mirror of
https://git.dev.opencascade.org/repos/occt.git
synced 2025-07-30 13:05:50 +03:00
License statement text corrected; compiler warnings caused by Bison 2.41 disabled for MSVC; a few other compiler warnings on 54-bit Windows eliminated by appropriate type cast Wrong license statements corrected in several files. Copyright and license statements added in XSD and GLSL files. Copyright year updated in some files. Obsolete documentation files removed from DrawResources.
390 lines
10 KiB
Plaintext
390 lines
10 KiB
Plaintext
// Copyright (c) 1995-1999 Matra Datavision
|
|
// Copyright (c) 1999-2014 OPEN CASCADE SAS
|
|
//
|
|
// This file is part of Open CASCADE Technology software library.
|
|
//
|
|
// This library is free software; you can redistribute it and/or modify it under
|
|
// the terms of the GNU Lesser General Public License version 2.1 as published
|
|
// by the Free Software Foundation, with special exception defined in the file
|
|
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
|
|
// distribution for complete text of the license and disclaimer of any warranty.
|
|
//
|
|
// Alternatively, this file may be used under the terms of Open CASCADE
|
|
// commercial license or contractual agreement.
|
|
|
|
// lpa, le 11/09/91
|
|
|
|
|
|
// Application de la methode du gradient corrige pour minimiser
|
|
// F = somme(||C(ui, Poles(ui)) - ptli||2.
|
|
// La methode de gradient conjugue est programmee dans la bibliotheque
|
|
// mathematique: math_BFGS.
|
|
|
|
|
|
#define No_Standard_RangeError
|
|
#define No_Standard_OutOfRange
|
|
|
|
#include <AppParCurves_Constraint.hxx>
|
|
#include <AppParCurves_ConstraintCouple.hxx>
|
|
#include <math_BFGS.hxx>
|
|
#include <StdFail_NotDone.hxx>
|
|
#include <AppParCurves_MultiPoint.hxx>
|
|
#include <gp_Pnt.hxx>
|
|
#include <gp_Pnt2d.hxx>
|
|
#include <gp_Vec.hxx>
|
|
#include <gp_Vec2d.hxx>
|
|
#include <TColgp_Array1OfPnt.hxx>
|
|
#include <TColgp_Array1OfPnt2d.hxx>
|
|
#include <TColgp_Array1OfVec.hxx>
|
|
#include <TColgp_Array1OfVec2d.hxx>
|
|
|
|
#include <OSD_Chronometer.hxx>
|
|
|
|
static OSD_Chronometer chr1;
|
|
|
|
|
|
static Standard_Boolean islambdadefined = Standard_False;
|
|
|
|
|
|
|
|
static AppParCurves_Constraint FirstConstraint
|
|
(const Handle(AppParCurves_HArray1OfConstraintCouple)& TheConstraints,
|
|
const Standard_Integer FirstPoint)
|
|
{
|
|
Standard_Integer i, myindex;
|
|
Standard_Integer low = TheConstraints->Lower(), upp= TheConstraints->Upper();
|
|
AppParCurves_ConstraintCouple mycouple;
|
|
AppParCurves_Constraint Cons = AppParCurves_NoConstraint;
|
|
|
|
for (i = low; i <= upp; i++) {
|
|
mycouple = TheConstraints->Value(i);
|
|
Cons = mycouple.Constraint();
|
|
myindex = mycouple.Index();
|
|
if (myindex == FirstPoint) {
|
|
break;
|
|
}
|
|
}
|
|
return Cons;
|
|
}
|
|
|
|
|
|
static AppParCurves_Constraint LastConstraint
|
|
(const Handle(AppParCurves_HArray1OfConstraintCouple)& TheConstraints,
|
|
const Standard_Integer LastPoint)
|
|
{
|
|
Standard_Integer i, myindex;
|
|
Standard_Integer low = TheConstraints->Lower(), upp= TheConstraints->Upper();
|
|
AppParCurves_ConstraintCouple mycouple;
|
|
AppParCurves_Constraint Cons = AppParCurves_NoConstraint;
|
|
|
|
for (i = low; i <= upp; i++) {
|
|
mycouple = TheConstraints->Value(i);
|
|
Cons = mycouple.Constraint();
|
|
myindex = mycouple.Index();
|
|
if (myindex == LastPoint) {
|
|
break;
|
|
}
|
|
}
|
|
return Cons;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
AppParCurves_BSpGradient::
|
|
AppParCurves_BSpGradient(const MultiLine& SSP,
|
|
const Standard_Integer FirstPoint,
|
|
const Standard_Integer LastPoint,
|
|
const Handle(AppParCurves_HArray1OfConstraintCouple)& TheConstraints,
|
|
math_Vector& Parameters,
|
|
const TColStd_Array1OfReal& Knots,
|
|
const TColStd_Array1OfInteger& Mults,
|
|
const Standard_Integer Deg,
|
|
const Standard_Real Tol3d,
|
|
const Standard_Real Tol2d,
|
|
const Standard_Integer NbIterations):
|
|
ParError(FirstPoint, LastPoint,0.0)
|
|
{
|
|
Perform(SSP, FirstPoint, LastPoint, TheConstraints, Parameters,
|
|
Knots, Mults, Deg, Tol3d, Tol2d, NbIterations);
|
|
}
|
|
|
|
|
|
AppParCurves_BSpGradient::
|
|
AppParCurves_BSpGradient(const MultiLine& SSP,
|
|
const Standard_Integer FirstPoint,
|
|
const Standard_Integer LastPoint,
|
|
const Handle(AppParCurves_HArray1OfConstraintCouple)& TheConstraints,
|
|
math_Vector& Parameters,
|
|
const TColStd_Array1OfReal& Knots,
|
|
const TColStd_Array1OfInteger& Mults,
|
|
const Standard_Integer Deg,
|
|
const Standard_Real Tol3d,
|
|
const Standard_Real Tol2d,
|
|
const Standard_Integer NbIterations,
|
|
const Standard_Real lambda1,
|
|
const Standard_Real lambda2):
|
|
ParError(FirstPoint, LastPoint,0.0)
|
|
{
|
|
mylambda1 = lambda1;
|
|
mylambda2 = lambda2;
|
|
islambdadefined = Standard_True;
|
|
Perform(SSP, FirstPoint, LastPoint, TheConstraints, Parameters,
|
|
Knots, Mults, Deg, Tol3d, Tol2d, NbIterations);
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
void AppParCurves_BSpGradient::
|
|
Perform(const MultiLine& SSP,
|
|
const Standard_Integer FirstPoint,
|
|
const Standard_Integer LastPoint,
|
|
const Handle(AppParCurves_HArray1OfConstraintCouple)& TheConstraints,
|
|
math_Vector& Parameters,
|
|
const TColStd_Array1OfReal& Knots,
|
|
const TColStd_Array1OfInteger& Mults,
|
|
const Standard_Integer Deg,
|
|
const Standard_Real Tol3d,
|
|
const Standard_Real Tol2d,
|
|
const Standard_Integer NbIterations)
|
|
{
|
|
|
|
// Standard_Boolean grad = Standard_True;
|
|
Standard_Integer i, j, k, i2, l;
|
|
Standard_Real UF, DU, Fval = 0.0, FU, DFU;
|
|
Standard_Integer nbP3d = ToolLine::NbP3d(SSP);
|
|
Standard_Integer nbP2d = ToolLine::NbP2d(SSP);
|
|
Standard_Integer mynbP3d=nbP3d, mynbP2d=nbP2d;
|
|
Standard_Integer nbP = nbP3d + nbP2d;
|
|
// gp_Pnt Pt, P1, P2;
|
|
gp_Pnt Pt;
|
|
// gp_Pnt2d Pt2d, P12d, P22d;
|
|
gp_Pnt2d Pt2d;
|
|
// gp_Vec V1, V2, MyV;
|
|
gp_Vec V1, MyV;
|
|
// gp_Vec2d V12d, V22d, MyV2d;
|
|
gp_Vec2d V12d, MyV2d;
|
|
Done = Standard_False;
|
|
|
|
if (nbP3d == 0) mynbP3d = 1;
|
|
if (nbP2d == 0) mynbP2d = 1;
|
|
TColgp_Array1OfPnt TabP(1, mynbP3d);
|
|
TColgp_Array1OfPnt2d TabP2d(1, mynbP2d);
|
|
TColgp_Array1OfVec TabV(1, mynbP3d);
|
|
TColgp_Array1OfVec2d TabV2d(1, mynbP2d);
|
|
|
|
// Calcul de la fonction F= somme(||C(ui)-Ptli||2):
|
|
// Appel a une fonction heritant de MultipleVarFunctionWithGradient
|
|
// pour calculer F et grad_F.
|
|
// ================================================================
|
|
|
|
Standard_Integer nbpoles = -Deg -1;
|
|
for (i = Mults.Lower() ;i <= Mults.Upper(); i++) {
|
|
nbpoles += Mults(i);
|
|
}
|
|
|
|
TColgp_Array1OfPnt TabPole(1, nbpoles);
|
|
TColgp_Array1OfPnt2d TabPole2d(1, nbpoles);
|
|
TColgp_Array1OfPnt ThePoles(1, (nbpoles)*mynbP3d);
|
|
TColgp_Array1OfPnt2d ThePoles2d(1, (nbpoles)*mynbP2d);
|
|
|
|
|
|
AppParCurves_Constraint
|
|
FirstCons = FirstConstraint(TheConstraints, FirstPoint),
|
|
LastCons = LastConstraint(TheConstraints, LastPoint);
|
|
|
|
|
|
AppParCurves_BSpParFunction MyF(SSP, FirstPoint,LastPoint, TheConstraints,
|
|
Parameters, Knots, Mults, nbpoles);
|
|
|
|
|
|
|
|
if (FirstCons >= AppParCurves_TangencyPoint ||
|
|
LastCons >= AppParCurves_TangencyPoint) {
|
|
|
|
if (!islambdadefined) {
|
|
AppParCurves_BSpParLeastSquare thefitt(SSP, Knots, Mults, FirstPoint,
|
|
LastPoint, FirstCons, LastCons,
|
|
Parameters, nbpoles);
|
|
if (FirstCons >= AppParCurves_TangencyPoint) {
|
|
mylambda1 = thefitt.FirstLambda();
|
|
MyF.SetFirstLambda(mylambda1);
|
|
}
|
|
if (LastCons >= AppParCurves_TangencyPoint) {
|
|
mylambda2 = thefitt.LastLambda();
|
|
MyF.SetLastLambda(mylambda2);
|
|
}
|
|
}
|
|
else {
|
|
MyF.SetFirstLambda(mylambda1);
|
|
MyF.SetLastLambda(mylambda2);
|
|
}
|
|
}
|
|
|
|
|
|
MyF.Value(Parameters, Fval);
|
|
MError3d = MyF.MaxError3d();
|
|
MError2d = MyF.MaxError2d();
|
|
SCU = MyF.CurveValue();
|
|
|
|
if (MError3d > Tol3d || MError2d > Tol2d) {
|
|
|
|
// Stockage des Poles des courbes pour projeter:
|
|
// ============================================
|
|
i2 = 0;
|
|
for (k = 1; k <= nbP3d; k++) {
|
|
SCU.Curve(k, TabPole);
|
|
for (j=1; j<=nbpoles; j++) ThePoles(j+i2) = TabPole(j);
|
|
i2 += nbpoles;
|
|
}
|
|
i2 = 0;
|
|
for (k = 1; k <= nbP2d; k++) {
|
|
SCU.Curve(nbP3d+k, TabPole2d);
|
|
for (j=1; j<=nbpoles; j++) ThePoles2d(j+i2) = TabPole2d(j);
|
|
i2 += nbpoles;
|
|
}
|
|
|
|
// Une iteration rapide de projection est faite par la methode de
|
|
// Rogers & Fog 89, methode equivalente a Hoschek 88 qui ne necessite pas
|
|
// le calcul de D2.
|
|
|
|
const math_Matrix& A = MyF.FunctionMatrix();
|
|
const math_Matrix& DA = MyF.DerivativeFunctionMatrix();
|
|
const math_IntegerVector& Index = MyF.Index();
|
|
Standard_Real aa, da, a, b, c, d , e , f, px, py, pz;
|
|
Standard_Integer indexdeb, indexfin;
|
|
|
|
for (j = FirstPoint+1; j <= LastPoint-1; j++) {
|
|
|
|
UF = Parameters(j);
|
|
if (nbP3d != 0 && nbP2d != 0) ToolLine::Value(SSP, j, TabP, TabP2d);
|
|
else if (nbP2d != 0) ToolLine::Value(SSP, j, TabP2d);
|
|
else ToolLine::Value(SSP, j, TabP);
|
|
|
|
FU = 0.0;
|
|
DFU = 0.0;
|
|
i2 = 0;
|
|
|
|
indexdeb = Index(j) + 1;
|
|
indexfin = indexdeb + Deg;
|
|
|
|
for (k = 1; k <= nbP3d; k++) {
|
|
a = b = c = d = e = f = 0.0;
|
|
for (l = indexdeb; l <= indexfin; l++) {
|
|
Pt = ThePoles(l+i2);
|
|
px = Pt.X(); py = Pt.Y(); pz = Pt.Z();
|
|
aa = A(j, l); da = DA(j, l);
|
|
a += aa* px; d += da* px;
|
|
b += aa* py; e += da* py;
|
|
c += aa* pz; f += da* pz;
|
|
}
|
|
Pt.SetCoord(a, b, c);
|
|
V1.SetCoord(d, e, f);
|
|
i2 += nbpoles;
|
|
|
|
MyV = gp_Vec(Pt, TabP(k));
|
|
FU += MyV*V1;
|
|
DFU += V1.SquareMagnitude();
|
|
}
|
|
i2 = 0;
|
|
for (k = 1; k <= nbP2d; k++) {
|
|
a = b = d = e = 0.0;
|
|
for (l = indexdeb; l <= indexfin; l++) {
|
|
Pt2d = ThePoles2d(l+i2);
|
|
px = Pt2d.X(); py = Pt2d.Y();
|
|
aa = A(j, l); da = DA(j, l);
|
|
a += aa* px; d += da* px;
|
|
b += aa* py; e += da* py;
|
|
}
|
|
Pt2d.SetCoord(a, b);
|
|
V12d.SetCoord(d, e);
|
|
i2 += nbpoles;
|
|
|
|
MyV2d = gp_Vec2d(Pt2d, TabP2d(k));
|
|
FU += MyV2d*V12d;
|
|
DFU += V12d.SquareMagnitude();
|
|
}
|
|
|
|
if (DFU >= RealEpsilon()) {
|
|
DU = FU/DFU;
|
|
DU = Sign(Min(5.e-02, Abs(DU)), DU);
|
|
UF += DU;
|
|
Parameters(j) = UF;
|
|
}
|
|
}
|
|
|
|
MyF.Value(Parameters, Fval);
|
|
MError3d = MyF.MaxError3d();
|
|
MError2d = MyF.MaxError2d();
|
|
}
|
|
|
|
|
|
if (MError3d<= Tol3d && MError2d <= Tol2d) {
|
|
Done = Standard_True;
|
|
}
|
|
else if (NbIterations != 0) {
|
|
// NbIterations de gradient conjugue:
|
|
// =================================
|
|
Standard_Real Eps = 1.e-07;
|
|
AppParCurves_BSpGradient_BFGS FResol(MyF, Parameters, Tol3d,
|
|
Tol2d, Eps, NbIterations);
|
|
}
|
|
|
|
SCU = MyF.CurveValue();
|
|
|
|
|
|
AvError = 0.;
|
|
for (j = FirstPoint; j <= LastPoint; j++) {
|
|
Parameters(j) = MyF.NewParameters()(j);
|
|
// Recherche des erreurs maxi et moyenne a un index donne:
|
|
for (k = 1; k <= nbP; k++) {
|
|
ParError(j) = Max(ParError(j), MyF.Error(j, k));
|
|
}
|
|
AvError += ParError(j);
|
|
}
|
|
AvError = AvError/(LastPoint-FirstPoint+1);
|
|
|
|
|
|
MError3d = MyF.MaxError3d();
|
|
MError2d = MyF.MaxError2d();
|
|
if (MError3d <= Tol3d && MError2d <= Tol2d) {
|
|
Done = Standard_True;
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
AppParCurves_MultiBSpCurve AppParCurves_BSpGradient::Value() const {
|
|
return SCU;
|
|
}
|
|
|
|
|
|
Standard_Boolean AppParCurves_BSpGradient::IsDone() const {
|
|
return Done;
|
|
}
|
|
|
|
|
|
Standard_Real AppParCurves_BSpGradient::Error(const Standard_Integer Index) const {
|
|
return ParError(Index);
|
|
}
|
|
|
|
Standard_Real AppParCurves_BSpGradient::AverageError() const {
|
|
return AvError;
|
|
}
|
|
|
|
Standard_Real AppParCurves_BSpGradient::MaxError3d() const {
|
|
return MError3d;
|
|
}
|
|
|
|
Standard_Real AppParCurves_BSpGradient::MaxError2d() const {
|
|
return MError2d;
|
|
}
|
|
|
|
|