////////////////////////////////////////////////
// Write transform buffer
BVH_Mat4f* aNodeTransforms = new BVH_Mat4f[myRaytraceGeometry.Size()];
bool aResult = true;
for (Standard_Integer anElemIndex = 0; anElemIndex < myRaytraceGeometry.Size(); ++anElemIndex)
{
OpenGl_TriangleSet* aTriangleSet = dynamic_cast<OpenGl_TriangleSet*> (
myRaytraceGeometry.Objects().ChangeValue (anElemIndex).operator->());
const BVH_Transform<Standard_ShortReal, 4>* aTransform = dynamic_cast<const BVH_Transform<Standard_ShortReal, 4>* > (aTriangleSet->Properties().get());
Standard_ASSERT_RETURN (aTransform != NULL,
"OpenGl_TriangleSet does not contain transform", Standard_False);
aNodeTransforms[anElemIndex] = aTransform->Inversed();
}
aResult &= mySceneTransformTexture->Init (theGlContext, 4,
myRaytraceGeometry.Size() * 4, reinterpret_cast<const GLfloat*> (aNodeTransforms));
delete [] aNodeTransforms;
/////////////////////////////////////////////////////////////////////////////
// Write geometry and bottom-level BVH buffers
Standard_Size aTotalVerticesNb = 0;
Standard_Size aTotalElementsNb = 0;
Standard_Size aTotalBVHNodesNb = 0;
for (Standard_Integer anElemIndex = 0; anElemIndex < myRaytraceGeometry.Size(); ++anElemIndex)
{
OpenGl_TriangleSet* aTriangleSet = dynamic_cast<OpenGl_TriangleSet*> (
myRaytraceGeometry.Objects().ChangeValue (anElemIndex).operator->());
Standard_ASSERT_RETURN (aTriangleSet != NULL,
"Error: Failed to get triangulation of OpenGL element", Standard_False);
aTotalVerticesNb += aTriangleSet->Vertices.size();
aTotalElementsNb += aTriangleSet->Elements.size();
Standard_ASSERT_RETURN (!aTriangleSet->QuadBVH().IsNull(),
"Error: Failed to get bottom-level BVH of OpenGL element", Standard_False);
aTotalBVHNodesNb += aTriangleSet->QuadBVH()->NodeInfoBuffer().size();
}
aTotalBVHNodesNb += myRaytraceGeometry.QuadBVH()->NodeInfoBuffer().size();
if (aTotalBVHNodesNb != 0)
{
aResult &= mySceneNodeInfoTexture->Init (
theGlContext, 4, GLsizei (aTotalBVHNodesNb), static_cast<const GLuint*> (NULL));
aResult &= mySceneMinPointTexture->Init (
theGlContext, 3, GLsizei (aTotalBVHNodesNb), static_cast<const GLfloat*> (NULL));
aResult &= mySceneMaxPointTexture->Init (
theGlContext, 3, GLsizei (aTotalBVHNodesNb), static_cast<const GLfloat*> (NULL));
}
if (!aResult)
{
#ifdef RAY_TRACE_PRINT_INFO
std::cout << "Error: Failed to upload buffers for bottom-level scene BVH" << std::endl;
#endif
return Standard_False;
}
if (aTotalElementsNb != 0)
{
aResult &= myGeometryTriangTexture->Init (
theGlContext, 4, GLsizei (aTotalElementsNb), static_cast<const GLuint*> (NULL));
}
if (aTotalVerticesNb != 0)
{
aResult &= myGeometryVertexTexture->Init (
theGlContext, 3, GLsizei (aTotalVerticesNb), static_cast<const GLfloat*> (NULL));
aResult &= myGeometryNormalTexture->Init (
theGlContext, 3, GLsizei (aTotalVerticesNb), static_cast<const GLfloat*> (NULL));
aResult &= myGeometryTexCrdTexture->Init (
theGlContext, 2, GLsizei (aTotalVerticesNb), static_cast<const GLfloat*> (NULL));
}
if (!aResult)
{
#ifdef RAY_TRACE_PRINT_INFO
std::cout << "Error: Failed to upload buffers for scene geometry" << std::endl;
#endif
return Standard_False;
}
const QuadBvhHandle& aBVH = myRaytraceGeometry.QuadBVH();
if (aBVH->Length() > 0)
{
aResult &= mySceneNodeInfoTexture->SubData (theGlContext, 0, aBVH->Length(),
reinterpret_cast<const GLuint*> (&aBVH->NodeInfoBuffer().front()));
aResult &= mySceneMinPointTexture->SubData (theGlContext, 0, aBVH->Length(),
reinterpret_cast<const GLfloat*> (&aBVH->MinPointBuffer().front()));
aResult &= mySceneMaxPointTexture->SubData (theGlContext, 0, aBVH->Length(),
reinterpret_cast<const GLfloat*> (&aBVH->MaxPointBuffer().front()));
}
for (Standard_Integer aNodeIdx = 0; aNodeIdx < aBVH->Length(); ++aNodeIdx)
{
if (!aBVH->IsOuter (aNodeIdx))
continue;
OpenGl_TriangleSet* aTriangleSet = myRaytraceGeometry.TriangleSet (aNodeIdx);
Standard_ASSERT_RETURN (aTriangleSet != NULL,
"Error: Failed to get triangulation of OpenGL element", Standard_False);
Standard_Integer aBVHOffset = myRaytraceGeometry.AccelerationOffset (aNodeIdx);
Standard_ASSERT_RETURN (aBVHOffset != OpenGl_RaytraceGeometry::INVALID_OFFSET,
"Error: Failed to get offset for bottom-level BVH", Standard_False);
const Standard_Integer aBvhBuffersSize = aTriangleSet->QuadBVH()->Length();
if (aBvhBuffersSize != 0)
{
aResult &= mySceneNodeInfoTexture->SubData (theGlContext, aBVHOffset, aBvhBuffersSize,
reinterpret_cast<const GLuint*> (&aTriangleSet->QuadBVH()->NodeInfoBuffer().front()));
aResult &= mySceneMinPointTexture->SubData (theGlContext, aBVHOffset, aBvhBuffersSize,
reinterpret_cast<const GLfloat*> (&aTriangleSet->QuadBVH()->MinPointBuffer().front()));
aResult &= mySceneMaxPointTexture->SubData (theGlContext, aBVHOffset, aBvhBuffersSize,
reinterpret_cast<const GLfloat*> (&aTriangleSet->QuadBVH()->MaxPointBuffer().front()));
if (!aResult)
{
#ifdef RAY_TRACE_PRINT_INFO
std::cout << "Error: Failed to upload buffers for bottom-level scene BVHs" << std::endl;
#endif
return Standard_False;
}
}
const Standard_Integer aVerticesOffset = myRaytraceGeometry.VerticesOffset (aNodeIdx);
Standard_ASSERT_RETURN (aVerticesOffset != OpenGl_RaytraceGeometry::INVALID_OFFSET,
"Error: Failed to get offset for triangulation vertices of OpenGL element", Standard_False);
if (!aTriangleSet->Vertices.empty())
{
aResult &= myGeometryNormalTexture->SubData (theGlContext, aVerticesOffset,
GLsizei (aTriangleSet->Normals.size()), reinterpret_cast<const GLfloat*> (&aTriangleSet->Normals.front()));
aResult &= myGeometryTexCrdTexture->SubData (theGlContext, aVerticesOffset,
GLsizei (aTriangleSet->TexCrds.size()), reinterpret_cast<const GLfloat*> (&aTriangleSet->TexCrds.front()));
aResult &= myGeometryVertexTexture->SubData (theGlContext, aVerticesOffset,
GLsizei (aTriangleSet->Vertices.size()), reinterpret_cast<const GLfloat*> (&aTriangleSet->Vertices.front()));
}
const Standard_Integer anElementsOffset = myRaytraceGeometry.ElementsOffset (aNodeIdx);
Standard_ASSERT_RETURN (anElementsOffset != OpenGl_RaytraceGeometry::INVALID_OFFSET,
"Error: Failed to get offset for triangulation elements of OpenGL element", Standard_False);
if (!aTriangleSet->Elements.empty())
{
aResult &= myGeometryTriangTexture->SubData (theGlContext, anElementsOffset, GLsizei (aTriangleSet->Elements.size()),
reinterpret_cast<const GLuint*> (&aTriangleSet->Elements.front()));
}
if (!aResult)
{
#ifdef RAY_TRACE_PRINT_INFO
std::cout << "Error: Failed to upload triangulation buffers for OpenGL element" << std::endl;
#endif
return Standard_False;
}
}
/////////////////////////////////////////////////////////////////////////////
// Write material buffer
if (myRaytraceGeometry.Materials.size() != 0)
{
aResult &= myRaytraceMaterialTexture->Init (theGlContext, 4,
GLsizei (myRaytraceGeometry.Materials.size() * 19), myRaytraceGeometry.Materials.front().Packed());
if (!aResult)
{
#ifdef RAY_TRACE_PRINT_INFO
std::cout << "Error: Failed to upload material buffer" << std::endl;
#endif
return Standard_False;
}
}
myIsRaytraceDataValid = myRaytraceGeometry.Objects().Size() != 0;
#ifdef RAY_TRACE_PRINT_INFO
Standard_ShortReal aMemTrgUsed = 0.f;
Standard_ShortReal aMemBvhUsed = 0.f;
for (Standard_Integer anElemIdx = 0; anElemIdx < myRaytraceGeometry.Size(); ++anElemIdx)
{
OpenGl_TriangleSet* aTriangleSet = dynamic_cast<OpenGl_TriangleSet*> (myRaytraceGeometry.Objects()(anElemIdx).get());
aMemTrgUsed += static_cast<Standard_ShortReal> (
aTriangleSet->Vertices.size() * sizeof (BVH_Vec3f));
aMemTrgUsed += static_cast<Standard_ShortReal> (
aTriangleSet->Normals.size() * sizeof (BVH_Vec3f));
aMemTrgUsed += static_cast<Standard_ShortReal> (
aTriangleSet->TexCrds.size() * sizeof (BVH_Vec2f));
aMemTrgUsed += static_cast<Standard_ShortReal> (
aTriangleSet->Elements.size() * sizeof (BVH_Vec4i));
aMemBvhUsed += static_cast<Standard_ShortReal> (
aTriangleSet->QuadBVH()->NodeInfoBuffer().size() * sizeof (BVH_Vec4i));
aMemBvhUsed += static_cast<Standard_ShortReal> (
aTriangleSet->QuadBVH()->MinPointBuffer().size() * sizeof (BVH_Vec3f));
aMemBvhUsed += static_cast<Standard_ShortReal> (
aTriangleSet->QuadBVH()->MaxPointBuffer().size() * sizeof (BVH_Vec3f));
}
aMemBvhUsed += static_cast<Standard_ShortReal> (
myRaytraceGeometry.QuadBVH()->NodeInfoBuffer().size() * sizeof (BVH_Vec4i));
aMemBvhUsed += static_cast<Standard_ShortReal> (
myRaytraceGeometry.QuadBVH()->MinPointBuffer().size() * sizeof (BVH_Vec3f));
aMemBvhUsed += static_cast<Standard_ShortReal> (
myRaytraceGeometry.QuadBVH()->MaxPointBuffer().size() * sizeof (BVH_Vec3f));
std::cout << "GPU Memory Used (Mb):\n"
<< "\tFor mesh: " << aMemTrgUsed / 1048576 << "\n"
<< "\tFor BVHs: " << aMemBvhUsed / 1048576 << "\n";
#endif
return aResult;
}
// =======================================================================
// function : updateRaytraceLightSources
// purpose : Updates 3D scene light sources for ray-tracing
// =======================================================================
Standard_Boolean OpenGl_View::updateRaytraceLightSources (const OpenGl_Mat4& theInvModelView, const Handle(OpenGl_Context)& theGlContext)
{
std::vector<Handle(Graphic3d_CLight)> aLightSources;
Graphic3d_Vec4 aNewAmbient (0.0f);
if (myShadingModel != Graphic3d_TOSM_UNLIT
&& !myLights.IsNull())
{
aNewAmbient.SetValues (myLights->AmbientColor().rgb(), 0.0f);
// move positional light sources at the front of the list
aLightSources.reserve (myLights->Extent());
for (Graphic3d_LightSet::Iterator aLightIter (myLights, Graphic3d_LightSet::IterationFilter_ExcludeDisabledAndAmbient);
aLightIter.More(); aLightIter.Next())
{
const Graphic3d_CLight& aLight = *aLightIter.Value();
if (aLight.Type() != Graphic3d_TOLS_DIRECTIONAL)
{
aLightSources.push_back (aLightIter.Value());
}
}
for (Graphic3d_LightSet::Iterator aLightIter (myLights, Graphic3d_LightSet::IterationFilter_ExcludeDisabledAndAmbient);
aLightIter.More(); aLightIter.Next())
{
if (aLightIter.Value()->Type() == Graphic3d_TOLS_DIRECTIONAL)
{
aLightSources.push_back (aLightIter.Value());
}
}
}
if (!myRaytraceGeometry.Ambient.IsEqual (aNewAmbient))
{
myAccumFrames = 0;
myRaytraceGeometry.Ambient = aNewAmbient;
}
// get number of 'real' (not ambient) light sources
const size_t aNbLights = aLightSources.size();
Standard_Boolean wasUpdated = myRaytraceGeometry.Sources.size () != aNbLights;
if (wasUpdated)
{
myRaytraceGeometry.Sources.resize (aNbLights);
}
for (size_t aLightIdx = 0, aRealIdx = 0; aLightIdx < aLightSources.size(); ++aLightIdx)
{
const Graphic3d_CLight& aLight = *aLightSources[aLightIdx];
const Graphic3d_Vec4& aLightColor = aLight.PackedColor();
BVH_Vec4f aEmission (aLightColor.r() * aLight.Intensity(),
aLightColor.g() * aLight.Intensity(),
aLightColor.b() * aLight.Intensity(),
1.0f);
BVH_Vec4f aPosition (-aLight.PackedDirectionRange().x(),
-aLight.PackedDirectionRange().y(),
-aLight.PackedDirectionRange().z(),
0.0f);
if (aLight.Type() != Graphic3d_TOLS_DIRECTIONAL)
{
aPosition = BVH_Vec4f (static_cast<float>(aLight.Position().X()),
static_cast<float>(aLight.Position().Y()),
static_cast<float>(aLight.Position().Z()),
1.0f);
// store smoothing radius in W-component
aEmission.w() = Max (aLight.Smoothness(), 0.f);
}
else
{
// store cosine of smoothing angle in W-component
aEmission.w() = cosf (Min (Max (aLight.Smoothness(), 0.f), static_cast<Standard_ShortReal> (M_PI / 2.0)));
}
if (aLight.IsHeadlight())
{
aPosition = theInvModelView * aPosition;
}
for (int aK = 0; aK < 4; ++aK)
{
wasUpdated |= (aEmission[aK] != myRaytraceGeometry.Sources[aRealIdx].Emission[aK])
|| (aPosition[aK] != myRaytraceGeometry.Sources[aRealIdx].Position[aK]);
}
if (wasUpdated)
{
myRaytraceGeometry.Sources[aRealIdx] = OpenGl_RaytraceLight (aEmission, aPosition);
}
++aRealIdx;
}
if (myRaytraceLightSrcTexture.IsNull()) // create light source buffer
{
myRaytraceLightSrcTexture = new OpenGl_TextureBufferArb;
}
if (myRaytraceGeometry.Sources.size() != 0 && wasUpdated)
{
const GLfloat* aDataPtr = myRaytraceGeometry.Sources.front().Packed();
if (!myRaytraceLightSrcTexture->Init (theGlContext, 4, GLsizei (myRaytraceGeometry.Sources.size() * 2), aDataPtr))
{
#ifdef RAY_TRACE_PRINT_INFO
std::cout << "Error: Failed to upload light source buffer" << std::endl;
#endif
return Standard_False;
}
myAccumFrames = 0; // accumulation should be restarted
}
return Standard_True;
}
// =======================================================================
// function : setUniformState
// purpose : Sets uniform state for the given ray-tracing shader program
// =======================================================================
Standard_Boolean OpenGl_View::setUniformState (const Standard_Integer theProgramId,
const Standard_Integer theWinSizeX,
const Standard_Integer theWinSizeY,
Graphic3d_Camera::Projection theProjection,
const Handle(OpenGl_Context)& theGlContext)
{
// Get projection state
OpenGl_MatrixState<Standard_ShortReal>& aCntxProjectionState = theGlContext->ProjectionState;
OpenGl_Mat4 aViewPrjMat;
OpenGl_Mat4 anUnviewMat;
OpenGl_Vec3 aOrigins[4];
OpenGl_Vec3 aDirects[4];
if (myCamera->IsOrthographic()
|| !myRenderParams.IsGlobalIlluminationEnabled)
{
updateCamera (myCamera->OrientationMatrixF(),
aCntxProjectionState.Current(),
aOrigins,
aDirects,
aViewPrjMat,
anUnviewMat);
if (myRenderParams.UseEnvironmentMapBackground
|| myRaytraceParameters.CubemapForBack)
{
OpenGl_Mat4 aTempMat;
OpenGl_Mat4 aTempInvMat;
updatePerspCameraPT (myCamera->OrientationMatrixF(),
aCntxProjectionState.Current(),
theProjection,
aTempMat,
aTempInvMat,
theWinSizeX,
theWinSizeY);
}
}
else
{
updatePerspCameraPT (myCamera->OrientationMatrixF(),
aCntxProjectionState.Current(),
theProjection,
aViewPrjMat,
anUnviewMat,
theWinSizeX,
theWinSizeY);
}
Handle(OpenGl_ShaderProgram)& theProgram = theProgramId == 0
? myRaytraceProgram
: myPostFSAAProgram;
if (theProgram.IsNull())
{
return Standard_False;
}
theProgram->SetUniform(theGlContext, "uEyeOrig", myEyeOrig);
theProgram->SetUniform(theGlContext, "uEyeView", myEyeView);
theProgram->SetUniform(theGlContext, "uEyeVert", myEyeVert);
theProgram->SetUniform(theGlContext, "uEyeSide", myEyeSide);
theProgram->SetUniform(theGlContext, "uEyeSize", myEyeSize);
theProgram->SetUniform(theGlContext, "uApertureRadius", myRenderParams.CameraApertureRadius);
theProgram->SetUniform(theGlContext, "uFocalPlaneDist", myRenderParams.CameraFocalPlaneDist);
// Set camera state
theProgram->SetUniform (theGlContext,
myUniformLocations[theProgramId][OpenGl_RT_uOriginLB], aOrigins[0]);
theProgram->SetUniform (theGlContext,
myUniformLocations[theProgramId][OpenGl_RT_uOriginRB], aOrigins[1]);
theProgram->SetUniform (theGlContext,
myUniformLocations[theProgramId][OpenGl_RT_uOriginLT], aOrigins[2]);
theProgram->SetUniform (theGlContext,
myUniformLocations[theProgramId][OpenGl_RT_uOriginRT], aOrigins[3]);
theProgram->SetUniform (theGlContext,
myUniformLocations[theProgramId][OpenGl_RT_uDirectLB], aDirects[0]);
theProgram->SetUniform (theGlContext,
myUniformLocations[theProgramId][OpenGl_RT_uDirectRB], aDirects[1]);
theProgram->SetUniform (theGlContext,
myUniformLocations[theProgramId][OpenGl_RT_uDirectLT], aDirects[2]);
theProgram->SetUniform (theGlContext,
myUniformLocations[theProgramId][OpenGl_RT_uDirectRT], aDirects[3]);
theProgram->SetUniform (theGlContext,
myUniformLocations[theProgramId][OpenGl_RT_uViewPrMat], aViewPrjMat);
theProgram->SetUniform (theGlContext,
myUniformLocations[theProgramId][OpenGl_RT_uUnviewMat], anUnviewMat);
// Set screen dimensions
myRaytraceProgram->SetUniform (theGlContext,
myUniformLocations[theProgramId][OpenGl_RT_uWinSizeX], theWinSizeX);
myRaytraceProgram->SetUniform (theGlContext,
myUniformLocations[theProgramId][OpenGl_RT_uWinSizeY], theWinSizeY);
// Set 3D scene parameters
theProgram->SetUniform (theGlContext,
myUniformLocations[theProgramId][OpenGl_RT_uSceneRad], myRaytraceSceneRadius);
theProgram->SetUniform (theGlContext,
myUniformLocations[theProgramId][OpenGl_RT_uSceneEps], myRaytraceSceneEpsilon);
// Set light source parameters
const Standard_Integer aLightSourceBufferSize =
static_cast<Standard_Integer> (myRaytraceGeometry.Sources.size());
theProgram->SetUniform (theGlContext,
myUniformLocations[theProgramId][OpenGl_RT_uLightCount], aLightSourceBufferSize);
// Set array of 64-bit texture handles
if (theGlContext->arbTexBindless != NULL && myRaytraceGeometry.HasTextures())
{
const std::vector<GLuint64>& aTextures = myRaytraceGeometry.TextureHandles();
theProgram->SetUniform (theGlContext, myUniformLocations[theProgramId][OpenGl_RT_uTexSamplersArray],
static_cast<GLsizei> (aTextures.size()), reinterpret_cast<const OpenGl_Vec2u*> (&aTextures.front()));
}
// Set background colors (only vertical gradient background supported)
OpenGl_Vec4 aBackColorTop = myBgColor, aBackColorBot = myBgColor;
if (myBackgrounds[Graphic3d_TOB_GRADIENT] != NULL
&& myBackgrounds[Graphic3d_TOB_GRADIENT]->IsDefined())
{
aBackColorTop = myBackgrounds[Graphic3d_TOB_GRADIENT]->GradientColor (0);
aBackColorBot = myBackgrounds[Graphic3d_TOB_GRADIENT]->GradientColor (1);
if (myCamera->Tile().IsValid())
{
Standard_Integer aTileOffset = myCamera->Tile().OffsetLowerLeft().y();
Standard_Integer aTileSize = myCamera->Tile().TileSize.y();
Standard_Integer aViewSize = myCamera->Tile().TotalSize.y();
OpenGl_Vec4 aColorRange = aBackColorTop - aBackColorBot;
aBackColorBot = aBackColorBot + aColorRange * ((float) aTileOffset / aViewSize);
aBackColorTop = aBackColorBot + aColorRange * ((float) aTileSize / aViewSize);
}
}
aBackColorTop = theGlContext->Vec4FromQuantityColor (aBackColorTop);
aBackColorBot = theGlContext->Vec4FromQuantityColor (aBackColorBot);
theProgram->SetUniform (theGlContext, myUniformLocations[theProgramId][OpenGl_RT_uBackColorTop], aBackColorTop);
theProgram->SetUniform (theGlContext, myUniformLocations[theProgramId][OpenGl_RT_uBackColorBot], aBackColorBot);
// Set environment map parameters
const Handle(OpenGl_TextureSet)& anEnvTextureSet = myRaytraceParameters.CubemapForBack
? myCubeMapParams->TextureSet (theGlContext)
: myTextureEnv;
const bool toDisableEnvironmentMap = anEnvTextureSet.IsNull()
|| anEnvTextureSet->IsEmpty()
|| !anEnvTextureSet->First()->IsValid();
theProgram->SetUniform (theGlContext, myUniformLocations[theProgramId][OpenGl_RT_uEnvMapEnabled],
toDisableEnvironmentMap ? 0 : 1);
if (myRaytraceParameters.CubemapForBack)
{
theProgram->SetUniform (theGlContext, "uZCoeff", myBackgroundCubeMap->ZIsInverted() ? -1 : 1);
theProgram->SetUniform (theGlContext, "uYCoeff", myBackgroundCubeMap->IsTopDown() ? 1 : -1);
theProgram->SetUniform (theGlContext, myUniformLocations[theProgramId][OpenGl_RT_uEnvMapForBack],
myBackgroundType == Graphic3d_TOB_CUBEMAP ? 1 : 0);
}
else
{
theProgram->SetUniform (theGlContext, myUniformLocations[theProgramId][OpenGl_RT_uEnvMapForBack],
myRenderParams.UseEnvironmentMapBackground ? 1 : 0);
}
// Set ambient light source
theProgram->SetUniform (theGlContext,
myUniformLocations[theProgramId][OpenGl_RT_uLightAmbnt], myRaytraceGeometry.Ambient);
if (myRenderParams.IsGlobalIlluminationEnabled) // GI parameters
{
theProgram->SetUniform (theGlContext,
myUniformLocations[theProgramId][OpenGl_RT_uMaxRadiance], myRenderParams.RadianceClampingValue);
theProgram->SetUniform (theGlContext,
myUniformLocations[theProgramId][OpenGl_RT_uBlockedRngEnabled], myRenderParams.CoherentPathTracingMode ? 1 : 0);
// Check whether we should restart accumulation for run-time parameters
if (myRenderParams.RadianceClampingValue != myRaytraceParameters.RadianceClampingValue
|| myRenderParams.UseEnvironmentMapBackground != myRaytraceParameters.UseEnvMapForBackground)
{
myAccumFrames = 0; // accumulation should be restarted
myRaytraceParameters.RadianceClampingValue = myRenderParams.RadianceClampingValue;
myRaytraceParameters.UseEnvMapForBackground = myRenderParams.UseEnvironmentMapBackground;
}
}
else // RT parameters
{
// Enable/disable run-time ray-tracing effects
theProgram->SetUniform (theGlContext,
myUniformLocations[theProgramId][OpenGl_RT_uShadowsEnabled], myRenderParams.IsShadowEnabled ? 1 : 0);
theProgram->SetUniform (theGlContext,
myUniformLocations[theProgramId][OpenGl_RT_uReflectEnabled], myRenderParams.IsReflectionEnabled ? 1 : 0);
}
return Standard_True;
}
// =======================================================================
// function : bindRaytraceTextures
// purpose : Binds ray-trace textures to corresponding texture units
// =======================================================================
void OpenGl_View::bindRaytraceTextures (const Handle(OpenGl_Context)& theGlContext,
int theStereoView)
{
if (myRaytraceParameters.AdaptiveScreenSampling
&& myRaytraceParameters.GlobalIllumination)
{
#if !defined(GL_ES_VERSION_2_0)
theGlContext->core42->glBindImageTexture (OpenGl_RT_OutputImage,
myRaytraceOutputTexture[theStereoView]->TextureId(), 0, GL_TRUE, 0, GL_READ_WRITE, GL_R32F);
theGlContext->core42->glBindImageTexture (OpenGl_RT_VisualErrorImage,
myRaytraceVisualErrorTexture[theStereoView]->TextureId(), 0, GL_TRUE, 0, GL_READ_WRITE, GL_R32I);
if (myRaytraceParameters.AdaptiveScreenSamplingAtomic)
{
theGlContext->core42->glBindImageTexture (OpenGl_RT_TileOffsetsImage,
myRaytraceTileOffsetsTexture[theStereoView]->TextureId(), 0, GL_TRUE, 0, GL_READ_ONLY, GL_RG32I);
}
else
{
theGlContext->core42->glBindImageTexture (OpenGl_RT_TileSamplesImage,
myRaytraceTileSamplesTexture[theStereoView]->TextureId(), 0, GL_TRUE, 0, GL_READ_WRITE, GL_R32I);
}
#else
(void )theStereoView;
#endif
}
const Handle(OpenGl_TextureSet)& anEnvTextureSet = myRaytraceParameters.CubemapForBack
? myCubeMapParams->TextureSet (theGlContext)
: myTextureEnv;
if (!anEnvTextureSet.IsNull()
&& !anEnvTextureSet->IsEmpty()
&& anEnvTextureSet->First()->IsValid())
{
anEnvTextureSet->First()->Bind (theGlContext, OpenGl_RT_EnvMapTexture);
}
mySceneMinPointTexture ->BindTexture (theGlContext, OpenGl_RT_SceneMinPointTexture);
mySceneMaxPointTexture ->BindTexture (theGlContext, OpenGl_RT_SceneMaxPointTexture);
mySceneNodeInfoTexture ->BindTexture (theGlContext, OpenGl_RT_SceneNodeInfoTexture);
myGeometryVertexTexture ->BindTexture (theGlContext, OpenGl_RT_GeometryVertexTexture);
myGeometryNormalTexture ->BindTexture (theGlContext, OpenGl_RT_GeometryNormalTexture);
myGeometryTexCrdTexture ->BindTexture (theGlContext, OpenGl_RT_GeometryTexCrdTexture);
myGeometryTriangTexture ->BindTexture (theGlContext, OpenGl_RT_GeometryTriangTexture);
mySceneTransformTexture ->BindTexture (theGlContext, OpenGl_RT_SceneTransformTexture);
myRaytraceMaterialTexture->BindTexture (theGlContext, OpenGl_RT_RaytraceMaterialTexture);
myRaytraceLightSrcTexture->BindTexture (theGlContext, OpenGl_RT_RaytraceLightSrcTexture);
}
// =======================================================================
// function : unbindRaytraceTextures
// purpose : Unbinds ray-trace textures from corresponding texture units
// =======================================================================
void OpenGl_View::unbindRaytraceTextures (const Handle(OpenGl_Context)& theGlContext)
{
mySceneMinPointTexture ->UnbindTexture (theGlContext, OpenGl_RT_SceneMinPointTexture);
mySceneMaxPointTexture ->UnbindTexture (theGlContext, OpenGl_RT_SceneMaxPointTexture);
mySceneNodeInfoTexture ->UnbindTexture (theGlContext, OpenGl_RT_SceneNodeInfoTexture);
myGeometryVertexTexture ->UnbindTexture (theGlContext, OpenGl_RT_GeometryVertexTexture);
myGeometryNormalTexture ->UnbindTexture (theGlContext, OpenGl_RT_GeometryNormalTexture);
myGeometryTexCrdTexture ->UnbindTexture (theGlContext, OpenGl_RT_GeometryTexCrdTexture);
myGeometryTriangTexture ->UnbindTexture (theGlContext, OpenGl_RT_GeometryTriangTexture);
mySceneTransformTexture ->UnbindTexture (theGlContext, OpenGl_RT_SceneTransformTexture);
myRaytraceMaterialTexture->UnbindTexture (theGlContext, OpenGl_RT_RaytraceMaterialTexture);
myRaytraceLightSrcTexture->UnbindTexture (theGlContext, OpenGl_RT_RaytraceLightSrcTexture);
theGlContext->core15fwd->glActiveTexture (GL_TEXTURE0);
}
// =======================================================================
// function : runRaytraceShaders
// purpose : Runs ray-tracing shader programs
// =======================================================================
Standard_Boolean OpenGl_View::runRaytraceShaders (const Standard_Integer theSizeX,
const Standard_Integer theSizeY,
Graphic3d_Camera::Projection theProjection,
OpenGl_FrameBuffer* theReadDrawFbo,
const Handle(OpenGl_Context)& theGlContext)
{
Standard_Boolean aResult = theGlContext->BindProgram (myRaytraceProgram);
aResult &= setUniformState (0,
theSizeX,
theSizeY,
theProjection,
theGlContext);
if (myRaytraceParameters.GlobalIllumination) // path tracing
{
aResult &= runPathtrace (theSizeX, theSizeY, theProjection, theGlContext);
aResult &= runPathtraceOut (theProjection, theReadDrawFbo, theGlContext);
}
else // Whitted-style ray-tracing
{
aResult &= runRaytrace (theSizeX, theSizeY, theProjection, theReadDrawFbo, theGlContext);
}
return aResult;
}
// =======================================================================
// function : runRaytrace
// purpose : Runs Whitted-style ray-tracing
// =======================================================================
Standard_Boolean OpenGl_View::runRaytrace (const Standard_Integer theSizeX,
const Standard_Integer theSizeY,
Graphic3d_Camera::Projection theProjection,
OpenGl_FrameBuffer* theReadDrawFbo,
const Handle(OpenGl_Context)& theGlContext)
{
Standard_Boolean aResult = Standard_True;
// Choose proper set of frame buffers for stereo rendering
const Standard_Integer aFBOIdx = (theProjection == Graphic3d_Camera::Projection_MonoRightEye) ? 1 : 0;
bindRaytraceTextures (theGlContext, aFBOIdx);
if (myRenderParams.IsAntialiasingEnabled) // if second FSAA pass is used
{
myRaytraceFBO1[aFBOIdx]->BindBuffer (theGlContext);
glClear (GL_DEPTH_BUFFER_BIT); // render the image with depth
}
theGlContext->core20fwd->glDrawArrays (GL_TRIANGLES, 0, 6);
if (myRenderParams.IsAntialiasingEnabled)
{
glDisable (GL_DEPTH_TEST); // improve jagged edges without depth buffer
// bind ray-tracing output image as input
myRaytraceFBO1[aFBOIdx]->ColorTexture()->Bind (theGlContext, OpenGl_RT_FsaaInputTexture);
aResult &= theGlContext->BindProgram (myPostFSAAProgram);
aResult &= setUniformState (1 /* FSAA ID */,
theSizeX,
theSizeY,
theProjection,
theGlContext);
// Perform multi-pass adaptive FSAA using ping-pong technique.
// We use 'FLIPTRI' sampling pattern changing for every pixel
// (3 additional samples per pixel, the 1st sample is already
// available from initial ray-traced image).
for (Standard_Integer anIt = 1; anIt < 4; ++anIt)
{
GLfloat aOffsetX = 1.f / theSizeX;
GLfloat aOffsetY = 1.f / theSizeY;
if (anIt == 1)
{
aOffsetX *= -0.55f;
aOffsetY *= 0.55f;
}
else if (anIt == 2)
{
aOffsetX *= 0.00f;
aOffsetY *= -0.55f;
}
else if (anIt == 3)
{
aOffsetX *= 0.55f;
aOffsetY *= 0.00f;
}
aResult &= myPostFSAAProgram->SetUniform (theGlContext,
myUniformLocations[1][OpenGl_RT_uSamples], anIt + 1);
aResult &= myPostFSAAProgram->SetUniform (theGlContext,
myUniformLocations[1][OpenGl_RT_uOffsetX], aOffsetX);
aResult &= myPostFSAAProgram->SetUniform (theGlContext,
myUniformLocations[1][OpenGl_RT_uOffsetY], aOffsetY);
Handle(OpenGl_FrameBuffer)& aFramebuffer = anIt % 2
? myRaytraceFBO2[aFBOIdx]
: myRaytraceFBO1[aFBOIdx];
aFramebuffer->BindBuffer (theGlContext);
// perform adaptive FSAA pass
theGlContext->core20fwd->glDrawArrays (GL_TRIANGLES, 0, 6);
aFramebuffer->ColorTexture()->Bind (theGlContext, OpenGl_RT_FsaaInputTexture);
}
const Handle(OpenGl_FrameBuffer)& aRenderImageFramebuffer = myRaytraceFBO2[aFBOIdx];
const Handle(OpenGl_FrameBuffer)& aDepthSourceFramebuffer = myRaytraceFBO1[aFBOIdx];
glEnable (GL_DEPTH_TEST);
// Display filtered image
theGlContext->BindProgram (myOutImageProgram);
if (theReadDrawFbo != NULL)
{
theReadDrawFbo->BindBuffer (theGlContext);
}
else
{
aRenderImageFramebuffer->UnbindBuffer (theGlContext);
}
aRenderImageFramebuffer->ColorTexture() ->Bind (theGlContext, OpenGl_RT_PrevAccumTexture);
aDepthSourceFramebuffer->DepthStencilTexture()->Bind (theGlContext, OpenGl_RT_RaytraceDepthTexture);
// copy the output image with depth values
theGlContext->core20fwd->glDrawArrays (GL_TRIANGLES, 0, 6);
aDepthSourceFramebuffer->DepthStencilTexture()->Unbind (theGlContext, OpenGl_RT_RaytraceDepthTexture);
aRenderImageFramebuffer->ColorTexture() ->Unbind (theGlContext, OpenGl_RT_PrevAccumTexture);
}
unbindRaytraceTextures (theGlContext);
theGlContext->BindProgram (NULL);
return aResult;
}
// =======================================================================
// function : runPathtrace
// purpose : Runs path tracing shader
// =======================================================================
Standard_Boolean OpenGl_View::runPathtrace (const Standard_Integer theSizeX,
const Standard_Integer theSizeY,
const Graphic3d_Camera::Projection theProjection,
const Handle(OpenGl_Context)& theGlContext)
{
if (myToUpdateEnvironmentMap) // check whether the map was changed
{
myAccumFrames = myToUpdateEnvironmentMap = 0;
}
if (myRenderParams.CameraApertureRadius != myPrevCameraApertureRadius
|| myRenderParams.CameraFocalPlaneDist != myPrevCameraFocalPlaneDist)
{
myPrevCameraApertureRadius = myRenderParams.CameraApertureRadius;
myPrevCameraFocalPlaneDist = myRenderParams.CameraFocalPlaneDist;
myAccumFrames = 0;
}
// Choose proper set of frame buffers for stereo rendering
const Standard_Integer aFBOIdx = (theProjection == Graphic3d_Camera::Projection_MonoRightEye) ? 1 : 0;
if (myRaytraceParameters.AdaptiveScreenSampling)
{
if (myAccumFrames == 0)
{
myTileSampler.Reset(); // reset tile sampler to its initial state
// Adaptive sampling is starting at the second frame
if (myRaytraceParameters.AdaptiveScreenSamplingAtomic)
{
myTileSampler.UploadOffsets (theGlContext, myRaytraceTileOffsetsTexture[aFBOIdx], false);
}
else
{
myTileSampler.UploadSamples (theGlContext, myRaytraceTileSamplesTexture[aFBOIdx], false);
}
#if !defined(GL_ES_VERSION_2_0)
theGlContext->core44->glClearTexImage (myRaytraceOutputTexture[aFBOIdx]->TextureId(), 0, GL_RED, GL_FLOAT, NULL);
#endif
}
// Clear adaptive screen sampling images
#if !defined(GL_ES_VERSION_2_0)
theGlContext->core44->glClearTexImage (myRaytraceVisualErrorTexture[aFBOIdx]->TextureId(), 0, GL_RED_INTEGER, GL_INT, NULL);
#endif
}
bindRaytraceTextures (theGlContext, aFBOIdx);
const Handle(OpenGl_FrameBuffer)& anAccumImageFramebuffer = myAccumFrames % 2 ? myRaytraceFBO2[aFBOIdx] : myRaytraceFBO1[aFBOIdx];
anAccumImageFramebuffer->ColorTexture()->Bind (theGlContext, OpenGl_RT_PrevAccumTexture);
// Set frame accumulation weight
myRaytraceProgram->SetUniform (theGlContext, myUniformLocations[0][OpenGl_RT_uAccumSamples], myAccumFrames);
// Set image uniforms for render program
if (myRaytraceParameters.AdaptiveScreenSampling)
{
myRaytraceProgram->SetUniform (theGlContext, myUniformLocations[0][OpenGl_RT_uRenderImage], OpenGl_RT_OutputImage);
myRaytraceProgram->SetUniform (theGlContext, myUniformLocations[0][OpenGl_RT_uTilesImage], OpenGl_RT_TileSamplesImage);
myRaytraceProgram->SetUniform (theGlContext, myUniformLocations[0][OpenGl_RT_uOffsetImage], OpenGl_RT_TileOffsetsImage);
myRaytraceProgram->SetUniform (theGlContext, myUniformLocations[0][OpenGl_RT_uTileSize], myTileSampler.TileSize());
}
const Handle(OpenGl_FrameBuffer)& aRenderImageFramebuffer = myAccumFrames % 2 ? myRaytraceFBO1[aFBOIdx] : myRaytraceFBO2[aFBOIdx];
aRenderImageFramebuffer->BindBuffer (theGlContext);
if (myRaytraceParameters.AdaptiveScreenSampling
&& myRaytraceParameters.AdaptiveScreenSamplingAtomic)
{
// extend viewport here, so that tiles at boundaries (cut tile size by target rendering viewport)
// redirected to inner tiles (full tile size) are drawn entirely
const Graphic3d_Vec2i anOffsetViewport = myTileSampler.OffsetTilesViewport (myAccumFrames > 1); // shrunk offsets texture will be uploaded since 3rd frame
glViewport (0, 0, anOffsetViewport.x(), anOffsetViewport.y());
}
// Generate for the given RNG seed
glDisable (GL_DEPTH_TEST);
// Adaptive Screen Sampling computes the same overall amount of samples per frame redraw as normal Path Tracing,
// but distributes them unequally across pixels (grouped in tiles), so that some pixels do not receive new samples at all.
//
// Offsets map (redirecting currently rendered tile to another tile) allows performing Adaptive Screen Sampling in single pass,
// but current implementation relies on atomic float operations (AdaptiveScreenSamplingAtomic) for this.
// So that when atomic floats are not supported by GPU, multi-pass rendering is used instead.
//
// Single-pass rendering is more optimal due to smaller amount of draw calls,
// memory synchronization barriers, discarding most of the fragments and bad parallelization in case of very small amount of tiles requiring more samples.
// However, atomic operations on float values still produces different result (close, but not bit exact) making non-regression testing not robust.
// It should be possible following single-pass rendering approach but using extra accumulation buffer and resolving pass as possible improvement.
const int aNbPasses = myRaytraceParameters.AdaptiveScreenSampling
&& !myRaytraceParameters.AdaptiveScreenSamplingAtomic
? myTileSampler.MaxTileSamples()
: 1;
if (myAccumFrames == 0)
{
myRNG.SetSeed(); // start RNG from beginning
}
for (int aPassIter = 0; aPassIter < aNbPasses; ++aPassIter)
{
myRaytraceProgram->SetUniform (theGlContext, myUniformLocations[0][OpenGl_RT_uFrameRndSeed], static_cast<Standard_Integer> (myRNG.NextInt() >> 2));
theGlContext->core20fwd->glDrawArrays (GL_TRIANGLES, 0, 6);
if (myRaytraceParameters.AdaptiveScreenSampling)
{
#if !defined(GL_ES_VERSION_2_0)
theGlContext->core44->glMemoryBarrier (GL_SHADER_IMAGE_ACCESS_BARRIER_BIT);
#endif
}
}
aRenderImageFramebuffer->UnbindBuffer (theGlContext);
if (myRaytraceParameters.AdaptiveScreenSampling
&& myRaytraceParameters.AdaptiveScreenSamplingAtomic)
{
glViewport (0, 0, theSizeX, theSizeY);
}
return true;
}
// =======================================================================
// function : runPathtraceOut
// purpose :
// =======================================================================
Standard_Boolean OpenGl_View::runPathtraceOut (const Graphic3d_Camera::Projection theProjection,
OpenGl_FrameBuffer* theReadDrawFbo,
const Handle(OpenGl_Context)& theGlContext)
{
// Output accumulated path traced image
theGlContext->BindProgram (myOutImageProgram);
// Choose proper set of frame buffers for stereo rendering
const Standard_Integer aFBOIdx = (theProjection == Graphic3d_Camera::Projection_MonoRightEye) ? 1 : 0;
if (myRaytraceParameters.AdaptiveScreenSampling)
{
// Set uniforms for display program
myOutImageProgram->SetUniform (theGlContext, "uRenderImage", OpenGl_RT_OutputImage);
myOutImageProgram->SetUniform (theGlContext, "uAccumFrames", myAccumFrames);
myOutImageProgram->SetUniform (theGlContext, "uVarianceImage", OpenGl_RT_VisualErrorImage);
myOutImageProgram->SetUniform (theGlContext, "uDebugAdaptive", myRenderParams.ShowSamplingTiles ? 1 : 0);
myOutImageProgram->SetUniform (theGlContext, "uTileSize", myTileSampler.TileSize());
myOutImageProgram->SetUniform (theGlContext, "uVarianceScaleFactor", myTileSampler.VarianceScaleFactor());
}
if (myRaytraceParameters.GlobalIllumination)
{
myOutImageProgram->SetUniform(theGlContext, "uExposure", myRenderParams.Exposure);
switch (myRaytraceParameters.ToneMappingMethod)
{
case Graphic3d_ToneMappingMethod_Disabled:
break;
case Graphic3d_ToneMappingMethod_Filmic:
myOutImageProgram->SetUniform (theGlContext, "uWhitePoint", myRenderParams.WhitePoint);
break;
}
}
if (theReadDrawFbo != NULL)
{
theReadDrawFbo->BindBuffer (theGlContext);
}
const Handle(OpenGl_FrameBuffer)& aRenderImageFramebuffer = myAccumFrames % 2 ? myRaytraceFBO1[aFBOIdx] : myRaytraceFBO2[aFBOIdx];
aRenderImageFramebuffer->ColorTexture()->Bind (theGlContext, OpenGl_RT_PrevAccumTexture);
// Copy accumulated image with correct depth values
glEnable (GL_DEPTH_TEST);
theGlContext->core20fwd->glDrawArrays (GL_TRIANGLES, 0, 6);
aRenderImageFramebuffer->ColorTexture()->Unbind (theGlContext, OpenGl_RT_PrevAccumTexture);
if (myRaytraceParameters.AdaptiveScreenSampling)
{
// Download visual error map from the GPU and build adjusted tile offsets for optimal image sampling
myTileSampler.GrabVarianceMap (theGlContext, myRaytraceVisualErrorTexture[aFBOIdx]);
if (myRaytraceParameters.AdaptiveScreenSamplingAtomic)
{
myTileSampler.UploadOffsets (theGlContext, myRaytraceTileOffsetsTexture[aFBOIdx], myAccumFrames != 0);
}
else
{
myTileSampler.UploadSamples (theGlContext, myRaytraceTileSamplesTexture[aFBOIdx], myAccumFrames != 0);
}
}
unbindRaytraceTextures (theGlContext);
theGlContext->BindProgram (NULL);
return true;
}
// =======================================================================
// function : raytrace
// purpose : Redraws the window using OpenGL/GLSL ray-tracing
// =======================================================================
Standard_Boolean OpenGl_View::raytrace (const Standard_Integer theSizeX,
const Standard_Integer theSizeY,
Graphic3d_Camera::Projection theProjection,
OpenGl_FrameBuffer* theReadDrawFbo,
const Handle(OpenGl_Context)& theGlContext)
{
if (!initRaytraceResources (theSizeX, theSizeY, theGlContext))
{
return Standard_False;
}
if (!updateRaytraceBuffers (theSizeX, theSizeY, theGlContext))
{
return Standard_False;
}
OpenGl_Mat4 aLightSourceMatrix;
// Get inversed model-view matrix for transforming lights
myCamera->OrientationMatrixF().Inverted (aLightSourceMatrix);
if (!updateRaytraceLightSources (aLightSourceMatrix, theGlContext))
{
return Standard_False;
}
// Generate image using Whitted-style ray-tracing or path tracing
if (myIsRaytraceDataValid)
{
myRaytraceScreenQuad.BindVertexAttrib (theGlContext, Graphic3d_TOA_POS);
if (!myRaytraceGeometry.AcquireTextures (theGlContext))
{
theGlContext->PushMessage (GL_DEBUG_SOURCE_APPLICATION, GL_DEBUG_TYPE_ERROR,
0, GL_DEBUG_SEVERITY_MEDIUM, "Error: Failed to acquire OpenGL image textures");
}
glDisable (GL_BLEND);
const Standard_Boolean aResult = runRaytraceShaders (theSizeX,
theSizeY,
theProjection,
theReadDrawFbo,
theGlContext);
if (!aResult)
{
theGlContext->PushMessage (GL_DEBUG_SOURCE_APPLICATION, GL_DEBUG_TYPE_ERROR,
0, GL_DEBUG_SEVERITY_MEDIUM, "Error: Failed to execute ray-tracing shaders");
}
if (!myRaytraceGeometry.ReleaseTextures (theGlContext))
{
theGlContext->PushMessage (GL_DEBUG_SOURCE_APPLICATION, GL_DEBUG_TYPE_ERROR,
0, GL_DEBUG_SEVERITY_MEDIUM, "Error: Failed to release OpenGL image textures");
}
myRaytraceScreenQuad.UnbindVertexAttrib (theGlContext, Graphic3d_TOA_POS);
}
return Standard_True;
}