1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-04-03 17:56:21 +03:00
occt/src/PLib/PLib_JacobiPolynomial.hxx

186 lines
8.1 KiB
C++

// Created on: 1996-10-08
// Created by: Jeannine PANTIATICI
// Copyright (c) 1996-1999 Matra Datavision
// Copyright (c) 1999-2014 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
#ifndef _PLib_JacobiPolynomial_HeaderFile
#define _PLib_JacobiPolynomial_HeaderFile
#include <Standard.hxx>
#include <Standard_Type.hxx>
#include <Standard_Integer.hxx>
#include <TColStd_HArray1OfReal.hxx>
#include <PLib_Base.hxx>
#include <GeomAbs_Shape.hxx>
#include <TColStd_Array1OfReal.hxx>
#include <TColStd_Array2OfReal.hxx>
class PLib_JacobiPolynomial;
DEFINE_STANDARD_HANDLE(PLib_JacobiPolynomial, PLib_Base)
//! This class provides method to work with Jacobi Polynomials
//! relatively to an order of constraint
//! q = myWorkDegree-2*(myNivConstr+1)
//! Jk(t) for k=0,q compose the Jacobi Polynomial base relatively to the weight W(t)
//! iorder is the integer value for the constraints:
//! iorder = 0 <=> ConstraintOrder = GeomAbs_C0
//! iorder = 1 <=> ConstraintOrder = GeomAbs_C1
//! iorder = 2 <=> ConstraintOrder = GeomAbs_C2
//! P(t) = R(t) + W(t) * Q(t) Where W(t) = (1-t**2)**(2*iordre+2)
//! the coefficients JacCoeff represents P(t) JacCoeff are stored as follow:
//!
//! c0(1) c0(2) .... c0(Dimension)
//! c1(1) c1(2) .... c1(Dimension)
//!
//! cDegree(1) cDegree(2) .... cDegree(Dimension)
//!
//! The coefficients
//! c0(1) c0(2) .... c0(Dimension)
//! c2*ordre+1(1) ... c2*ordre+1(dimension)
//!
//! represents the part of the polynomial in the
//! canonical base: R(t)
//! R(t) = c0 + c1 t + ...+ c2*iordre+1 t**2*iordre+1
//! The following coefficients represents the part of the
//! polynomial in the Jacobi base ie Q(t)
//! Q(t) = c2*iordre+2 J0(t) + ...+ cDegree JDegree-2*iordre-2
class PLib_JacobiPolynomial : public PLib_Base
{
public:
//! Initialize the polynomial class
//! Degree has to be <= 30
//! ConstraintOrder has to be GeomAbs_C0
//! GeomAbs_C1
//! GeomAbs_C2
Standard_EXPORT PLib_JacobiPolynomial(const Standard_Integer WorkDegree,
const GeomAbs_Shape ConstraintOrder);
//! returns the Jacobi Points for Gauss integration ie
//! the positive values of the Legendre roots by increasing values
//! NbGaussPoints is the number of points chosen for the integral
//! computation.
//! TabPoints (0,NbGaussPoints/2)
//! TabPoints (0) is loaded only for the odd values of NbGaussPoints
//! The possible values for NbGaussPoints are : 8, 10,
//! 15, 20, 25, 30, 35, 40, 50, 61
//! NbGaussPoints must be greater than Degree
Standard_EXPORT void Points(const Standard_Integer NbGaussPoints,
TColStd_Array1OfReal& TabPoints) const;
//! returns the Jacobi weights for Gauss integration only for
//! the positive values of the Legendre roots in the order they
//! are given by the method Points
//! NbGaussPoints is the number of points chosen for the integral
//! computation.
//! TabWeights (0,NbGaussPoints/2,0,Degree)
//! TabWeights (0,.) are only loaded for the odd values of NbGaussPoints
//! The possible values for NbGaussPoints are : 8 , 10 , 15 ,20 ,25 , 30,
//! 35 , 40 , 50 , 61 NbGaussPoints must be greater than Degree
Standard_EXPORT void Weights(const Standard_Integer NbGaussPoints,
TColStd_Array2OfReal& TabWeights) const;
//! this method loads for k=0,q the maximum value of
//! abs ( W(t)*Jk(t) )for t bellonging to [-1,1]
//! This values are loaded is the array TabMax(0,myWorkDegree-2*(myNivConst+1))
//! MaxValue ( me ; TabMaxPointer : in out Real );
Standard_EXPORT void MaxValue(TColStd_Array1OfReal& TabMax) const;
//! This method computes the maximum error on the polynomial
//! W(t) Q(t) obtained by missing the coefficients of JacCoeff from
//! NewDegree +1 to Degree
Standard_EXPORT Standard_Real MaxError(const Standard_Integer Dimension,
Standard_Real& JacCoeff,
const Standard_Integer NewDegree) const;
//! Compute NewDegree <= MaxDegree so that MaxError is lower
//! than Tol.
//! MaxError can be greater than Tol if it is not possible
//! to find a NewDegree <= MaxDegree.
//! In this case NewDegree = MaxDegree
Standard_EXPORT void ReduceDegree(const Standard_Integer Dimension,
const Standard_Integer MaxDegree,
const Standard_Real Tol,
Standard_Real& JacCoeff,
Standard_Integer& NewDegree,
Standard_Real& MaxError) const Standard_OVERRIDE;
Standard_EXPORT Standard_Real AverageError(const Standard_Integer Dimension,
Standard_Real& JacCoeff,
const Standard_Integer NewDegree) const;
//! Convert the polynomial P(t) = R(t) + W(t) Q(t) in the canonical base.
Standard_EXPORT void ToCoefficients(const Standard_Integer Dimension,
const Standard_Integer Degree,
const TColStd_Array1OfReal& JacCoeff,
TColStd_Array1OfReal& Coefficients) const Standard_OVERRIDE;
//! Compute the values of the basis functions in u
Standard_EXPORT void D0(const Standard_Real U,
TColStd_Array1OfReal& BasisValue) Standard_OVERRIDE;
//! Compute the values and the derivatives values of
//! the basis functions in u
Standard_EXPORT void D1(const Standard_Real U,
TColStd_Array1OfReal& BasisValue,
TColStd_Array1OfReal& BasisD1) Standard_OVERRIDE;
//! Compute the values and the derivatives values of
//! the basis functions in u
Standard_EXPORT void D2(const Standard_Real U,
TColStd_Array1OfReal& BasisValue,
TColStd_Array1OfReal& BasisD1,
TColStd_Array1OfReal& BasisD2) Standard_OVERRIDE;
//! Compute the values and the derivatives values of
//! the basis functions in u
Standard_EXPORT void D3(const Standard_Real U,
TColStd_Array1OfReal& BasisValue,
TColStd_Array1OfReal& BasisD1,
TColStd_Array1OfReal& BasisD2,
TColStd_Array1OfReal& BasisD3) Standard_OVERRIDE;
//! returns WorkDegree
Standard_Integer WorkDegree() const Standard_OVERRIDE;
//! returns NivConstr
Standard_Integer NivConstr() const;
DEFINE_STANDARD_RTTIEXT(PLib_JacobiPolynomial, PLib_Base)
protected:
private:
//! Compute the values and the derivatives values of
//! the basis functions in u
Standard_EXPORT void D0123(const Standard_Integer NDerive,
const Standard_Real U,
TColStd_Array1OfReal& BasisValue,
TColStd_Array1OfReal& BasisD1,
TColStd_Array1OfReal& BasisD2,
TColStd_Array1OfReal& BasisD3);
Standard_Integer myWorkDegree;
Standard_Integer myNivConstr;
Standard_Integer myDegree;
Handle(TColStd_HArray1OfReal) myTNorm;
Handle(TColStd_HArray1OfReal) myCofA;
Handle(TColStd_HArray1OfReal) myCofB;
Handle(TColStd_HArray1OfReal) myDenom;
};
#include <PLib_JacobiPolynomial.lxx>
#endif // _PLib_JacobiPolynomial_HeaderFile