1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-04-10 18:51:21 +03:00
occt/src/BRepFill/BRepFill_LocationLaw.cxx

650 lines
19 KiB
C++

// Created on: 1998-01-14
// Created by: Philippe MANGIN
// Copyright (c) 1998-1999 Matra Datavision
// Copyright (c) 1999-2014 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
#include <Adaptor3d_Curve.hxx>
#include <BRep_Builder.hxx>
#include <BRep_Tool.hxx>
#include <BRepAdaptor_Curve.hxx>
#include <BRepBuilderAPI_Transform.hxx>
#include <BRepFill_LocationLaw.hxx>
#include <BRepTools_WireExplorer.hxx>
#include <GCPnts_AbscissaPoint.hxx>
#include <GeomFill_LocationLaw.hxx>
#include <gp_Mat.hxx>
#include <gp_Trsf.hxx>
#include <gp_Vec.hxx>
#include <gp_XYZ.hxx>
#include <Standard_Type.hxx>
#include <TColgp_Array1OfPnt2d.hxx>
#include <TColgp_Array1OfVec2d.hxx>
#include <TColStd_SequenceOfInteger.hxx>
#include <TopExp.hxx>
#include <TopoDS.hxx>
#include <TopoDS_Edge.hxx>
#include <TopoDS_Shape.hxx>
#include <TopoDS_Vertex.hxx>
#include <TopoDS_Wire.hxx>
IMPLEMENT_STANDARD_RTTIEXT(BRepFill_LocationLaw,Standard_Transient)
//=======================================================================
//function : Norm
//purpose : Norm of a Matrix
//=======================================================================
static Standard_Real Norm(const gp_Mat& M) {
Standard_Real R, Norme;
gp_XYZ Coord;
Coord = M.Row(1);
Norme = Abs(Coord.X()) + Abs(Coord.Y())+ Abs(Coord.Z());
Coord = M.Row(2);
R = Abs(Coord.X()) + Abs(Coord.Y())+ Abs(Coord.Z());
if (R>Norme) Norme = R;
Coord = M.Row(3);
R = Abs(Coord.X()) + Abs(Coord.Y())+ Abs(Coord.Z());
if (R>Norme) Norme = R;
return Norme;
}
//=======================================================================
//function : ToG0
//purpose : Calculate transformation T such as T.M2 = M1
//=======================================================================
static void ToG0(const gp_Mat& M1, const gp_Mat& M2, gp_Mat& T) {
T = M2.Inverted();
T *= M1;
}
//=======================================================================
//function : BRepFill_LocationLaw
//purpose :
//=======================================================================
void BRepFill_LocationLaw::Init(const TopoDS_Wire& Path)
{
Standard_Integer NbEdge;
BRepTools_WireExplorer wexp;
// Class BRep_Tool without fields and without Constructor :
// BRep_Tool B;
TopoDS_Edge E;
myPath = Path;
myTol = 1.e-4;
for (NbEdge=0, wexp.Init(myPath);
wexp.More(); wexp.Next())
// if (! B.Degenerated(wexp.Current())) NbEdge++;
if (! BRep_Tool::Degenerated(wexp.Current())) NbEdge++;
myLaws = new (GeomFill_HArray1OfLocationLaw)(1, NbEdge);
myLength = new (TColStd_HArray1OfReal) (1, NbEdge+1);
myLength->Init(-1.);
myLength->SetValue(1, 0.);
myEdges = new (TopTools_HArray1OfShape) (1, NbEdge);
myDisc.Nullify();
TangentIsMain();
}
//=======================================================================
//function : GetStatus
//purpose :
//=======================================================================
GeomFill_PipeError BRepFill_LocationLaw::GetStatus() const
{
Standard_Integer ii, N = myLaws->Length();
GeomFill_PipeError Status = GeomFill_PipeOk;
for (ii=1; ii<=N && (Status == GeomFill_PipeOk); ii++) {
Status = myLaws->Value(ii)->ErrorStatus();
}
return Status;
}
//=======================================================================
//function : TangentIsMain
//purpose :
//=======================================================================
void BRepFill_LocationLaw::TangentIsMain()
{
myType = 1;
}
//=======================================================================
//function : NormalIsMain
//purpose :
//=======================================================================
void BRepFill_LocationLaw::NormalIsMain()
{
myType = 2;
}
//=======================================================================
//function : BiNormalIsMain
//purpose :
//=======================================================================
void BRepFill_LocationLaw::BiNormalIsMain()
{
myType = 3;
}
//=======================================================================
//function : TransformInCompatibleLaw
//purpose : Set in continuity of laws
//=======================================================================
void BRepFill_LocationLaw::TransformInCompatibleLaw(const Standard_Real TolAngular)
{
Standard_Real First, Last, Angle;
Standard_Integer ipath;
gp_Mat Trsf, M1, M2;
gp_Vec V, T1, T2, N1, N2;
gp_XYZ OZ(0, 0, 1);
myLaws->Value(1)->GetDomain(First, Last);
for (ipath=2; ipath<=myLaws->Length(); ipath++) {
myLaws->Value(ipath-1)->D0(Last, M1, V);
myLaws->Value(ipath)->GetDomain(First, Last);
myLaws->Value(ipath)->D0(First, M2, V);
T1.SetXYZ(M1.Column(3));
T2.SetXYZ(M2.Column(3));
N1.SetXYZ(M1.Column(1));
N2.SetXYZ(M2.Column(1));
if (T1.IsParallel(T2, TolAngular ) &&
!T1.IsOpposite(T2, TolAngular)) { // Correction G0
ToG0(M1, M2, Trsf);
}
else {
Standard_Real alpha;
gp_Vec cross(T1);
cross.Cross(T2);
alpha = T2.AngleWithRef(T1, cross);
gp_Ax1 axe(gp::Origin(), cross.XYZ());
N2.Rotate(axe, alpha);
#ifdef OCCT_DEBUG
if (N2.Dot(T1) > 1.e-9) {
std::cout << "Inprecision in TransformInCompatibleLaw" << std::endl;
std::cout << "--- T1.R(N2) = " << N2.Dot(T1) << std::endl;
gp_Vec tt;
tt = T1;
tt.Rotate(axe, alpha);
std::cout << "--- T1.R(T2) = " << tt.Dot(T1) << std::endl;
std::cout << "--- R(N2).R(T2) = " << N2.Dot(tt) << std::endl;
}
#endif
Angle = N2.AngleWithRef(N1, T1);
Trsf.SetRotation(OZ, Angle);
}
myLaws->Value(ipath)->SetTrsf(Trsf);
}
}
//=======================================================================
//function : TransformInG0Law
//purpose : Set in continuity of laws
//=======================================================================
void BRepFill_LocationLaw::TransformInG0Law()
{
Standard_Real First, Last;
Standard_Integer ipath;
gp_Mat M1, M2, aux;//,Trsf
gp_Vec V;
myLaws->Value(1)->GetDomain(First, Last);
for (ipath=2; ipath<=myLaws->Length(); ipath++) {
myLaws->Value(ipath-1)->D0(Last, M1, V);
myLaws->Value(ipath)->GetDomain(First, Last);
myLaws->Value(ipath)->D0(First, M2, V);
ToG0(M1, M2, aux);
myLaws->Value(ipath)->SetTrsf(aux);
}
// Is the law periodical ?
if (myPath.Closed()) {
myLaws->Value(myLaws->Length())->D0(Last, M1, V);
myLaws->Value(1)->GetDomain(First, Last);
myLaws->Value(1)->D0(First, M2, V);
}
}
//=======================================================================
//function : DeleteTransform
//purpose : Remove the setting in continuity of law.
//=======================================================================
void BRepFill_LocationLaw::DeleteTransform()
{
gp_Mat Id;
Id.SetIdentity();
for (Standard_Integer ii=1; ii<=myEdges->Length(); ii++) {
myLaws->ChangeValue(ii)->SetTrsf(Id);
}
myDisc.Nullify();
}
//=======================================================================
//function : NbHoles
//purpose : Find "Holes"
//=======================================================================
Standard_Integer BRepFill_LocationLaw::NbHoles(const Standard_Real Tol)
{
if (myDisc.IsNull()) {
TColStd_SequenceOfInteger Seq;
Standard_Integer ii, NbDisc;
for (ii=2, NbDisc=-1; ii<=myLaws->Length()+1; ii++) {
if (IsG1(ii-1, Tol, 1.e-12) == -1) {
Seq.Append(ii);
}
}
NbDisc = Seq.Length();
if ( NbDisc > 0) {
myDisc = new (TColStd_HArray1OfInteger)(1, NbDisc);
for (ii=1; ii<=NbDisc; ii++)
myDisc->SetValue(ii, Seq(ii));
}
}
if (myDisc.IsNull()) return 0;
return myDisc->Length();
}
//=======================================================================
//function : Holes
//purpose :
//=======================================================================
void BRepFill_LocationLaw::Holes(TColStd_Array1OfInteger& Disc) const
{
if (!myDisc.IsNull()) {
for (Standard_Integer ii=1; ii<=myDisc->Length(); ii++)
Disc(ii) = myDisc->Value(ii);
}
}
//=======================================================================
//function : NbLaw
//purpose :
//=======================================================================
Standard_Integer BRepFill_LocationLaw::NbLaw() const
{
return myLaws->Length();
}
//=======================================================================
//function : Law
//purpose :
//=======================================================================
const Handle(GeomFill_LocationLaw)&
BRepFill_LocationLaw::Law(const Standard_Integer Index) const
{
return myLaws->Value(Index);
}
//=======================================================================
//function : Wire
//purpose :
//=======================================================================
const TopoDS_Wire& BRepFill_LocationLaw::Wire() const
{
return myPath;
}
//=======================================================================
//function : Edge
//purpose :
//=======================================================================
const TopoDS_Edge& BRepFill_LocationLaw::Edge(const Standard_Integer Index) const
{
return TopoDS::Edge(myEdges->Value(Index));
}
//=======================================================================
//function : Vertex
//purpose :
//=======================================================================
TopoDS_Vertex BRepFill_LocationLaw::Vertex(const Standard_Integer Index) const
{
TopoDS_Edge E;
TopoDS_Vertex V;
if (Index <= myEdges->Length()) {
E = TopoDS::Edge(myEdges->Value(Index));
if (E.Orientation() == TopAbs_REVERSED)
V = TopExp::LastVertex(E);
else V = TopExp::FirstVertex(E);
}
else if (Index == myEdges->Length()+1) {
E = TopoDS::Edge(myEdges->Value(Index-1));
if (E.Orientation() == TopAbs_REVERSED)
V = TopExp::FirstVertex(E);
else V = TopExp::LastVertex(E);
}
return V;
}
//===================================================================
//function : PerformVertex
//purpose : Calculate a vertex of sweeping from a vertex of section
// and the index of the edge in the trajectory
//===================================================================
void BRepFill_LocationLaw::PerformVertex(const Standard_Integer Index,
const TopoDS_Vertex& Input,
const Standard_Real TolMin,
TopoDS_Vertex& Output,
const Standard_Integer ILoc) const
{
BRep_Builder B;
Standard_Boolean IsBary = (ILoc == 0);
Standard_Real First, Last;
gp_Pnt P;
gp_Vec V1, V2;//, V;
gp_Mat M1, M2;
if (Index>0 && Index<myLaws->Length()) {
if (ILoc <=0) {
myLaws->Value(Index)->GetDomain(First, Last);
myLaws->Value(Index)->D0(Last, M1, V1);
}
if (ILoc >= 0) {
myLaws->Value(Index+1)->GetDomain(First, Last);
if (ILoc == 0)
myLaws->Value(Index+1)->D0(First, M2, V2);
else
myLaws->Value(Index+1)->D0(First, M1, V1);
}
}
if (Index == 0 || Index == myLaws->Length()) {
if (!myPath.Closed() || (IsG1(Index, TolMin) != 1)) {
IsBary = Standard_False;
if (Index == 0) {
myLaws->Value(1)->GetDomain(First, Last);
myLaws->Value(1)->D0(First, M1, V1);
}
else {
myLaws->Value(myLaws->Length())->GetDomain(First, Last);
myLaws->Value(myLaws->Length())->D0(Last, M1, V1);
}
}
else {
if (ILoc <=0) {
myLaws->Value(myLaws->Length())->GetDomain(First, Last);
myLaws->Value(myLaws->Length())->D0(Last, M1, V1);
}
if (ILoc >=0) {
myLaws->Value(1)->GetDomain(First, Last);
if (ILoc==0)
myLaws->Value(1)->D0(First, M2, V2);
else
myLaws->Value(1)->D0(First, M1, V1);
}
}
}
P = BRep_Tool::Pnt(Input);
if (IsBary) {
gp_XYZ P1(P.XYZ()), P2(P.XYZ());
P1 *= M1;
P1 += V1.XYZ();
P2 *= M2;
P2 += V2.XYZ();
P.ChangeCoord().SetLinearForm(0.5, P1, 0.5, P2);
P1 -= P2;
Standard_Real Tol = P1.Modulus()/2;
Tol += TolMin;
B.MakeVertex(Output, P, Tol);
}
else {
P.ChangeCoord() *= M1;
P.ChangeCoord() += V1.XYZ();
B.MakeVertex(Output, P, TolMin);
}
}
//=======================================================================
//function : CurvilinearBounds
//purpose :
//=======================================================================
void BRepFill_LocationLaw::CurvilinearBounds(const Standard_Integer Index,
Standard_Real& First,
Standard_Real& Last) const
{
First = myLength->Value(Index);
Last = myLength->Value(Index+1);
if (Last<0) { //It is required to carry out the calculation
Standard_Integer ii, NbE = myEdges->Length();
Standard_Real Length, f, l;
GCPnts_AbscissaPoint AbsC;
for (ii=1, Length=0.; ii<=NbE; ii++) {
myLaws->Value(ii)->GetDomain(f, l);
Length += AbsC.Length(*myLaws->Value(ii)->GetCurve(), myTol);
myLength->SetValue(ii+1, Length);
}
First = myLength->Value(Index);
Last = myLength->Value(Index+1);
}
}
Standard_Boolean BRepFill_LocationLaw::IsClosed() const
{
if (myPath.Closed())
return Standard_True;
TopoDS_Vertex V1, V2;
TopExp::Vertices(myPath, V1, V2);
return (V1.IsSame(V2));
}
//=======================================================================
//function : IsG1
//purpose : Evaluate the continuity of the law by a vertex
//=======================================================================
Standard_Integer
BRepFill_LocationLaw::IsG1(const Standard_Integer Index,
const Standard_Real SpatialTolerance,
const Standard_Real AngularTolerance) const
{
gp_Vec V1, DV1, V2, DV2;
gp_Mat M1, M2, DM1, DM2;
Standard_Real First, Last, EpsNul = 1.e-12;
Standard_Real TolEps = SpatialTolerance;
Standard_Boolean Ok_D1 = Standard_False;
TopoDS_Vertex V;
TopoDS_Edge E;
TColgp_Array1OfPnt2d Bid1 (1,1);
TColgp_Array1OfVec2d Bid2 (1,1);
if (Index>0 && Index<myLaws->Length()) {
myLaws->Value(Index)->GetDomain(First, Last);
Ok_D1 = myLaws->Value(Index)->D1(Last, M1, V1, DM1, DV1,
Bid1, Bid2);
if (!Ok_D1) myLaws->Value(Index)->D0(Last, M1, V1);
myLaws->Value(Index+1)->GetDomain(First, Last);
if (Ok_D1)
Ok_D1 = myLaws->Value(Index+1)->D1(First, M2, V2, DM2, DV2,
Bid1, Bid2);
if (!Ok_D1) myLaws->Value(Index+1)->D0(First, M2, V2);
E = TopoDS::Edge(myEdges->Value(Index+1));
}
if (Index == 0 || Index == myLaws->Length()) {
if (!myPath.Closed()) return -1;
myLaws->Value(myLaws->Length())->GetDomain(First, Last);
Ok_D1 = myLaws->Value(myLaws->Length())->D1(Last, M1, V1, DM1, DV1,
Bid1, Bid2);
if (!Ok_D1) myLaws->Value(myLaws->Length())->D0(Last, M1, V1);
myLaws->Value(1)->GetDomain(First, Last);
if (Ok_D1)
myLaws->Value(1)->D1(First, M2, V2, DM2, DV2,
Bid1, Bid2);
if (!Ok_D1) myLaws->Value(1)->D0(First, M2, V2);
E = TopoDS::Edge(myEdges->Value(1));
}
if (E.Orientation() == TopAbs_REVERSED)
V = TopExp::LastVertex(E);
else
V = TopExp::FirstVertex(E);
TolEps += 2*BRep_Tool::Tolerance(V);
Standard_Boolean isG0 = Standard_True;
Standard_Boolean isG1 = Standard_True;
if ((V1-V2).Magnitude() > TolEps) isG0 = Standard_False;
if (Norm(M1-M2) > SpatialTolerance) isG0 = Standard_False;
if (!isG0) return -1;
if (!Ok_D1) return 0; // No control of the derivative
if ( (DV1.Magnitude()>EpsNul) && (DV2.Magnitude()>EpsNul)
&& (DV1.Angle(DV2) > AngularTolerance) ) isG1 = Standard_False;
// For the next, the tests are mostly empirical
Standard_Real Norm1 = Norm(DM1);
Standard_Real Norm2 = Norm(DM2);
// It two 2 norms are null, it is good
if ((Norm1 > EpsNul) || (Norm2 > EpsNul)) {
// otherwise the normalized matrices are compared
if ((Norm1 > EpsNul) && (Norm2 > EpsNul)) {
DM1 /= Norm1;
DM2 /= Norm2;
if (Norm(DM1 - DM2) > AngularTolerance) isG1 = Standard_False;
}
else isG1 = Standard_False; // 1 Null the other is not
}
if (isG1) return 1;
else return 0;
}
//=======================================================================
//function : Parameter
//purpose :
//=======================================================================
void BRepFill_LocationLaw::Parameter(const Standard_Real Abcissa,
Standard_Integer& Index,
Standard_Real& U)
{
Standard_Integer iedge, NbE=myEdges->Length();
Standard_Boolean Trouve = Standard_False;
//Control that the lengths are calculated
if (myLength->Value(NbE+1) < 0) {
Standard_Real f, l;
CurvilinearBounds(NbE, f, l);
}
// Find the interval
for (iedge=1; iedge<=NbE && !Trouve; ) {
if (myLength->Value(iedge+1) >= Abcissa) {
Trouve = Standard_True;
}
else iedge++;
}
if (Trouve) {
Standard_Real f, l;
const Handle(GeomFill_LocationLaw)& Law = myLaws->Value(iedge);
Law->GetDomain(f, l);
if (Abcissa == myLength->Value(iedge+1)) {
U = l;
}
else if (Abcissa == myLength->Value(iedge)) {
U = f;
}
else {
GCPnts_AbscissaPoint
AbsC(myTol,
*myLaws->Value(iedge)->GetCurve(),
Abcissa-myLength->Value(iedge), f);
U = AbsC.Parameter();
}
Index = iedge;
}
else {
Index = 0;
}
}
//===================================================================
//function : D0
//purpose : Position of a section, with a given curviline abscissa
//===================================================================
void BRepFill_LocationLaw::D0(const Standard_Real Abcissa,
TopoDS_Shape& W)
{
Standard_Real u;
Standard_Integer ind;
gp_Mat M;
gp_Vec V;
Parameter(Abcissa, ind, u);
if (ind != 0) {
// Positionement
myLaws->Value(ind)->D0(u, M, V);
gp_Trsf fila;
fila.SetValues(M(1,1), M(1,2), M(1,3), V.X(),
M(2,1), M(2,2), M(2,3), V.Y(),
M(3,1), M(3,2), M(3,3), V.Z());
//TopLoc_Location Loc(fila);
//W.Location(Loc.Multiplied(W.Location()));
W = BRepBuilderAPI_Transform(W, fila, Standard_True); //copy
///////////////////////////////////////////
}
else {
W.Nullify();
#ifdef OCCT_DEBUG
std::cout << "BRepFill_LocationLaw::D0 : Attention position out of limits"
<< std::endl;
#endif
}
}
//=======================================================================
//function : Abscissa
//purpose : Calculate the abscissa of a point
//=======================================================================
Standard_Real BRepFill_LocationLaw::Abscissa(const Standard_Integer Index,
const Standard_Real Param)
{
GCPnts_AbscissaPoint AbsC;
Standard_Real Length = myLength->Value(Index);
if (Length < 0) {
Standard_Real bid;
CurvilinearBounds(Index, bid, Length);
}
Length += AbsC.Length(*myLaws->Value(Index)->GetCurve(),
myLaws->Value(Index)->GetCurve()->FirstParameter(),
Param, myTol);
return Length;
}