mirror of
https://git.dev.opencascade.org/repos/occt.git
synced 2025-04-03 17:56:21 +03:00
2414 lines
135 KiB
C++
2414 lines
135 KiB
C++
// Created on: 1991-08-09
|
|
// Created by: Jean Claude VAUTHIER
|
|
// Copyright (c) 1991-1999 Matra Datavision
|
|
// Copyright (c) 1999-2014 OPEN CASCADE SAS
|
|
//
|
|
// This file is part of Open CASCADE Technology software library.
|
|
//
|
|
// This library is free software; you can redistribute it and/or modify it under
|
|
// the terms of the GNU Lesser General Public License version 2.1 as published
|
|
// by the Free Software Foundation, with special exception defined in the file
|
|
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
|
|
// distribution for complete text of the license and disclaimer of any warranty.
|
|
//
|
|
// Alternatively, this file may be used under the terms of Open CASCADE
|
|
// commercial license or contractual agreement.
|
|
|
|
#ifndef _BSplCLib_HeaderFile
|
|
#define _BSplCLib_HeaderFile
|
|
|
|
#include <BSplCLib_EvaluatorFunction.hxx>
|
|
#include <BSplCLib_KnotDistribution.hxx>
|
|
#include <BSplCLib_MultDistribution.hxx>
|
|
#include <GeomAbs_BSplKnotDistribution.hxx>
|
|
#include <Standard.hxx>
|
|
#include <Standard_DefineAlloc.hxx>
|
|
#include <Standard_Handle.hxx>
|
|
#include <Standard_Integer.hxx>
|
|
#include <Standard_Real.hxx>
|
|
#include <TColgp_Array1OfPnt.hxx>
|
|
#include <TColgp_Array1OfPnt2d.hxx>
|
|
#include <TColStd_Array1OfReal.hxx>
|
|
#include <TColStd_Array2OfReal.hxx>
|
|
#include <TColStd_HArray1OfInteger.hxx>
|
|
#include <TColStd_HArray1OfReal.hxx>
|
|
|
|
class gp_Pnt;
|
|
class gp_Pnt2d;
|
|
class gp_Vec;
|
|
class gp_Vec2d;
|
|
class math_Matrix;
|
|
|
|
//! BSplCLib B-spline curve Library.
|
|
//!
|
|
//! The BSplCLib package is a basic library for BSplines. It
|
|
//! provides three categories of functions.
|
|
//!
|
|
//! * Management methods to process knots and multiplicities.
|
|
//!
|
|
//! * Multi-Dimensions spline methods. BSpline methods where
|
|
//! poles have an arbitrary number of dimensions. They divides
|
|
//! in two groups :
|
|
//!
|
|
//! - Global methods modifying the whole set of poles. The
|
|
//! poles are described by an array of Reals and a
|
|
//! Dimension. Example : Inserting knots.
|
|
//!
|
|
//! - Local methods computing points and derivatives. The
|
|
//! poles are described by a pointer on a local array of
|
|
//! Reals and a Dimension. The local array is modified.
|
|
//!
|
|
//! * 2D and 3D spline curves methods.
|
|
//!
|
|
//! Methods for 2d and 3d BSplines curves rational or not
|
|
//! rational.
|
|
//!
|
|
//! Those methods have the following structure :
|
|
//!
|
|
//! - They extract the pole information in a working array.
|
|
//!
|
|
//! - They process the working array with the
|
|
//! multi-dimension methods. (for example a 3d rational
|
|
//! curve is processed as a 4 dimension curve).
|
|
//!
|
|
//! - They get back the result in the original dimension.
|
|
//!
|
|
//! Note that the bspline surface methods found in the
|
|
//! package BSplSLib uses the same structure and rely on
|
|
//! BSplCLib.
|
|
//!
|
|
//! In the following list of methods the 2d and 3d curve
|
|
//! methods will be described with the corresponding
|
|
//! multi-dimension method.
|
|
//!
|
|
//! The 3d or 2d B-spline curve is defined with :
|
|
//!
|
|
//! . its control points : TColgp_Array1OfPnt(2d) Poles
|
|
//! . its weights : TColStd_Array1OfReal Weights
|
|
//! . its knots : TColStd_Array1OfReal Knots
|
|
//! . its multiplicities : TColStd_Array1OfInteger Mults
|
|
//! . its degree : Standard_Integer Degree
|
|
//! . its periodicity : Standard_Boolean Periodic
|
|
//!
|
|
//! Warnings :
|
|
//! The bounds of Poles and Weights should be the same.
|
|
//! The bounds of Knots and Mults should be the same.
|
|
//!
|
|
//! Note: weight and multiplicity arrays can be passed by pointer for
|
|
//! some functions so that NULL pointer is valid.
|
|
//! That means no weights/no multiplicities passed.
|
|
//!
|
|
//! No weights (BSplCLib::NoWeights()) means the curve is non rational.
|
|
//! No mults (BSplCLib::NoMults()) means the knots are "flat" knots.
|
|
//!
|
|
//! KeyWords :
|
|
//! B-spline curve, Functions, Library
|
|
//!
|
|
//! References :
|
|
//! . A survey of curves and surfaces methods in CADG Wolfgang
|
|
//! BOHM CAGD 1 (1984)
|
|
//! . On de Boor-like algorithms and blossoming Wolfgang BOEHM
|
|
//! cagd 5 (1988)
|
|
//! . Blossoming and knot insertion algorithms for B-spline curves
|
|
//! Ronald N. GOLDMAN
|
|
//! . Modelisation des surfaces en CAO, Henri GIAUME Peugeot SA
|
|
//! . Curves and Surfaces for Computer Aided Geometric Design,
|
|
//! a practical guide Gerald Farin
|
|
class BSplCLib
|
|
{
|
|
public:
|
|
DEFINE_STANDARD_ALLOC
|
|
|
|
//! This routine searches the position of the real value theX
|
|
//! in the monotonically increasing set of real values theArray using bisection algorithm.
|
|
//!
|
|
//! If the given value is out of range or array values, algorithm returns either
|
|
//! theArray.Lower()-1 or theArray.Upper()+1 depending on theX position in the ordered set.
|
|
//!
|
|
//! This routine is used to locate a knot value in a set of knots.
|
|
Standard_EXPORT static void Hunt(const TColStd_Array1OfReal& theArray,
|
|
const Standard_Real theX,
|
|
Standard_Integer& theXPos);
|
|
|
|
//! Computes the index of the knots value which gives
|
|
//! the start point of the curve.
|
|
Standard_EXPORT static Standard_Integer FirstUKnotIndex(const Standard_Integer Degree,
|
|
const TColStd_Array1OfInteger& Mults);
|
|
|
|
//! Computes the index of the knots value which gives
|
|
//! the end point of the curve.
|
|
Standard_EXPORT static Standard_Integer LastUKnotIndex(const Standard_Integer Degree,
|
|
const TColStd_Array1OfInteger& Mults);
|
|
|
|
//! Computes the index of the flats knots sequence
|
|
//! corresponding to <Index> in the knots sequence
|
|
//! which multiplicities are <Mults>.
|
|
Standard_EXPORT static Standard_Integer FlatIndex(const Standard_Integer Degree,
|
|
const Standard_Integer Index,
|
|
const TColStd_Array1OfInteger& Mults,
|
|
const Standard_Boolean Periodic);
|
|
|
|
//! Locates the parametric value U in the knots
|
|
//! sequence between the knot K1 and the knot K2.
|
|
//! The value return in Index verifies.
|
|
//!
|
|
//! Knots(Index) <= U < Knots(Index + 1)
|
|
//! if U <= Knots (K1) then Index = K1
|
|
//! if U >= Knots (K2) then Index = K2 - 1
|
|
//!
|
|
//! If Periodic is True U may be modified to fit in
|
|
//! the range Knots(K1), Knots(K2). In any case the
|
|
//! correct value is returned in NewU.
|
|
//!
|
|
//! Warnings :Index is used as input data to initialize the
|
|
//! searching function.
|
|
//! Warning: Knots have to be "with repetitions"
|
|
Standard_EXPORT static void LocateParameter(const Standard_Integer Degree,
|
|
const TColStd_Array1OfReal& Knots,
|
|
const TColStd_Array1OfInteger& Mults,
|
|
const Standard_Real U,
|
|
const Standard_Boolean IsPeriodic,
|
|
const Standard_Integer FromK1,
|
|
const Standard_Integer ToK2,
|
|
Standard_Integer& KnotIndex,
|
|
Standard_Real& NewU);
|
|
|
|
//! Locates the parametric value U in the knots
|
|
//! sequence between the knot K1 and the knot K2.
|
|
//! The value return in Index verifies.
|
|
//!
|
|
//! Knots(Index) <= U < Knots(Index + 1)
|
|
//! if U <= Knots (K1) then Index = K1
|
|
//! if U >= Knots (K2) then Index = K2 - 1
|
|
//!
|
|
//! If Periodic is True U may be modified to fit in
|
|
//! the range Knots(K1), Knots(K2). In any case the
|
|
//! correct value is returned in NewU.
|
|
//!
|
|
//! Warnings :Index is used as input data to initialize the
|
|
//! searching function.
|
|
//! Warning: Knots have to be "flat"
|
|
Standard_EXPORT static void LocateParameter(const Standard_Integer Degree,
|
|
const TColStd_Array1OfReal& Knots,
|
|
const Standard_Real U,
|
|
const Standard_Boolean IsPeriodic,
|
|
const Standard_Integer FromK1,
|
|
const Standard_Integer ToK2,
|
|
Standard_Integer& KnotIndex,
|
|
Standard_Real& NewU);
|
|
|
|
Standard_EXPORT static void LocateParameter(const Standard_Integer Degree,
|
|
const TColStd_Array1OfReal& Knots,
|
|
const TColStd_Array1OfInteger* Mults,
|
|
const Standard_Real U,
|
|
const Standard_Boolean Periodic,
|
|
Standard_Integer& Index,
|
|
Standard_Real& NewU);
|
|
|
|
//! Finds the greatest multiplicity in a set of knots
|
|
//! between K1 and K2. Mults is the multiplicity
|
|
//! associated with each knot value.
|
|
Standard_EXPORT static Standard_Integer MaxKnotMult(const TColStd_Array1OfInteger& Mults,
|
|
const Standard_Integer K1,
|
|
const Standard_Integer K2);
|
|
|
|
//! Finds the lowest multiplicity in a set of knots
|
|
//! between K1 and K2. Mults is the multiplicity
|
|
//! associated with each knot value.
|
|
Standard_EXPORT static Standard_Integer MinKnotMult(const TColStd_Array1OfInteger& Mults,
|
|
const Standard_Integer K1,
|
|
const Standard_Integer K2);
|
|
|
|
//! Returns the number of poles of the curve. Returns 0 if
|
|
//! one of the multiplicities is incorrect.
|
|
//!
|
|
//! * Non positive.
|
|
//!
|
|
//! * Greater than Degree, or Degree+1 at the first and
|
|
//! last knot of a non periodic curve.
|
|
//!
|
|
//! * The last periodicity on a periodic curve is not
|
|
//! equal to the first.
|
|
Standard_EXPORT static Standard_Integer NbPoles(const Standard_Integer Degree,
|
|
const Standard_Boolean Periodic,
|
|
const TColStd_Array1OfInteger& Mults);
|
|
|
|
//! Returns the length of the sequence of knots with
|
|
//! repetition.
|
|
//!
|
|
//! Periodic :
|
|
//!
|
|
//! Sum(Mults(i), i = Mults.Lower(); i <= Mults.Upper());
|
|
//!
|
|
//! Non Periodic :
|
|
//!
|
|
//! Sum(Mults(i); i = Mults.Lower(); i < Mults.Upper())
|
|
//! + 2 * Degree
|
|
Standard_EXPORT static Standard_Integer KnotSequenceLength(const TColStd_Array1OfInteger& Mults,
|
|
const Standard_Integer Degree,
|
|
const Standard_Boolean Periodic);
|
|
|
|
Standard_EXPORT static void KnotSequence(const TColStd_Array1OfReal& Knots,
|
|
const TColStd_Array1OfInteger& Mults,
|
|
TColStd_Array1OfReal& KnotSeq,
|
|
const Standard_Boolean Periodic = Standard_False);
|
|
|
|
//! Computes the sequence of knots KnotSeq with
|
|
//! repetition of the knots of multiplicity greater
|
|
//! than 1.
|
|
//!
|
|
//! Length of KnotSeq must be KnotSequenceLength(Mults,Degree,Periodic)
|
|
Standard_EXPORT static void KnotSequence(const TColStd_Array1OfReal& Knots,
|
|
const TColStd_Array1OfInteger& Mults,
|
|
const Standard_Integer Degree,
|
|
const Standard_Boolean Periodic,
|
|
TColStd_Array1OfReal& KnotSeq);
|
|
|
|
//! Returns the length of the sequence of knots (and
|
|
//! Mults) without repetition.
|
|
Standard_EXPORT static Standard_Integer KnotsLength(
|
|
const TColStd_Array1OfReal& KnotSeq,
|
|
const Standard_Boolean Periodic = Standard_False);
|
|
|
|
//! Computes the sequence of knots Knots without
|
|
//! repetition of the knots of multiplicity greater
|
|
//! than 1.
|
|
//!
|
|
//! Length of <Knots> and <Mults> must be
|
|
//! KnotsLength(KnotSequence,Periodic)
|
|
Standard_EXPORT static void Knots(const TColStd_Array1OfReal& KnotSeq,
|
|
TColStd_Array1OfReal& Knots,
|
|
TColStd_Array1OfInteger& Mults,
|
|
const Standard_Boolean Periodic = Standard_False);
|
|
|
|
//! Analyses if the knots distribution is "Uniform"
|
|
//! or "NonUniform" between the knot FromK1 and the
|
|
//! knot ToK2. There is no repetition of knot in the
|
|
//! knots'sequence <Knots>.
|
|
Standard_EXPORT static BSplCLib_KnotDistribution KnotForm(const TColStd_Array1OfReal& Knots,
|
|
const Standard_Integer FromK1,
|
|
const Standard_Integer ToK2);
|
|
|
|
//! Analyses the distribution of multiplicities between
|
|
//! the knot FromK1 and the Knot ToK2.
|
|
Standard_EXPORT static BSplCLib_MultDistribution MultForm(const TColStd_Array1OfInteger& Mults,
|
|
const Standard_Integer FromK1,
|
|
const Standard_Integer ToK2);
|
|
|
|
//! Analyzes the array of knots.
|
|
//! Returns the form and the maximum knot multiplicity.
|
|
Standard_EXPORT static void KnotAnalysis(const Standard_Integer Degree,
|
|
const Standard_Boolean Periodic,
|
|
const TColStd_Array1OfReal& CKnots,
|
|
const TColStd_Array1OfInteger& CMults,
|
|
GeomAbs_BSplKnotDistribution& KnotForm,
|
|
Standard_Integer& MaxKnotMult);
|
|
|
|
//! Reparametrizes a B-spline curve to [U1, U2].
|
|
//! The knot values are recomputed such that Knots (Lower) = U1
|
|
//! and Knots (Upper) = U2 but the knot form is not modified.
|
|
//! Warnings :
|
|
//! In the array Knots the values must be in ascending order.
|
|
//! U1 must not be equal to U2 to avoid division by zero.
|
|
Standard_EXPORT static void Reparametrize(const Standard_Real U1,
|
|
const Standard_Real U2,
|
|
TColStd_Array1OfReal& Knots);
|
|
|
|
//! Reverses the array knots to become the knots
|
|
//! sequence of the reversed curve.
|
|
Standard_EXPORT static void Reverse(TColStd_Array1OfReal& Knots);
|
|
|
|
//! Reverses the array of multiplicities.
|
|
Standard_EXPORT static void Reverse(TColStd_Array1OfInteger& Mults);
|
|
|
|
//! Reverses the array of poles. Last is the index of
|
|
//! the new first pole. On a non periodic curve last
|
|
//! is Poles.Upper(). On a periodic curve last is
|
|
//!
|
|
//! (number of flat knots - degree - 1)
|
|
//!
|
|
//! or
|
|
//!
|
|
//! (sum of multiplicities(but for the last) + degree
|
|
//! - 1)
|
|
Standard_EXPORT static void Reverse(TColgp_Array1OfPnt& Poles, const Standard_Integer Last);
|
|
|
|
//! Reverses the array of poles.
|
|
Standard_EXPORT static void Reverse(TColgp_Array1OfPnt2d& Poles, const Standard_Integer Last);
|
|
|
|
//! Reverses the array of poles.
|
|
Standard_EXPORT static void Reverse(TColStd_Array1OfReal& Weights, const Standard_Integer Last);
|
|
|
|
//! Returns False if all the weights of the array <Weights>
|
|
//! between I1 an I2 are identic. Epsilon is used for
|
|
//! comparing weights. If Epsilon is 0. the Epsilon of the
|
|
//! first weight is used.
|
|
Standard_EXPORT static Standard_Boolean IsRational(const TColStd_Array1OfReal& Weights,
|
|
const Standard_Integer I1,
|
|
const Standard_Integer I2,
|
|
const Standard_Real Epsilon = 0.0);
|
|
|
|
//! returns the degree maxima for a BSplineCurve.
|
|
static Standard_Integer MaxDegree();
|
|
|
|
//! Perform the Boor algorithm to evaluate a point at
|
|
//! parameter <U>, with <Degree> and <Dimension>.
|
|
//!
|
|
//! Poles is an array of Reals of size
|
|
//!
|
|
//! <Dimension> * <Degree>+1
|
|
//!
|
|
//! Containing the poles. At the end <Poles> contains
|
|
//! the current point.
|
|
Standard_EXPORT static void Eval(const Standard_Real U,
|
|
const Standard_Integer Degree,
|
|
Standard_Real& Knots,
|
|
const Standard_Integer Dimension,
|
|
Standard_Real& Poles);
|
|
|
|
//! Performs the Boor Algorithm at parameter <U> with
|
|
//! the given <Degree> and the array of <Knots> on the
|
|
//! poles <Poles> of dimension <Dimension>. The schema
|
|
//! is computed until level <Depth> on a basis of
|
|
//! <Length+1> poles.
|
|
//!
|
|
//! * Knots is an array of reals of length :
|
|
//!
|
|
//! <Length> + <Degree>
|
|
//!
|
|
//! * Poles is an array of reals of length :
|
|
//!
|
|
//! (2 * <Length> + 1) * <Dimension>
|
|
//!
|
|
//! The poles values must be set in the array at the
|
|
//! positions.
|
|
//!
|
|
//! 0..Dimension,
|
|
//!
|
|
//! 2 * Dimension ..
|
|
//! 3 * Dimension
|
|
//!
|
|
//! 4 * Dimension ..
|
|
//! 5 * Dimension
|
|
//!
|
|
//! ...
|
|
//!
|
|
//! The results are found in the array poles depending
|
|
//! on the Depth. (See the method GetPole).
|
|
Standard_EXPORT static void BoorScheme(const Standard_Real U,
|
|
const Standard_Integer Degree,
|
|
Standard_Real& Knots,
|
|
const Standard_Integer Dimension,
|
|
Standard_Real& Poles,
|
|
const Standard_Integer Depth,
|
|
const Standard_Integer Length);
|
|
|
|
//! Compute the content of Pole before the BoorScheme.
|
|
//! This method is used to remove poles.
|
|
//!
|
|
//! U is the poles to remove, Knots should contains the
|
|
//! knots of the curve after knot removal.
|
|
//!
|
|
//! The first and last poles do not change, the other
|
|
//! poles are computed by averaging two possible values.
|
|
//! The distance between the two possible poles is
|
|
//! computed, if it is higher than <Tolerance> False is
|
|
//! returned.
|
|
Standard_EXPORT static Standard_Boolean AntiBoorScheme(const Standard_Real U,
|
|
const Standard_Integer Degree,
|
|
Standard_Real& Knots,
|
|
const Standard_Integer Dimension,
|
|
Standard_Real& Poles,
|
|
const Standard_Integer Depth,
|
|
const Standard_Integer Length,
|
|
const Standard_Real Tolerance);
|
|
|
|
//! Computes the poles of the BSpline giving the
|
|
//! derivatives of order <Order>.
|
|
//!
|
|
//! The formula for the first order is
|
|
//!
|
|
//! Pole(i) = Degree * (Pole(i+1) - Pole(i)) /
|
|
//! (Knots(i+Degree+1) - Knots(i+1))
|
|
//!
|
|
//! This formula is repeated (Degree is decremented at
|
|
//! each step).
|
|
Standard_EXPORT static void Derivative(const Standard_Integer Degree,
|
|
Standard_Real& Knots,
|
|
const Standard_Integer Dimension,
|
|
const Standard_Integer Length,
|
|
const Standard_Integer Order,
|
|
Standard_Real& Poles);
|
|
|
|
//! Performs the Bohm Algorithm at parameter <U>. This
|
|
//! algorithm computes the value and all the derivatives
|
|
//! up to order N (N <= Degree).
|
|
//!
|
|
//! <Poles> is the original array of poles.
|
|
//!
|
|
//! The result in <Poles> is the value and the
|
|
//! derivatives. Poles[0] is the value, Poles[Degree]
|
|
//! is the last derivative.
|
|
Standard_EXPORT static void Bohm(const Standard_Real U,
|
|
const Standard_Integer Degree,
|
|
const Standard_Integer N,
|
|
Standard_Real& Knots,
|
|
const Standard_Integer Dimension,
|
|
Standard_Real& Poles);
|
|
|
|
//! Used as argument for a non rational curve.
|
|
static TColStd_Array1OfReal* NoWeights();
|
|
|
|
//! Used as argument for a flatknots evaluation.
|
|
static TColStd_Array1OfInteger* NoMults();
|
|
|
|
//! Stores in LK the useful knots for the BoorSchem
|
|
//! on the span Knots(Index) - Knots(Index+1)
|
|
Standard_EXPORT static void BuildKnots(const Standard_Integer Degree,
|
|
const Standard_Integer Index,
|
|
const Standard_Boolean Periodic,
|
|
const TColStd_Array1OfReal& Knots,
|
|
const TColStd_Array1OfInteger* Mults,
|
|
Standard_Real& LK);
|
|
|
|
//! Return the index of the first Pole to use on the
|
|
//! span Mults(Index) - Mults(Index+1). This index
|
|
//! must be added to Poles.Lower().
|
|
Standard_EXPORT static Standard_Integer PoleIndex(const Standard_Integer Degree,
|
|
const Standard_Integer Index,
|
|
const Standard_Boolean Periodic,
|
|
const TColStd_Array1OfInteger& Mults);
|
|
|
|
Standard_EXPORT static void BuildEval(const Standard_Integer Degree,
|
|
const Standard_Integer Index,
|
|
const TColStd_Array1OfReal& Poles,
|
|
const TColStd_Array1OfReal* Weights,
|
|
Standard_Real& LP);
|
|
|
|
Standard_EXPORT static void BuildEval(const Standard_Integer Degree,
|
|
const Standard_Integer Index,
|
|
const TColgp_Array1OfPnt& Poles,
|
|
const TColStd_Array1OfReal* Weights,
|
|
Standard_Real& LP);
|
|
|
|
//! Copy in <LP> the poles and weights for the Eval
|
|
//! scheme. starting from Poles(Poles.Lower()+Index)
|
|
Standard_EXPORT static void BuildEval(const Standard_Integer Degree,
|
|
const Standard_Integer Index,
|
|
const TColgp_Array1OfPnt2d& Poles,
|
|
const TColStd_Array1OfReal* Weights,
|
|
Standard_Real& LP);
|
|
|
|
//! Copy in <LP> poles for <Dimension> Boor scheme.
|
|
//! Starting from <Index> * <Dimension>, copy
|
|
//! <Length+1> poles.
|
|
Standard_EXPORT static void BuildBoor(const Standard_Integer Index,
|
|
const Standard_Integer Length,
|
|
const Standard_Integer Dimension,
|
|
const TColStd_Array1OfReal& Poles,
|
|
Standard_Real& LP);
|
|
|
|
//! Returns the index in the Boor result array of the
|
|
//! poles <Index>. If the Boor algorithm was perform
|
|
//! with <Length> and <Depth>.
|
|
Standard_EXPORT static Standard_Integer BoorIndex(const Standard_Integer Index,
|
|
const Standard_Integer Length,
|
|
const Standard_Integer Depth);
|
|
|
|
//! Copy the pole at position <Index> in the Boor
|
|
//! scheme of dimension <Dimension> to <Position> in
|
|
//! the array <Pole>. <Position> is updated.
|
|
Standard_EXPORT static void GetPole(const Standard_Integer Index,
|
|
const Standard_Integer Length,
|
|
const Standard_Integer Depth,
|
|
const Standard_Integer Dimension,
|
|
Standard_Real& LocPoles,
|
|
Standard_Integer& Position,
|
|
TColStd_Array1OfReal& Pole);
|
|
|
|
//! Returns in <NbPoles, NbKnots> the new number of poles
|
|
//! and knots if the sequence of knots <AddKnots,
|
|
//! AddMults> is inserted in the sequence <Knots, Mults>.
|
|
//!
|
|
//! Epsilon is used to compare knots for equality.
|
|
//!
|
|
//! If Add is True the multiplicities on equal knots are
|
|
//! added.
|
|
//!
|
|
//! If Add is False the max value of the multiplicities is
|
|
//! kept.
|
|
//!
|
|
//! Return False if :
|
|
//! The knew knots are knot increasing.
|
|
//! The new knots are not in the range.
|
|
Standard_EXPORT static Standard_Boolean PrepareInsertKnots(
|
|
const Standard_Integer Degree,
|
|
const Standard_Boolean Periodic,
|
|
const TColStd_Array1OfReal& Knots,
|
|
const TColStd_Array1OfInteger& Mults,
|
|
const TColStd_Array1OfReal& AddKnots,
|
|
const TColStd_Array1OfInteger* AddMults,
|
|
Standard_Integer& NbPoles,
|
|
Standard_Integer& NbKnots,
|
|
const Standard_Real Epsilon,
|
|
const Standard_Boolean Add = Standard_True);
|
|
|
|
Standard_EXPORT static void InsertKnots(const Standard_Integer Degree,
|
|
const Standard_Boolean Periodic,
|
|
const Standard_Integer Dimension,
|
|
const TColStd_Array1OfReal& Poles,
|
|
const TColStd_Array1OfReal& Knots,
|
|
const TColStd_Array1OfInteger& Mults,
|
|
const TColStd_Array1OfReal& AddKnots,
|
|
const TColStd_Array1OfInteger* AddMults,
|
|
TColStd_Array1OfReal& NewPoles,
|
|
TColStd_Array1OfReal& NewKnots,
|
|
TColStd_Array1OfInteger& NewMults,
|
|
const Standard_Real Epsilon,
|
|
const Standard_Boolean Add = Standard_True);
|
|
|
|
Standard_EXPORT static void InsertKnots(const Standard_Integer Degree,
|
|
const Standard_Boolean Periodic,
|
|
const TColgp_Array1OfPnt& Poles,
|
|
const TColStd_Array1OfReal* Weights,
|
|
const TColStd_Array1OfReal& Knots,
|
|
const TColStd_Array1OfInteger& Mults,
|
|
const TColStd_Array1OfReal& AddKnots,
|
|
const TColStd_Array1OfInteger* AddMults,
|
|
TColgp_Array1OfPnt& NewPoles,
|
|
TColStd_Array1OfReal* NewWeights,
|
|
TColStd_Array1OfReal& NewKnots,
|
|
TColStd_Array1OfInteger& NewMults,
|
|
const Standard_Real Epsilon,
|
|
const Standard_Boolean Add = Standard_True);
|
|
|
|
//! Insert a sequence of knots <AddKnots> with
|
|
//! multiplicities <AddMults>. <AddKnots> must be a non
|
|
//! decreasing sequence and verifies :
|
|
//!
|
|
//! Knots(Knots.Lower()) <= AddKnots(AddKnots.Lower())
|
|
//! Knots(Knots.Upper()) >= AddKnots(AddKnots.Upper())
|
|
//!
|
|
//! The NewPoles and NewWeights arrays must have a length :
|
|
//! Poles.Length() + Sum(AddMults())
|
|
//!
|
|
//! When a knot to insert is identic to an existing knot the
|
|
//! multiplicities are added.
|
|
//!
|
|
//! Epsilon is used to test knots for equality.
|
|
//!
|
|
//! When AddMult is negative or null the knot is not inserted.
|
|
//! No multiplicity will becomes higher than the degree.
|
|
//!
|
|
//! The new Knots and Multiplicities are copied in <NewKnots>
|
|
//! and <NewMults>.
|
|
//!
|
|
//! All the New arrays should be correctly dimensioned.
|
|
//!
|
|
//! When all the new knots are existing knots, i.e. only the
|
|
//! multiplicities will change it is safe to use the same
|
|
//! arrays as input and output.
|
|
Standard_EXPORT static void InsertKnots(const Standard_Integer Degree,
|
|
const Standard_Boolean Periodic,
|
|
const TColgp_Array1OfPnt2d& Poles,
|
|
const TColStd_Array1OfReal* Weights,
|
|
const TColStd_Array1OfReal& Knots,
|
|
const TColStd_Array1OfInteger& Mults,
|
|
const TColStd_Array1OfReal& AddKnots,
|
|
const TColStd_Array1OfInteger* AddMults,
|
|
TColgp_Array1OfPnt2d& NewPoles,
|
|
TColStd_Array1OfReal* NewWeights,
|
|
TColStd_Array1OfReal& NewKnots,
|
|
TColStd_Array1OfInteger& NewMults,
|
|
const Standard_Real Epsilon,
|
|
const Standard_Boolean Add = Standard_True);
|
|
|
|
Standard_EXPORT static void InsertKnot(const Standard_Integer UIndex,
|
|
const Standard_Real U,
|
|
const Standard_Integer UMult,
|
|
const Standard_Integer Degree,
|
|
const Standard_Boolean Periodic,
|
|
const TColgp_Array1OfPnt& Poles,
|
|
const TColStd_Array1OfReal* Weights,
|
|
const TColStd_Array1OfReal& Knots,
|
|
const TColStd_Array1OfInteger& Mults,
|
|
TColgp_Array1OfPnt& NewPoles,
|
|
TColStd_Array1OfReal* NewWeights);
|
|
|
|
//! Insert a new knot U of multiplicity UMult in the
|
|
//! knot sequence.
|
|
//!
|
|
//! The location of the new Knot should be given as an input
|
|
//! data. UIndex locates the new knot U in the knot sequence
|
|
//! and Knots (UIndex) < U < Knots (UIndex + 1).
|
|
//!
|
|
//! The new control points corresponding to this insertion are
|
|
//! returned. Knots and Mults are not updated.
|
|
Standard_EXPORT static void InsertKnot(const Standard_Integer UIndex,
|
|
const Standard_Real U,
|
|
const Standard_Integer UMult,
|
|
const Standard_Integer Degree,
|
|
const Standard_Boolean Periodic,
|
|
const TColgp_Array1OfPnt2d& Poles,
|
|
const TColStd_Array1OfReal* Weights,
|
|
const TColStd_Array1OfReal& Knots,
|
|
const TColStd_Array1OfInteger& Mults,
|
|
TColgp_Array1OfPnt2d& NewPoles,
|
|
TColStd_Array1OfReal* NewWeights);
|
|
|
|
Standard_EXPORT static void RaiseMultiplicity(const Standard_Integer KnotIndex,
|
|
const Standard_Integer Mult,
|
|
const Standard_Integer Degree,
|
|
const Standard_Boolean Periodic,
|
|
const TColgp_Array1OfPnt& Poles,
|
|
const TColStd_Array1OfReal* Weights,
|
|
const TColStd_Array1OfReal& Knots,
|
|
const TColStd_Array1OfInteger& Mults,
|
|
TColgp_Array1OfPnt& NewPoles,
|
|
TColStd_Array1OfReal* NewWeights);
|
|
|
|
//! Raise the multiplicity of knot to <UMult>.
|
|
//!
|
|
//! The new control points are returned. Knots and Mults are
|
|
//! not updated.
|
|
Standard_EXPORT static void RaiseMultiplicity(const Standard_Integer KnotIndex,
|
|
const Standard_Integer Mult,
|
|
const Standard_Integer Degree,
|
|
const Standard_Boolean Periodic,
|
|
const TColgp_Array1OfPnt2d& Poles,
|
|
const TColStd_Array1OfReal* Weights,
|
|
const TColStd_Array1OfReal& Knots,
|
|
const TColStd_Array1OfInteger& Mults,
|
|
TColgp_Array1OfPnt2d& NewPoles,
|
|
TColStd_Array1OfReal* NewWeights);
|
|
|
|
Standard_EXPORT static Standard_Boolean RemoveKnot(const Standard_Integer Index,
|
|
const Standard_Integer Mult,
|
|
const Standard_Integer Degree,
|
|
const Standard_Boolean Periodic,
|
|
const Standard_Integer Dimension,
|
|
const TColStd_Array1OfReal& Poles,
|
|
const TColStd_Array1OfReal& Knots,
|
|
const TColStd_Array1OfInteger& Mults,
|
|
TColStd_Array1OfReal& NewPoles,
|
|
TColStd_Array1OfReal& NewKnots,
|
|
TColStd_Array1OfInteger& NewMults,
|
|
const Standard_Real Tolerance);
|
|
|
|
Standard_EXPORT static Standard_Boolean RemoveKnot(const Standard_Integer Index,
|
|
const Standard_Integer Mult,
|
|
const Standard_Integer Degree,
|
|
const Standard_Boolean Periodic,
|
|
const TColgp_Array1OfPnt& Poles,
|
|
const TColStd_Array1OfReal* Weights,
|
|
const TColStd_Array1OfReal& Knots,
|
|
const TColStd_Array1OfInteger& Mults,
|
|
TColgp_Array1OfPnt& NewPoles,
|
|
TColStd_Array1OfReal* NewWeights,
|
|
TColStd_Array1OfReal& NewKnots,
|
|
TColStd_Array1OfInteger& NewMults,
|
|
const Standard_Real Tolerance);
|
|
|
|
//! Decrement the multiplicity of <Knots(Index)>
|
|
//! to <Mult>. If <Mult> is null the knot is
|
|
//! removed.
|
|
//!
|
|
//! As there are two ways to compute the new poles
|
|
//! the midlle will be used as long as the
|
|
//! distance is lower than Tolerance.
|
|
//!
|
|
//! If a distance is bigger than tolerance the
|
|
//! methods returns False and the new arrays are
|
|
//! not modified.
|
|
//!
|
|
//! A low tolerance can be used to test if the
|
|
//! knot can be removed without modifying the
|
|
//! curve.
|
|
//!
|
|
//! A high tolerance can be used to "smooth" the
|
|
//! curve.
|
|
Standard_EXPORT static Standard_Boolean RemoveKnot(const Standard_Integer Index,
|
|
const Standard_Integer Mult,
|
|
const Standard_Integer Degree,
|
|
const Standard_Boolean Periodic,
|
|
const TColgp_Array1OfPnt2d& Poles,
|
|
const TColStd_Array1OfReal* Weights,
|
|
const TColStd_Array1OfReal& Knots,
|
|
const TColStd_Array1OfInteger& Mults,
|
|
TColgp_Array1OfPnt2d& NewPoles,
|
|
TColStd_Array1OfReal* NewWeights,
|
|
TColStd_Array1OfReal& NewKnots,
|
|
TColStd_Array1OfInteger& NewMults,
|
|
const Standard_Real Tolerance);
|
|
|
|
//! Returns the number of knots of a curve with
|
|
//! multiplicities <Mults> after elevating the degree from
|
|
//! <Degree> to <NewDegree>. See the IncreaseDegree method
|
|
//! for more comments.
|
|
Standard_EXPORT static Standard_Integer IncreaseDegreeCountKnots(
|
|
const Standard_Integer Degree,
|
|
const Standard_Integer NewDegree,
|
|
const Standard_Boolean Periodic,
|
|
const TColStd_Array1OfInteger& Mults);
|
|
|
|
Standard_EXPORT static void IncreaseDegree(const Standard_Integer Degree,
|
|
const Standard_Integer NewDegree,
|
|
const Standard_Boolean Periodic,
|
|
const Standard_Integer Dimension,
|
|
const TColStd_Array1OfReal& Poles,
|
|
const TColStd_Array1OfReal& Knots,
|
|
const TColStd_Array1OfInteger& Mults,
|
|
TColStd_Array1OfReal& NewPoles,
|
|
TColStd_Array1OfReal& NewKnots,
|
|
TColStd_Array1OfInteger& NewMults);
|
|
|
|
Standard_EXPORT static void IncreaseDegree(const Standard_Integer Degree,
|
|
const Standard_Integer NewDegree,
|
|
const Standard_Boolean Periodic,
|
|
const TColgp_Array1OfPnt& Poles,
|
|
const TColStd_Array1OfReal* Weights,
|
|
const TColStd_Array1OfReal& Knots,
|
|
const TColStd_Array1OfInteger& Mults,
|
|
TColgp_Array1OfPnt& NewPoles,
|
|
TColStd_Array1OfReal* NewWeights,
|
|
TColStd_Array1OfReal& NewKnots,
|
|
TColStd_Array1OfInteger& NewMults);
|
|
|
|
Standard_EXPORT static void IncreaseDegree(const Standard_Integer Degree,
|
|
const Standard_Integer NewDegree,
|
|
const Standard_Boolean Periodic,
|
|
const TColgp_Array1OfPnt2d& Poles,
|
|
const TColStd_Array1OfReal* Weights,
|
|
const TColStd_Array1OfReal& Knots,
|
|
const TColStd_Array1OfInteger& Mults,
|
|
TColgp_Array1OfPnt2d& NewPoles,
|
|
TColStd_Array1OfReal* NewWeights,
|
|
TColStd_Array1OfReal& NewKnots,
|
|
TColStd_Array1OfInteger& NewMults);
|
|
|
|
Standard_EXPORT static void IncreaseDegree(const Standard_Integer NewDegree,
|
|
const TColgp_Array1OfPnt& Poles,
|
|
const TColStd_Array1OfReal* Weights,
|
|
TColgp_Array1OfPnt& NewPoles,
|
|
TColStd_Array1OfReal* NewWeights);
|
|
|
|
//! Increase the degree of a bspline (or bezier) curve
|
|
//! of dimension theDimension form theDegree to theNewDegree.
|
|
//!
|
|
//! The number of poles in the new curve is:
|
|
//! @code
|
|
//! Poles.Length() + (NewDegree - Degree) * Number of spans
|
|
//! @endcode
|
|
//! Where the number of spans is:
|
|
//! @code
|
|
//! LastUKnotIndex(Mults) - FirstUKnotIndex(Mults) + 1
|
|
//! @endcode
|
|
//! for a non-periodic curve, and
|
|
//! @code
|
|
//! Knots.Length() - 1
|
|
//! @endcode
|
|
//! for a periodic curve.
|
|
//!
|
|
//! The multiplicities of all knots are increased by the degree elevation.
|
|
//!
|
|
//! The new knots are usually the same knots with the
|
|
//! exception of a non-periodic curve with the first
|
|
//! and last multiplicity not equal to Degree+1 where
|
|
//! knots are removed form the start and the bottom
|
|
//! until the sum of the multiplicities is equal to
|
|
//! NewDegree+1 at the knots corresponding to the
|
|
//! first and last parameters of the curve.
|
|
//!
|
|
//! Example: Suppose a curve of degree 3 starting
|
|
//! with following knots and multiplicities:
|
|
//! @code
|
|
//! knot : 0. 1. 2.
|
|
//! mult : 1 2 1
|
|
//! @endcode
|
|
//!
|
|
//! The FirstUKnot is 2.0 because the sum of multiplicities is
|
|
//! @code
|
|
//! Degree+1 : 1 + 2 + 1 = 4 = 3 + 1
|
|
//! @endcode
|
|
//! i.e. the first parameter of the curve is 2.0 and
|
|
//! will still be 2.0 after degree elevation.
|
|
//! Let raise this curve to degree 4.
|
|
//! The multiplicities are increased by 2.
|
|
//!
|
|
//! They become 2 3 2.
|
|
//! But we need a sum of multiplicities of 5 at knot 2.
|
|
//! So the first knot is removed and the new knots are:
|
|
//! @code
|
|
//! knot : 1. 2.
|
|
//! mult : 3 2
|
|
//! @endcode
|
|
//! The multiplicity of the first knot may also be reduced if the sum is still too big.
|
|
//!
|
|
//! In the most common situations (periodic curve or curve with first
|
|
//! and last multiplicities equals to Degree+1) the knots are knot changes.
|
|
//!
|
|
//! The method IncreaseDegreeCountKnots can be used to compute the new number of knots.
|
|
Standard_EXPORT static void IncreaseDegree(const Standard_Integer theNewDegree,
|
|
const TColgp_Array1OfPnt2d& thePoles,
|
|
const TColStd_Array1OfReal* theWeights,
|
|
TColgp_Array1OfPnt2d& theNewPoles,
|
|
TColStd_Array1OfReal* theNewWeights);
|
|
|
|
//! Set in <NbKnots> and <NbPolesToAdd> the number of Knots and
|
|
//! Poles of the NotPeriodic Curve identical at the
|
|
//! periodic curve with a degree <Degree> , a
|
|
//! knots-distribution with Multiplicities <Mults>.
|
|
Standard_EXPORT static void PrepareUnperiodize(const Standard_Integer Degree,
|
|
const TColStd_Array1OfInteger& Mults,
|
|
Standard_Integer& NbKnots,
|
|
Standard_Integer& NbPoles);
|
|
|
|
Standard_EXPORT static void Unperiodize(const Standard_Integer Degree,
|
|
const Standard_Integer Dimension,
|
|
const TColStd_Array1OfInteger& Mults,
|
|
const TColStd_Array1OfReal& Knots,
|
|
const TColStd_Array1OfReal& Poles,
|
|
TColStd_Array1OfInteger& NewMults,
|
|
TColStd_Array1OfReal& NewKnots,
|
|
TColStd_Array1OfReal& NewPoles);
|
|
|
|
Standard_EXPORT static void Unperiodize(const Standard_Integer Degree,
|
|
const TColStd_Array1OfInteger& Mults,
|
|
const TColStd_Array1OfReal& Knots,
|
|
const TColgp_Array1OfPnt& Poles,
|
|
const TColStd_Array1OfReal* Weights,
|
|
TColStd_Array1OfInteger& NewMults,
|
|
TColStd_Array1OfReal& NewKnots,
|
|
TColgp_Array1OfPnt& NewPoles,
|
|
TColStd_Array1OfReal* NewWeights);
|
|
|
|
Standard_EXPORT static void Unperiodize(const Standard_Integer Degree,
|
|
const TColStd_Array1OfInteger& Mults,
|
|
const TColStd_Array1OfReal& Knots,
|
|
const TColgp_Array1OfPnt2d& Poles,
|
|
const TColStd_Array1OfReal* Weights,
|
|
TColStd_Array1OfInteger& NewMults,
|
|
TColStd_Array1OfReal& NewKnots,
|
|
TColgp_Array1OfPnt2d& NewPoles,
|
|
TColStd_Array1OfReal* NewWeights);
|
|
|
|
//! Set in <NbKnots> and <NbPoles> the number of Knots and
|
|
//! Poles of the curve resulting from the trimming of the
|
|
//! BSplinecurve defined with <degree>, <knots>, <mults>
|
|
Standard_EXPORT static void PrepareTrimming(const Standard_Integer Degree,
|
|
const Standard_Boolean Periodic,
|
|
const TColStd_Array1OfReal& Knots,
|
|
const TColStd_Array1OfInteger& Mults,
|
|
const Standard_Real U1,
|
|
const Standard_Real U2,
|
|
Standard_Integer& NbKnots,
|
|
Standard_Integer& NbPoles);
|
|
|
|
Standard_EXPORT static void Trimming(const Standard_Integer Degree,
|
|
const Standard_Boolean Periodic,
|
|
const Standard_Integer Dimension,
|
|
const TColStd_Array1OfReal& Knots,
|
|
const TColStd_Array1OfInteger& Mults,
|
|
const TColStd_Array1OfReal& Poles,
|
|
const Standard_Real U1,
|
|
const Standard_Real U2,
|
|
TColStd_Array1OfReal& NewKnots,
|
|
TColStd_Array1OfInteger& NewMults,
|
|
TColStd_Array1OfReal& NewPoles);
|
|
|
|
Standard_EXPORT static void Trimming(const Standard_Integer Degree,
|
|
const Standard_Boolean Periodic,
|
|
const TColStd_Array1OfReal& Knots,
|
|
const TColStd_Array1OfInteger& Mults,
|
|
const TColgp_Array1OfPnt& Poles,
|
|
const TColStd_Array1OfReal* Weights,
|
|
const Standard_Real U1,
|
|
const Standard_Real U2,
|
|
TColStd_Array1OfReal& NewKnots,
|
|
TColStd_Array1OfInteger& NewMults,
|
|
TColgp_Array1OfPnt& NewPoles,
|
|
TColStd_Array1OfReal* NewWeights);
|
|
|
|
Standard_EXPORT static void Trimming(const Standard_Integer Degree,
|
|
const Standard_Boolean Periodic,
|
|
const TColStd_Array1OfReal& Knots,
|
|
const TColStd_Array1OfInteger& Mults,
|
|
const TColgp_Array1OfPnt2d& Poles,
|
|
const TColStd_Array1OfReal* Weights,
|
|
const Standard_Real U1,
|
|
const Standard_Real U2,
|
|
TColStd_Array1OfReal& NewKnots,
|
|
TColStd_Array1OfInteger& NewMults,
|
|
TColgp_Array1OfPnt2d& NewPoles,
|
|
TColStd_Array1OfReal* NewWeights);
|
|
|
|
Standard_EXPORT static void D0(const Standard_Real U,
|
|
const Standard_Integer Index,
|
|
const Standard_Integer Degree,
|
|
const Standard_Boolean Periodic,
|
|
const TColStd_Array1OfReal& Poles,
|
|
const TColStd_Array1OfReal* Weights,
|
|
const TColStd_Array1OfReal& Knots,
|
|
const TColStd_Array1OfInteger* Mults,
|
|
Standard_Real& P);
|
|
|
|
Standard_EXPORT static void D0(const Standard_Real U,
|
|
const Standard_Integer Index,
|
|
const Standard_Integer Degree,
|
|
const Standard_Boolean Periodic,
|
|
const TColgp_Array1OfPnt& Poles,
|
|
const TColStd_Array1OfReal* Weights,
|
|
const TColStd_Array1OfReal& Knots,
|
|
const TColStd_Array1OfInteger* Mults,
|
|
gp_Pnt& P);
|
|
|
|
Standard_EXPORT static void D0(const Standard_Real U,
|
|
const Standard_Integer UIndex,
|
|
const Standard_Integer Degree,
|
|
const Standard_Boolean Periodic,
|
|
const TColgp_Array1OfPnt2d& Poles,
|
|
const TColStd_Array1OfReal* Weights,
|
|
const TColStd_Array1OfReal& Knots,
|
|
const TColStd_Array1OfInteger* Mults,
|
|
gp_Pnt2d& P);
|
|
|
|
Standard_EXPORT static void D0(const Standard_Real U,
|
|
const TColgp_Array1OfPnt& Poles,
|
|
const TColStd_Array1OfReal* Weights,
|
|
gp_Pnt& P);
|
|
|
|
Standard_EXPORT static void D0(const Standard_Real U,
|
|
const TColgp_Array1OfPnt2d& Poles,
|
|
const TColStd_Array1OfReal* Weights,
|
|
gp_Pnt2d& P);
|
|
|
|
Standard_EXPORT static void D1(const Standard_Real U,
|
|
const Standard_Integer Index,
|
|
const Standard_Integer Degree,
|
|
const Standard_Boolean Periodic,
|
|
const TColStd_Array1OfReal& Poles,
|
|
const TColStd_Array1OfReal* Weights,
|
|
const TColStd_Array1OfReal& Knots,
|
|
const TColStd_Array1OfInteger* Mults,
|
|
Standard_Real& P,
|
|
Standard_Real& V);
|
|
|
|
Standard_EXPORT static void D1(const Standard_Real U,
|
|
const Standard_Integer Index,
|
|
const Standard_Integer Degree,
|
|
const Standard_Boolean Periodic,
|
|
const TColgp_Array1OfPnt& Poles,
|
|
const TColStd_Array1OfReal* Weights,
|
|
const TColStd_Array1OfReal& Knots,
|
|
const TColStd_Array1OfInteger* Mults,
|
|
gp_Pnt& P,
|
|
gp_Vec& V);
|
|
|
|
Standard_EXPORT static void D1(const Standard_Real U,
|
|
const Standard_Integer UIndex,
|
|
const Standard_Integer Degree,
|
|
const Standard_Boolean Periodic,
|
|
const TColgp_Array1OfPnt2d& Poles,
|
|
const TColStd_Array1OfReal* Weights,
|
|
const TColStd_Array1OfReal& Knots,
|
|
const TColStd_Array1OfInteger* Mults,
|
|
gp_Pnt2d& P,
|
|
gp_Vec2d& V);
|
|
|
|
Standard_EXPORT static void D1(const Standard_Real U,
|
|
const TColgp_Array1OfPnt& Poles,
|
|
const TColStd_Array1OfReal* Weights,
|
|
gp_Pnt& P,
|
|
gp_Vec& V);
|
|
|
|
Standard_EXPORT static void D1(const Standard_Real U,
|
|
const TColgp_Array1OfPnt2d& Poles,
|
|
const TColStd_Array1OfReal* Weights,
|
|
gp_Pnt2d& P,
|
|
gp_Vec2d& V);
|
|
|
|
Standard_EXPORT static void D2(const Standard_Real U,
|
|
const Standard_Integer Index,
|
|
const Standard_Integer Degree,
|
|
const Standard_Boolean Periodic,
|
|
const TColStd_Array1OfReal& Poles,
|
|
const TColStd_Array1OfReal* Weights,
|
|
const TColStd_Array1OfReal& Knots,
|
|
const TColStd_Array1OfInteger* Mults,
|
|
Standard_Real& P,
|
|
Standard_Real& V1,
|
|
Standard_Real& V2);
|
|
|
|
Standard_EXPORT static void D2(const Standard_Real U,
|
|
const Standard_Integer Index,
|
|
const Standard_Integer Degree,
|
|
const Standard_Boolean Periodic,
|
|
const TColgp_Array1OfPnt& Poles,
|
|
const TColStd_Array1OfReal* Weights,
|
|
const TColStd_Array1OfReal& Knots,
|
|
const TColStd_Array1OfInteger* Mults,
|
|
gp_Pnt& P,
|
|
gp_Vec& V1,
|
|
gp_Vec& V2);
|
|
|
|
Standard_EXPORT static void D2(const Standard_Real U,
|
|
const Standard_Integer UIndex,
|
|
const Standard_Integer Degree,
|
|
const Standard_Boolean Periodic,
|
|
const TColgp_Array1OfPnt2d& Poles,
|
|
const TColStd_Array1OfReal* Weights,
|
|
const TColStd_Array1OfReal& Knots,
|
|
const TColStd_Array1OfInteger* Mults,
|
|
gp_Pnt2d& P,
|
|
gp_Vec2d& V1,
|
|
gp_Vec2d& V2);
|
|
|
|
Standard_EXPORT static void D2(const Standard_Real U,
|
|
const TColgp_Array1OfPnt& Poles,
|
|
const TColStd_Array1OfReal* Weights,
|
|
gp_Pnt& P,
|
|
gp_Vec& V1,
|
|
gp_Vec& V2);
|
|
|
|
Standard_EXPORT static void D2(const Standard_Real U,
|
|
const TColgp_Array1OfPnt2d& Poles,
|
|
const TColStd_Array1OfReal* Weights,
|
|
gp_Pnt2d& P,
|
|
gp_Vec2d& V1,
|
|
gp_Vec2d& V2);
|
|
|
|
Standard_EXPORT static void D3(const Standard_Real U,
|
|
const Standard_Integer Index,
|
|
const Standard_Integer Degree,
|
|
const Standard_Boolean Periodic,
|
|
const TColStd_Array1OfReal& Poles,
|
|
const TColStd_Array1OfReal* Weights,
|
|
const TColStd_Array1OfReal& Knots,
|
|
const TColStd_Array1OfInteger* Mults,
|
|
Standard_Real& P,
|
|
Standard_Real& V1,
|
|
Standard_Real& V2,
|
|
Standard_Real& V3);
|
|
|
|
Standard_EXPORT static void D3(const Standard_Real U,
|
|
const Standard_Integer Index,
|
|
const Standard_Integer Degree,
|
|
const Standard_Boolean Periodic,
|
|
const TColgp_Array1OfPnt& Poles,
|
|
const TColStd_Array1OfReal* Weights,
|
|
const TColStd_Array1OfReal& Knots,
|
|
const TColStd_Array1OfInteger* Mults,
|
|
gp_Pnt& P,
|
|
gp_Vec& V1,
|
|
gp_Vec& V2,
|
|
gp_Vec& V3);
|
|
|
|
Standard_EXPORT static void D3(const Standard_Real U,
|
|
const Standard_Integer UIndex,
|
|
const Standard_Integer Degree,
|
|
const Standard_Boolean Periodic,
|
|
const TColgp_Array1OfPnt2d& Poles,
|
|
const TColStd_Array1OfReal* Weights,
|
|
const TColStd_Array1OfReal& Knots,
|
|
const TColStd_Array1OfInteger* Mults,
|
|
gp_Pnt2d& P,
|
|
gp_Vec2d& V1,
|
|
gp_Vec2d& V2,
|
|
gp_Vec2d& V3);
|
|
|
|
Standard_EXPORT static void D3(const Standard_Real U,
|
|
const TColgp_Array1OfPnt& Poles,
|
|
const TColStd_Array1OfReal* Weights,
|
|
gp_Pnt& P,
|
|
gp_Vec& V1,
|
|
gp_Vec& V2,
|
|
gp_Vec& V3);
|
|
|
|
Standard_EXPORT static void D3(const Standard_Real U,
|
|
const TColgp_Array1OfPnt2d& Poles,
|
|
const TColStd_Array1OfReal* Weights,
|
|
gp_Pnt2d& P,
|
|
gp_Vec2d& V1,
|
|
gp_Vec2d& V2,
|
|
gp_Vec2d& V3);
|
|
|
|
Standard_EXPORT static void DN(const Standard_Real U,
|
|
const Standard_Integer N,
|
|
const Standard_Integer Index,
|
|
const Standard_Integer Degree,
|
|
const Standard_Boolean Periodic,
|
|
const TColStd_Array1OfReal& Poles,
|
|
const TColStd_Array1OfReal* Weights,
|
|
const TColStd_Array1OfReal& Knots,
|
|
const TColStd_Array1OfInteger* Mults,
|
|
Standard_Real& VN);
|
|
|
|
Standard_EXPORT static void DN(const Standard_Real U,
|
|
const Standard_Integer N,
|
|
const Standard_Integer Index,
|
|
const Standard_Integer Degree,
|
|
const Standard_Boolean Periodic,
|
|
const TColgp_Array1OfPnt& Poles,
|
|
const TColStd_Array1OfReal* Weights,
|
|
const TColStd_Array1OfReal& Knots,
|
|
const TColStd_Array1OfInteger* Mults,
|
|
gp_Vec& VN);
|
|
|
|
Standard_EXPORT static void DN(const Standard_Real U,
|
|
const Standard_Integer N,
|
|
const Standard_Integer UIndex,
|
|
const Standard_Integer Degree,
|
|
const Standard_Boolean Periodic,
|
|
const TColgp_Array1OfPnt2d& Poles,
|
|
const TColStd_Array1OfReal* Weights,
|
|
const TColStd_Array1OfReal& Knots,
|
|
const TColStd_Array1OfInteger* Mults,
|
|
gp_Vec2d& V);
|
|
|
|
Standard_EXPORT static void DN(const Standard_Real U,
|
|
const Standard_Integer N,
|
|
const TColgp_Array1OfPnt& Poles,
|
|
const TColStd_Array1OfReal& Weights,
|
|
gp_Pnt& P,
|
|
gp_Vec& VN);
|
|
|
|
//! The above functions compute values and
|
|
//! derivatives in the following situations :
|
|
//!
|
|
//! * 3D, 2D and 1D
|
|
//!
|
|
//! * Rational or not Rational.
|
|
//!
|
|
//! * Knots and multiplicities or "flat knots" without
|
|
//! multiplicities.
|
|
//!
|
|
//! * The <Index> is the localization of the
|
|
//! parameter in the knot sequence. If <Index> is out
|
|
//! of range the correct value will be searched.
|
|
//!
|
|
//! VERY IMPORTANT!!!
|
|
//! USE BSplCLib::NoWeights() as Weights argument for non
|
|
//! rational curves computations.
|
|
Standard_EXPORT static void DN(const Standard_Real U,
|
|
const Standard_Integer N,
|
|
const TColgp_Array1OfPnt2d& Poles,
|
|
const TColStd_Array1OfReal& Weights,
|
|
gp_Pnt2d& P,
|
|
gp_Vec2d& VN);
|
|
|
|
//! This evaluates the Bspline Basis at a
|
|
//! given parameter Parameter up to the
|
|
//! requested DerivativeOrder and store the
|
|
//! result in the array BsplineBasis in the
|
|
//! following fashion
|
|
//! BSplineBasis(1,1) =
|
|
//! value of first non vanishing
|
|
//! Bspline function which has Index FirstNonZeroBsplineIndex
|
|
//! BsplineBasis(1,2) =
|
|
//! value of second non vanishing
|
|
//! Bspline function which has Index
|
|
//! FirstNonZeroBsplineIndex + 1
|
|
//! BsplineBasis(1,n) =
|
|
//! value of second non vanishing non vanishing
|
|
//! Bspline function which has Index
|
|
//! FirstNonZeroBsplineIndex + n (n <= Order)
|
|
//! BSplineBasis(2,1) =
|
|
//! value of derivative of first non vanishing
|
|
//! Bspline function which has Index FirstNonZeroBsplineIndex
|
|
//! BSplineBasis(N,1) =
|
|
//! value of Nth derivative of first non vanishing
|
|
//! Bspline function which has Index FirstNonZeroBsplineIndex
|
|
//! if N <= DerivativeOrder + 1
|
|
Standard_EXPORT static Standard_Integer EvalBsplineBasis(
|
|
const Standard_Integer DerivativeOrder,
|
|
const Standard_Integer Order,
|
|
const TColStd_Array1OfReal& FlatKnots,
|
|
const Standard_Real Parameter,
|
|
Standard_Integer& FirstNonZeroBsplineIndex,
|
|
math_Matrix& BsplineBasis,
|
|
const Standard_Boolean isPeriodic = Standard_False);
|
|
|
|
//! This Builds a fully blown Matrix of
|
|
//! (ni)
|
|
//! Bi (tj)
|
|
//!
|
|
//! with i and j within 1..Order + NumPoles
|
|
//! The integer ni is the ith slot of the
|
|
//! array OrderArray, tj is the jth slot of
|
|
//! the array Parameters
|
|
Standard_EXPORT static Standard_Integer BuildBSpMatrix(const TColStd_Array1OfReal& Parameters,
|
|
const TColStd_Array1OfInteger& OrderArray,
|
|
const TColStd_Array1OfReal& FlatKnots,
|
|
const Standard_Integer Degree,
|
|
math_Matrix& Matrix,
|
|
Standard_Integer& UpperBandWidth,
|
|
Standard_Integer& LowerBandWidth);
|
|
|
|
//! this factors the Banded Matrix in
|
|
//! the LU form with a Banded storage of
|
|
//! components of the L matrix
|
|
//! WARNING : do not use if the Matrix is
|
|
//! totally positive (It is the case for
|
|
//! Bspline matrices build as above with
|
|
//! parameters being the Schoenberg points
|
|
Standard_EXPORT static Standard_Integer FactorBandedMatrix(math_Matrix& Matrix,
|
|
const Standard_Integer UpperBandWidth,
|
|
const Standard_Integer LowerBandWidth,
|
|
Standard_Integer& PivotIndexProblem);
|
|
|
|
//! This solves the system Matrix.X = B
|
|
//! with when Matrix is factored in LU form
|
|
//! The Array is an seen as an
|
|
//! Array[1..N][1..ArrayDimension] with N =
|
|
//! the rank of the matrix Matrix. The
|
|
//! result is stored in Array when each
|
|
//! coordinate is solved that is B is the
|
|
//! array whose values are
|
|
//! B[i] = Array[i][p] for each p in 1..ArrayDimension
|
|
Standard_EXPORT static Standard_Integer SolveBandedSystem(const math_Matrix& Matrix,
|
|
const Standard_Integer UpperBandWidth,
|
|
const Standard_Integer LowerBandWidth,
|
|
const Standard_Integer ArrayDimension,
|
|
Standard_Real& Array);
|
|
|
|
//! This solves the system Matrix.X = B
|
|
//! with when Matrix is factored in LU form
|
|
//! The Array has the length of
|
|
//! the rank of the matrix Matrix. The
|
|
//! result is stored in Array when each
|
|
//! coordinate is solved that is B is the
|
|
//! array whose values are
|
|
//! B[i] = Array[i][p] for each p in 1..ArrayDimension
|
|
Standard_EXPORT static Standard_Integer SolveBandedSystem(const math_Matrix& Matrix,
|
|
const Standard_Integer UpperBandWidth,
|
|
const Standard_Integer LowerBandWidth,
|
|
TColgp_Array1OfPnt2d& Array);
|
|
|
|
//! This solves the system Matrix.X = B
|
|
//! with when Matrix is factored in LU form
|
|
//! The Array has the length of
|
|
//! the rank of the matrix Matrix. The
|
|
//! result is stored in Array when each
|
|
//! coordinate is solved that is B is the
|
|
//! array whose values are
|
|
//! B[i] = Array[i][p] for each p in 1..ArrayDimension
|
|
Standard_EXPORT static Standard_Integer SolveBandedSystem(const math_Matrix& Matrix,
|
|
const Standard_Integer UpperBandWidth,
|
|
const Standard_Integer LowerBandWidth,
|
|
TColgp_Array1OfPnt& Array);
|
|
|
|
Standard_EXPORT static Standard_Integer SolveBandedSystem(const math_Matrix& Matrix,
|
|
const Standard_Integer UpperBandWidth,
|
|
const Standard_Integer LowerBandWidth,
|
|
const Standard_Boolean HomogenousFlag,
|
|
const Standard_Integer ArrayDimension,
|
|
Standard_Real& Array,
|
|
Standard_Real& Weights);
|
|
|
|
//! This solves the system Matrix.X = B
|
|
//! with when Matrix is factored in LU form
|
|
//! The Array is an seen as an
|
|
//! Array[1..N][1..ArrayDimension] with N =
|
|
//! the rank of the matrix Matrix. The
|
|
//! result is stored in Array when each
|
|
//! coordinate is solved that is B is the
|
|
//! array whose values are B[i] =
|
|
//! Array[i][p] for each p in
|
|
//! 1..ArrayDimension. If HomogeneousFlag ==
|
|
//! 0 the Poles are multiplied by the
|
|
//! Weights upon Entry and once
|
|
//! interpolation is carried over the
|
|
//! result of the poles are divided by the
|
|
//! result of the interpolation of the
|
|
//! weights. Otherwise if HomogenousFlag == 1
|
|
//! the Poles and Weights are treated homogeneously
|
|
//! that is that those are interpolated as they
|
|
//! are and result is returned without division
|
|
//! by the interpolated weights.
|
|
Standard_EXPORT static Standard_Integer SolveBandedSystem(const math_Matrix& Matrix,
|
|
const Standard_Integer UpperBandWidth,
|
|
const Standard_Integer LowerBandWidth,
|
|
const Standard_Boolean HomogenousFlag,
|
|
TColgp_Array1OfPnt2d& Array,
|
|
TColStd_Array1OfReal& Weights);
|
|
|
|
//! This solves the system Matrix.X = B
|
|
//! with when Matrix is factored in LU form
|
|
//! The Array is an seen as an
|
|
//! Array[1..N][1..ArrayDimension] with N =
|
|
//! the rank of the matrix Matrix. The
|
|
//! result is stored in Array when each
|
|
//! coordinate is solved that is B is the
|
|
//! array whose values are
|
|
//! B[i] = Array[i][p] for each p in 1..ArrayDimension
|
|
//! If HomogeneousFlag ==
|
|
//! 0 the Poles are multiplied by the
|
|
//! Weights upon Entry and once
|
|
//! interpolation is carried over the
|
|
//! result of the poles are divided by the
|
|
//! result of the interpolation of the
|
|
//! weights. Otherwise if HomogenousFlag == 1
|
|
//! the Poles and Weights are treated homogeneously
|
|
//! that is that those are interpolated as they
|
|
//! are and result is returned without division
|
|
//! by the interpolated weights.
|
|
Standard_EXPORT static Standard_Integer SolveBandedSystem(const math_Matrix& Matrix,
|
|
const Standard_Integer UpperBandWidth,
|
|
const Standard_Integer LowerBandWidth,
|
|
const Standard_Boolean HomogeneousFlag,
|
|
TColgp_Array1OfPnt& Array,
|
|
TColStd_Array1OfReal& Weights);
|
|
|
|
//! Merges two knot vector by setting the starting and
|
|
//! ending values to StartValue and EndValue
|
|
Standard_EXPORT static void MergeBSplineKnots(const Standard_Real Tolerance,
|
|
const Standard_Real StartValue,
|
|
const Standard_Real EndValue,
|
|
const Standard_Integer Degree1,
|
|
const TColStd_Array1OfReal& Knots1,
|
|
const TColStd_Array1OfInteger& Mults1,
|
|
const Standard_Integer Degree2,
|
|
const TColStd_Array1OfReal& Knots2,
|
|
const TColStd_Array1OfInteger& Mults2,
|
|
Standard_Integer& NumPoles,
|
|
Handle(TColStd_HArray1OfReal)& NewKnots,
|
|
Handle(TColStd_HArray1OfInteger)& NewMults);
|
|
|
|
//! This function will compose a given Vectorial BSpline F(t)
|
|
//! defined by its BSplineDegree and BSplineFlatKnotsl,
|
|
//! its Poles array which are coded as an array of Real
|
|
//! of the form [1..NumPoles][1..PolesDimension] with a
|
|
//! function a(t) which is assumed to satisfy the
|
|
//! following:
|
|
//!
|
|
//! 1. F(a(t)) is a polynomial BSpline
|
|
//! that can be expressed exactly as a BSpline of degree
|
|
//! NewDegree on the knots FlatKnots
|
|
//!
|
|
//! 2. a(t) defines a differentiable
|
|
//! isomorphism between the range of FlatKnots to the range
|
|
//! of BSplineFlatKnots which is the
|
|
//! same as the range of F(t)
|
|
//!
|
|
//! Warning: it is
|
|
//! the caller's responsibility to insure that conditions
|
|
//! 1. and 2. above are satisfied : no check whatsoever
|
|
//! is made in this method
|
|
//!
|
|
//! theStatus will return 0 if OK else it will return the pivot index
|
|
//! of the matrix that was inverted to compute the multiplied
|
|
//! BSpline : the method used is interpolation at Schoenenberg
|
|
//! points of F(a(t))
|
|
Standard_EXPORT static void FunctionReparameterise(const BSplCLib_EvaluatorFunction& Function,
|
|
const Standard_Integer BSplineDegree,
|
|
const TColStd_Array1OfReal& BSplineFlatKnots,
|
|
const Standard_Integer PolesDimension,
|
|
Standard_Real& Poles,
|
|
const TColStd_Array1OfReal& FlatKnots,
|
|
const Standard_Integer NewDegree,
|
|
Standard_Real& NewPoles,
|
|
Standard_Integer& theStatus);
|
|
|
|
//! This function will compose a given Vectorial BSpline F(t)
|
|
//! defined by its BSplineDegree and BSplineFlatKnotsl,
|
|
//! its Poles array which are coded as an array of Real
|
|
//! of the form [1..NumPoles][1..PolesDimension] with a
|
|
//! function a(t) which is assumed to satisfy the
|
|
//! following:
|
|
//!
|
|
//! 1. F(a(t)) is a polynomial BSpline
|
|
//! that can be expressed exactly as a BSpline of degree
|
|
//! NewDegree on the knots FlatKnots
|
|
//!
|
|
//! 2. a(t) defines a differentiable
|
|
//! isomorphism between the range of FlatKnots to the range
|
|
//! of BSplineFlatKnots which is the
|
|
//! same as the range of F(t)
|
|
//!
|
|
//! Warning: it is
|
|
//! the caller's responsibility to insure that conditions
|
|
//! 1. and 2. above are satisfied : no check whatsoever
|
|
//! is made in this method
|
|
//!
|
|
//! theStatus will return 0 if OK else it will return the pivot index
|
|
//! of the matrix that was inverted to compute the multiplied
|
|
//! BSpline : the method used is interpolation at Schoenenberg
|
|
//! points of F(a(t))
|
|
Standard_EXPORT static void FunctionReparameterise(const BSplCLib_EvaluatorFunction& Function,
|
|
const Standard_Integer BSplineDegree,
|
|
const TColStd_Array1OfReal& BSplineFlatKnots,
|
|
const TColStd_Array1OfReal& Poles,
|
|
const TColStd_Array1OfReal& FlatKnots,
|
|
const Standard_Integer NewDegree,
|
|
TColStd_Array1OfReal& NewPoles,
|
|
Standard_Integer& theStatus);
|
|
|
|
//! this will compose a given Vectorial BSpline F(t)
|
|
//! defined by its BSplineDegree and BSplineFlatKnotsl,
|
|
//! its Poles array which are coded as an array of Real
|
|
//! of the form [1..NumPoles][1..PolesDimension] with a
|
|
//! function a(t) which is assumed to satisfy the
|
|
//! following : 1. F(a(t)) is a polynomial BSpline
|
|
//! that can be expressed exactly as a BSpline of degree
|
|
//! NewDegree on the knots FlatKnots
|
|
//! 2. a(t) defines a differentiable
|
|
//! isomorphism between the range of FlatKnots to the range
|
|
//! of BSplineFlatKnots which is the
|
|
//! same as the range of F(t)
|
|
//! Warning: it is
|
|
//! the caller's responsibility to insure that conditions
|
|
//! 1. and 2. above are satisfied : no check whatsoever
|
|
//! is made in this method
|
|
//! theStatus will return 0 if OK else it will return the pivot index
|
|
//! of the matrix that was inverted to compute the multiplied
|
|
//! BSpline : the method used is interpolation at Schoenenberg
|
|
//! points of F(a(t))
|
|
Standard_EXPORT static void FunctionReparameterise(const BSplCLib_EvaluatorFunction& Function,
|
|
const Standard_Integer BSplineDegree,
|
|
const TColStd_Array1OfReal& BSplineFlatKnots,
|
|
const TColgp_Array1OfPnt& Poles,
|
|
const TColStd_Array1OfReal& FlatKnots,
|
|
const Standard_Integer NewDegree,
|
|
TColgp_Array1OfPnt& NewPoles,
|
|
Standard_Integer& theStatus);
|
|
|
|
//! this will compose a given Vectorial BSpline F(t)
|
|
//! defined by its BSplineDegree and BSplineFlatKnotsl,
|
|
//! its Poles array which are coded as an array of Real
|
|
//! of the form [1..NumPoles][1..PolesDimension] with a
|
|
//! function a(t) which is assumed to satisfy the
|
|
//! following : 1. F(a(t)) is a polynomial BSpline
|
|
//! that can be expressed exactly as a BSpline of degree
|
|
//! NewDegree on the knots FlatKnots
|
|
//! 2. a(t) defines a differentiable
|
|
//! isomorphism between the range of FlatKnots to the range
|
|
//! of BSplineFlatKnots which is the
|
|
//! same as the range of F(t)
|
|
//! Warning: it is
|
|
//! the caller's responsibility to insure that conditions
|
|
//! 1. and 2. above are satisfied : no check whatsoever
|
|
//! is made in this method
|
|
//! theStatus will return 0 if OK else it will return the pivot index
|
|
//! of the matrix that was inverted to compute the multiplied
|
|
//! BSpline : the method used is interpolation at Schoenenberg
|
|
//! points of F(a(t))
|
|
Standard_EXPORT static void FunctionReparameterise(const BSplCLib_EvaluatorFunction& Function,
|
|
const Standard_Integer BSplineDegree,
|
|
const TColStd_Array1OfReal& BSplineFlatKnots,
|
|
const TColgp_Array1OfPnt2d& Poles,
|
|
const TColStd_Array1OfReal& FlatKnots,
|
|
const Standard_Integer NewDegree,
|
|
TColgp_Array1OfPnt2d& NewPoles,
|
|
Standard_Integer& theStatus);
|
|
|
|
//! this will multiply a given Vectorial BSpline F(t)
|
|
//! defined by its BSplineDegree and BSplineFlatKnotsl,
|
|
//! its Poles array which are coded as an array of Real
|
|
//! of the form [1..NumPoles][1..PolesDimension] by a
|
|
//! function a(t) which is assumed to satisfy the
|
|
//! following : 1. a(t) * F(t) is a polynomial BSpline
|
|
//! that can be expressed exactly as a BSpline of degree
|
|
//! NewDegree on the knots FlatKnots 2. the range of a(t)
|
|
//! is the same as the range of F(t)
|
|
//! Warning: it is
|
|
//! the caller's responsibility to insure that conditions
|
|
//! 1. and 2. above are satisfied : no check whatsoever
|
|
//! is made in this method
|
|
//! theStatus will return 0 if OK else it will return the pivot index
|
|
//! of the matrix that was inverted to compute the multiplied
|
|
//! BSpline : the method used is interpolation at Schoenenberg
|
|
//! points of a(t)*F(t)
|
|
Standard_EXPORT static void FunctionMultiply(const BSplCLib_EvaluatorFunction& Function,
|
|
const Standard_Integer BSplineDegree,
|
|
const TColStd_Array1OfReal& BSplineFlatKnots,
|
|
const Standard_Integer PolesDimension,
|
|
Standard_Real& Poles,
|
|
const TColStd_Array1OfReal& FlatKnots,
|
|
const Standard_Integer NewDegree,
|
|
Standard_Real& NewPoles,
|
|
Standard_Integer& theStatus);
|
|
|
|
//! this will multiply a given Vectorial BSpline F(t)
|
|
//! defined by its BSplineDegree and BSplineFlatKnotsl,
|
|
//! its Poles array which are coded as an array of Real
|
|
//! of the form [1..NumPoles][1..PolesDimension] by a
|
|
//! function a(t) which is assumed to satisfy the
|
|
//! following : 1. a(t) * F(t) is a polynomial BSpline
|
|
//! that can be expressed exactly as a BSpline of degree
|
|
//! NewDegree on the knots FlatKnots 2. the range of a(t)
|
|
//! is the same as the range of F(t)
|
|
//! Warning: it is
|
|
//! the caller's responsibility to insure that conditions
|
|
//! 1. and 2. above are satisfied : no check whatsoever
|
|
//! is made in this method
|
|
//! theStatus will return 0 if OK else it will return the pivot index
|
|
//! of the matrix that was inverted to compute the multiplied
|
|
//! BSpline : the method used is interpolation at Schoenenberg
|
|
//! points of a(t)*F(t)
|
|
Standard_EXPORT static void FunctionMultiply(const BSplCLib_EvaluatorFunction& Function,
|
|
const Standard_Integer BSplineDegree,
|
|
const TColStd_Array1OfReal& BSplineFlatKnots,
|
|
const TColStd_Array1OfReal& Poles,
|
|
const TColStd_Array1OfReal& FlatKnots,
|
|
const Standard_Integer NewDegree,
|
|
TColStd_Array1OfReal& NewPoles,
|
|
Standard_Integer& theStatus);
|
|
|
|
//! this will multiply a given Vectorial BSpline F(t)
|
|
//! defined by its BSplineDegree and BSplineFlatKnotsl,
|
|
//! its Poles array which are coded as an array of Real
|
|
//! of the form [1..NumPoles][1..PolesDimension] by a
|
|
//! function a(t) which is assumed to satisfy the
|
|
//! following : 1. a(t) * F(t) is a polynomial BSpline
|
|
//! that can be expressed exactly as a BSpline of degree
|
|
//! NewDegree on the knots FlatKnots 2. the range of a(t)
|
|
//! is the same as the range of F(t)
|
|
//! Warning: it is
|
|
//! the caller's responsibility to insure that conditions
|
|
//! 1. and 2. above are satisfied : no check whatsoever
|
|
//! is made in this method
|
|
//! theStatus will return 0 if OK else it will return the pivot index
|
|
//! of the matrix that was inverted to compute the multiplied
|
|
//! BSpline : the method used is interpolation at Schoenenberg
|
|
//! points of a(t)*F(t)
|
|
Standard_EXPORT static void FunctionMultiply(const BSplCLib_EvaluatorFunction& Function,
|
|
const Standard_Integer BSplineDegree,
|
|
const TColStd_Array1OfReal& BSplineFlatKnots,
|
|
const TColgp_Array1OfPnt2d& Poles,
|
|
const TColStd_Array1OfReal& FlatKnots,
|
|
const Standard_Integer NewDegree,
|
|
TColgp_Array1OfPnt2d& NewPoles,
|
|
Standard_Integer& theStatus);
|
|
|
|
//! this will multiply a given Vectorial BSpline F(t)
|
|
//! defined by its BSplineDegree and BSplineFlatKnotsl,
|
|
//! its Poles array which are coded as an array of Real
|
|
//! of the form [1..NumPoles][1..PolesDimension] by a
|
|
//! function a(t) which is assumed to satisfy the
|
|
//! following : 1. a(t) * F(t) is a polynomial BSpline
|
|
//! that can be expressed exactly as a BSpline of degree
|
|
//! NewDegree on the knots FlatKnots 2. the range of a(t)
|
|
//! is the same as the range of F(t)
|
|
//! Warning: it is
|
|
//! the caller's responsibility to insure that conditions
|
|
//! 1. and 2. above are satisfied : no check whatsoever
|
|
//! is made in this method
|
|
//! theStatus will return 0 if OK else it will return the pivot index
|
|
//! of the matrix that was inverted to compute the multiplied
|
|
//! BSpline : the method used is interpolation at Schoenenberg
|
|
//! points of a(t)*F(t)
|
|
Standard_EXPORT static void FunctionMultiply(const BSplCLib_EvaluatorFunction& Function,
|
|
const Standard_Integer BSplineDegree,
|
|
const TColStd_Array1OfReal& BSplineFlatKnots,
|
|
const TColgp_Array1OfPnt& Poles,
|
|
const TColStd_Array1OfReal& FlatKnots,
|
|
const Standard_Integer NewDegree,
|
|
TColgp_Array1OfPnt& NewPoles,
|
|
Standard_Integer& theStatus);
|
|
|
|
//! Perform the De Boor algorithm to evaluate a point at
|
|
//! parameter <U>, with <Degree> and <Dimension>.
|
|
//!
|
|
//! Poles is an array of Reals of size
|
|
//!
|
|
//! <Dimension> * <Degree>+1
|
|
//!
|
|
//! Containing the poles. At the end <Poles> contains
|
|
//! the current point. Poles Contain all the poles of
|
|
//! the BsplineCurve, Knots also Contains all the knots
|
|
//! of the BsplineCurve. ExtrapMode has two slots [0] =
|
|
//! Degree used to extrapolate before the first knot [1]
|
|
//! = Degre used to extrapolate after the last knot has
|
|
//! to be between 1 and Degree
|
|
Standard_EXPORT static void Eval(const Standard_Real U,
|
|
const Standard_Boolean PeriodicFlag,
|
|
const Standard_Integer DerivativeRequest,
|
|
Standard_Integer& ExtrapMode,
|
|
const Standard_Integer Degree,
|
|
const TColStd_Array1OfReal& FlatKnots,
|
|
const Standard_Integer ArrayDimension,
|
|
Standard_Real& Poles,
|
|
Standard_Real& Result);
|
|
|
|
//! Perform the De Boor algorithm to evaluate a point at
|
|
//! parameter <U>, with <Degree> and <Dimension>.
|
|
//! Evaluates by multiplying the Poles by the Weights and
|
|
//! gives the homogeneous result in PolesResult that is
|
|
//! the results of the evaluation of the numerator once it
|
|
//! has been multiplied by the weights and in
|
|
//! WeightsResult one has the result of the evaluation of
|
|
//! the denominator
|
|
//!
|
|
//! Warning: <PolesResult> and <WeightsResult> must be dimensionned
|
|
//! properly.
|
|
Standard_EXPORT static void Eval(const Standard_Real U,
|
|
const Standard_Boolean PeriodicFlag,
|
|
const Standard_Integer DerivativeRequest,
|
|
Standard_Integer& ExtrapMode,
|
|
const Standard_Integer Degree,
|
|
const TColStd_Array1OfReal& FlatKnots,
|
|
const Standard_Integer ArrayDimension,
|
|
Standard_Real& Poles,
|
|
Standard_Real& Weights,
|
|
Standard_Real& PolesResult,
|
|
Standard_Real& WeightsResult);
|
|
|
|
//! Perform the evaluation of the Bspline Basis
|
|
//! and then multiplies by the weights
|
|
//! this just evaluates the current point
|
|
Standard_EXPORT static void Eval(const Standard_Real U,
|
|
const Standard_Boolean PeriodicFlag,
|
|
const Standard_Boolean HomogeneousFlag,
|
|
Standard_Integer& ExtrapMode,
|
|
const Standard_Integer Degree,
|
|
const TColStd_Array1OfReal& FlatKnots,
|
|
const TColgp_Array1OfPnt& Poles,
|
|
const TColStd_Array1OfReal& Weights,
|
|
gp_Pnt& Point,
|
|
Standard_Real& Weight);
|
|
|
|
//! Perform the evaluation of the Bspline Basis
|
|
//! and then multiplies by the weights
|
|
//! this just evaluates the current point
|
|
Standard_EXPORT static void Eval(const Standard_Real U,
|
|
const Standard_Boolean PeriodicFlag,
|
|
const Standard_Boolean HomogeneousFlag,
|
|
Standard_Integer& ExtrapMode,
|
|
const Standard_Integer Degree,
|
|
const TColStd_Array1OfReal& FlatKnots,
|
|
const TColgp_Array1OfPnt2d& Poles,
|
|
const TColStd_Array1OfReal& Weights,
|
|
gp_Pnt2d& Point,
|
|
Standard_Real& Weight);
|
|
|
|
//! Extend a BSpline nD using the tangency map
|
|
//! <C1Coefficient> is the coefficient of reparametrisation
|
|
//! <Continuity> must be equal to 1, 2 or 3.
|
|
//! <Degree> must be greater or equal than <Continuity> + 1.
|
|
//!
|
|
//! Warning: <KnotsResult> and <PolesResult> must be dimensionned
|
|
//! properly.
|
|
Standard_EXPORT static void TangExtendToConstraint(const TColStd_Array1OfReal& FlatKnots,
|
|
const Standard_Real C1Coefficient,
|
|
const Standard_Integer NumPoles,
|
|
Standard_Real& Poles,
|
|
const Standard_Integer Dimension,
|
|
const Standard_Integer Degree,
|
|
const TColStd_Array1OfReal& ConstraintPoint,
|
|
const Standard_Integer Continuity,
|
|
const Standard_Boolean After,
|
|
Standard_Integer& NbPolesResult,
|
|
Standard_Integer& NbKnotsRsult,
|
|
Standard_Real& KnotsResult,
|
|
Standard_Real& PolesResult);
|
|
|
|
//! Perform the evaluation of the of the cache
|
|
//! the parameter must be normalized between
|
|
//! the 0 and 1 for the span.
|
|
//! The Cache must be valid when calling this
|
|
//! routine. Geom Package will insure that.
|
|
//! and then multiplies by the weights
|
|
//! this just evaluates the current point
|
|
//! the CacheParameter is where the Cache was
|
|
//! constructed the SpanLength is to normalize
|
|
//! the polynomial in the cache to avoid bad conditioning
|
|
//! effects
|
|
Standard_EXPORT static void CacheD0(const Standard_Real U,
|
|
const Standard_Integer Degree,
|
|
const Standard_Real CacheParameter,
|
|
const Standard_Real SpanLenght,
|
|
const TColgp_Array1OfPnt& Poles,
|
|
const TColStd_Array1OfReal* Weights,
|
|
gp_Pnt& Point);
|
|
|
|
//! Perform the evaluation of the Bspline Basis
|
|
//! and then multiplies by the weights
|
|
//! this just evaluates the current point
|
|
//! the parameter must be normalized between
|
|
//! the 0 and 1 for the span.
|
|
//! The Cache must be valid when calling this
|
|
//! routine. Geom Package will insure that.
|
|
//! and then multiplies by the weights
|
|
//! ththe CacheParameter is where the Cache was
|
|
//! constructed the SpanLength is to normalize
|
|
//! the polynomial in the cache to avoid bad conditioning
|
|
//! effectsis just evaluates the current point
|
|
Standard_EXPORT static void CacheD0(const Standard_Real U,
|
|
const Standard_Integer Degree,
|
|
const Standard_Real CacheParameter,
|
|
const Standard_Real SpanLenght,
|
|
const TColgp_Array1OfPnt2d& Poles,
|
|
const TColStd_Array1OfReal* Weights,
|
|
gp_Pnt2d& Point);
|
|
|
|
//! Calls CacheD0 for Bezier Curves Arrays computed with
|
|
//! the method PolesCoefficients.
|
|
//! Warning: To be used for Beziercurves ONLY!!!
|
|
static void CoefsD0(const Standard_Real U,
|
|
const TColgp_Array1OfPnt& Poles,
|
|
const TColStd_Array1OfReal* Weights,
|
|
gp_Pnt& Point);
|
|
|
|
//! Calls CacheD0 for Bezier Curves Arrays computed with
|
|
//! the method PolesCoefficients.
|
|
//! Warning: To be used for Beziercurves ONLY!!!
|
|
static void CoefsD0(const Standard_Real U,
|
|
const TColgp_Array1OfPnt2d& Poles,
|
|
const TColStd_Array1OfReal* Weights,
|
|
gp_Pnt2d& Point);
|
|
|
|
//! Perform the evaluation of the of the cache
|
|
//! the parameter must be normalized between
|
|
//! the 0 and 1 for the span.
|
|
//! The Cache must be valid when calling this
|
|
//! routine. Geom Package will insure that.
|
|
//! and then multiplies by the weights
|
|
//! this just evaluates the current point
|
|
//! the CacheParameter is where the Cache was
|
|
//! constructed the SpanLength is to normalize
|
|
//! the polynomial in the cache to avoid bad conditioning
|
|
//! effects
|
|
Standard_EXPORT static void CacheD1(const Standard_Real U,
|
|
const Standard_Integer Degree,
|
|
const Standard_Real CacheParameter,
|
|
const Standard_Real SpanLenght,
|
|
const TColgp_Array1OfPnt& Poles,
|
|
const TColStd_Array1OfReal* Weights,
|
|
gp_Pnt& Point,
|
|
gp_Vec& Vec);
|
|
|
|
//! Perform the evaluation of the Bspline Basis
|
|
//! and then multiplies by the weights
|
|
//! this just evaluates the current point
|
|
//! the parameter must be normalized between
|
|
//! the 0 and 1 for the span.
|
|
//! The Cache must be valid when calling this
|
|
//! routine. Geom Package will insure that.
|
|
//! and then multiplies by the weights
|
|
//! ththe CacheParameter is where the Cache was
|
|
//! constructed the SpanLength is to normalize
|
|
//! the polynomial in the cache to avoid bad conditioning
|
|
//! effectsis just evaluates the current point
|
|
Standard_EXPORT static void CacheD1(const Standard_Real U,
|
|
const Standard_Integer Degree,
|
|
const Standard_Real CacheParameter,
|
|
const Standard_Real SpanLenght,
|
|
const TColgp_Array1OfPnt2d& Poles,
|
|
const TColStd_Array1OfReal* Weights,
|
|
gp_Pnt2d& Point,
|
|
gp_Vec2d& Vec);
|
|
|
|
//! Calls CacheD1 for Bezier Curves Arrays computed with
|
|
//! the method PolesCoefficients.
|
|
//! Warning: To be used for Beziercurves ONLY!!!
|
|
static void CoefsD1(const Standard_Real U,
|
|
const TColgp_Array1OfPnt& Poles,
|
|
const TColStd_Array1OfReal* Weights,
|
|
gp_Pnt& Point,
|
|
gp_Vec& Vec);
|
|
|
|
//! Calls CacheD1 for Bezier Curves Arrays computed with
|
|
//! the method PolesCoefficients.
|
|
//! Warning: To be used for Beziercurves ONLY!!!
|
|
static void CoefsD1(const Standard_Real U,
|
|
const TColgp_Array1OfPnt2d& Poles,
|
|
const TColStd_Array1OfReal* Weights,
|
|
gp_Pnt2d& Point,
|
|
gp_Vec2d& Vec);
|
|
|
|
//! Perform the evaluation of the of the cache
|
|
//! the parameter must be normalized between
|
|
//! the 0 and 1 for the span.
|
|
//! The Cache must be valid when calling this
|
|
//! routine. Geom Package will insure that.
|
|
//! and then multiplies by the weights
|
|
//! this just evaluates the current point
|
|
//! the CacheParameter is where the Cache was
|
|
//! constructed the SpanLength is to normalize
|
|
//! the polynomial in the cache to avoid bad conditioning
|
|
//! effects
|
|
Standard_EXPORT static void CacheD2(const Standard_Real U,
|
|
const Standard_Integer Degree,
|
|
const Standard_Real CacheParameter,
|
|
const Standard_Real SpanLenght,
|
|
const TColgp_Array1OfPnt& Poles,
|
|
const TColStd_Array1OfReal* Weights,
|
|
gp_Pnt& Point,
|
|
gp_Vec& Vec1,
|
|
gp_Vec& Vec2);
|
|
|
|
//! Perform the evaluation of the Bspline Basis
|
|
//! and then multiplies by the weights
|
|
//! this just evaluates the current point
|
|
//! the parameter must be normalized between
|
|
//! the 0 and 1 for the span.
|
|
//! The Cache must be valid when calling this
|
|
//! routine. Geom Package will insure that.
|
|
//! and then multiplies by the weights
|
|
//! ththe CacheParameter is where the Cache was
|
|
//! constructed the SpanLength is to normalize
|
|
//! the polynomial in the cache to avoid bad conditioning
|
|
//! effectsis just evaluates the current point
|
|
Standard_EXPORT static void CacheD2(const Standard_Real U,
|
|
const Standard_Integer Degree,
|
|
const Standard_Real CacheParameter,
|
|
const Standard_Real SpanLenght,
|
|
const TColgp_Array1OfPnt2d& Poles,
|
|
const TColStd_Array1OfReal* Weights,
|
|
gp_Pnt2d& Point,
|
|
gp_Vec2d& Vec1,
|
|
gp_Vec2d& Vec2);
|
|
|
|
//! Calls CacheD1 for Bezier Curves Arrays computed with
|
|
//! the method PolesCoefficients.
|
|
//! Warning: To be used for Beziercurves ONLY!!!
|
|
static void CoefsD2(const Standard_Real U,
|
|
const TColgp_Array1OfPnt& Poles,
|
|
const TColStd_Array1OfReal* Weights,
|
|
gp_Pnt& Point,
|
|
gp_Vec& Vec1,
|
|
gp_Vec& Vec2);
|
|
|
|
//! Calls CacheD1 for Bezier Curves Arrays computed with
|
|
//! the method PolesCoefficients.
|
|
//! Warning: To be used for Beziercurves ONLY!!!
|
|
static void CoefsD2(const Standard_Real U,
|
|
const TColgp_Array1OfPnt2d& Poles,
|
|
const TColStd_Array1OfReal* Weights,
|
|
gp_Pnt2d& Point,
|
|
gp_Vec2d& Vec1,
|
|
gp_Vec2d& Vec2);
|
|
|
|
//! Perform the evaluation of the of the cache
|
|
//! the parameter must be normalized between
|
|
//! the 0 and 1 for the span.
|
|
//! The Cache must be valid when calling this
|
|
//! routine. Geom Package will insure that.
|
|
//! and then multiplies by the weights
|
|
//! this just evaluates the current point
|
|
//! the CacheParameter is where the Cache was
|
|
//! constructed the SpanLength is to normalize
|
|
//! the polynomial in the cache to avoid bad conditioning
|
|
//! effects
|
|
Standard_EXPORT static void CacheD3(const Standard_Real U,
|
|
const Standard_Integer Degree,
|
|
const Standard_Real CacheParameter,
|
|
const Standard_Real SpanLenght,
|
|
const TColgp_Array1OfPnt& Poles,
|
|
const TColStd_Array1OfReal* Weights,
|
|
gp_Pnt& Point,
|
|
gp_Vec& Vec1,
|
|
gp_Vec& Vec2,
|
|
gp_Vec& Vec3);
|
|
|
|
//! Perform the evaluation of the Bspline Basis
|
|
//! and then multiplies by the weights
|
|
//! this just evaluates the current point
|
|
//! the parameter must be normalized between
|
|
//! the 0 and 1 for the span.
|
|
//! The Cache must be valid when calling this
|
|
//! routine. Geom Package will insure that.
|
|
//! and then multiplies by the weights
|
|
//! ththe CacheParameter is where the Cache was
|
|
//! constructed the SpanLength is to normalize
|
|
//! the polynomial in the cache to avoid bad conditioning
|
|
//! effectsis just evaluates the current point
|
|
Standard_EXPORT static void CacheD3(const Standard_Real U,
|
|
const Standard_Integer Degree,
|
|
const Standard_Real CacheParameter,
|
|
const Standard_Real SpanLenght,
|
|
const TColgp_Array1OfPnt2d& Poles,
|
|
const TColStd_Array1OfReal* Weights,
|
|
gp_Pnt2d& Point,
|
|
gp_Vec2d& Vec1,
|
|
gp_Vec2d& Vec2,
|
|
gp_Vec2d& Vec3);
|
|
|
|
//! Calls CacheD1 for Bezier Curves Arrays computed with
|
|
//! the method PolesCoefficients.
|
|
//! Warning: To be used for Beziercurves ONLY!!!
|
|
static void CoefsD3(const Standard_Real U,
|
|
const TColgp_Array1OfPnt& Poles,
|
|
const TColStd_Array1OfReal* Weights,
|
|
gp_Pnt& Point,
|
|
gp_Vec& Vec1,
|
|
gp_Vec& Vec2,
|
|
gp_Vec& Vec3);
|
|
|
|
//! Calls CacheD1 for Bezier Curves Arrays computed with
|
|
//! the method PolesCoefficients.
|
|
//! Warning: To be used for Beziercurves ONLY!!!
|
|
static void CoefsD3(const Standard_Real U,
|
|
const TColgp_Array1OfPnt2d& Poles,
|
|
const TColStd_Array1OfReal* Weights,
|
|
gp_Pnt2d& Point,
|
|
gp_Vec2d& Vec1,
|
|
gp_Vec2d& Vec2,
|
|
gp_Vec2d& Vec3);
|
|
|
|
//! Perform the evaluation of the Taylor expansion
|
|
//! of the Bspline normalized between 0 and 1.
|
|
//! If rational computes the homogeneous Taylor expansion
|
|
//! for the numerator and stores it in CachePoles
|
|
Standard_EXPORT static void BuildCache(const Standard_Real U,
|
|
const Standard_Real InverseOfSpanDomain,
|
|
const Standard_Boolean PeriodicFlag,
|
|
const Standard_Integer Degree,
|
|
const TColStd_Array1OfReal& FlatKnots,
|
|
const TColgp_Array1OfPnt& Poles,
|
|
const TColStd_Array1OfReal* Weights,
|
|
TColgp_Array1OfPnt& CachePoles,
|
|
TColStd_Array1OfReal* CacheWeights);
|
|
|
|
//! Perform the evaluation of the Taylor expansion
|
|
//! of the Bspline normalized between 0 and 1.
|
|
//! If rational computes the homogeneous Taylor expansion
|
|
//! for the numerator and stores it in CachePoles
|
|
Standard_EXPORT static void BuildCache(const Standard_Real U,
|
|
const Standard_Real InverseOfSpanDomain,
|
|
const Standard_Boolean PeriodicFlag,
|
|
const Standard_Integer Degree,
|
|
const TColStd_Array1OfReal& FlatKnots,
|
|
const TColgp_Array1OfPnt2d& Poles,
|
|
const TColStd_Array1OfReal* Weights,
|
|
TColgp_Array1OfPnt2d& CachePoles,
|
|
TColStd_Array1OfReal* CacheWeights);
|
|
|
|
//! Perform the evaluation of the Taylor expansion
|
|
//! of the Bspline normalized between 0 and 1.
|
|
//! Structure of result optimized for BSplCLib_Cache.
|
|
Standard_EXPORT static void BuildCache(const Standard_Real theParameter,
|
|
const Standard_Real theSpanDomain,
|
|
const Standard_Boolean thePeriodicFlag,
|
|
const Standard_Integer theDegree,
|
|
const Standard_Integer theSpanIndex,
|
|
const TColStd_Array1OfReal& theFlatKnots,
|
|
const TColgp_Array1OfPnt& thePoles,
|
|
const TColStd_Array1OfReal* theWeights,
|
|
TColStd_Array2OfReal& theCacheArray);
|
|
|
|
//! Perform the evaluation of the Taylor expansion
|
|
//! of the Bspline normalized between 0 and 1.
|
|
//! Structure of result optimized for BSplCLib_Cache.
|
|
Standard_EXPORT static void BuildCache(const Standard_Real theParameter,
|
|
const Standard_Real theSpanDomain,
|
|
const Standard_Boolean thePeriodicFlag,
|
|
const Standard_Integer theDegree,
|
|
const Standard_Integer theSpanIndex,
|
|
const TColStd_Array1OfReal& theFlatKnots,
|
|
const TColgp_Array1OfPnt2d& thePoles,
|
|
const TColStd_Array1OfReal* theWeights,
|
|
TColStd_Array2OfReal& theCacheArray);
|
|
|
|
static void PolesCoefficients(const TColgp_Array1OfPnt2d& Poles,
|
|
TColgp_Array1OfPnt2d& CachePoles);
|
|
|
|
Standard_EXPORT static void PolesCoefficients(const TColgp_Array1OfPnt2d& Poles,
|
|
const TColStd_Array1OfReal* Weights,
|
|
TColgp_Array1OfPnt2d& CachePoles,
|
|
TColStd_Array1OfReal* CacheWeights);
|
|
|
|
static void PolesCoefficients(const TColgp_Array1OfPnt& Poles, TColgp_Array1OfPnt& CachePoles);
|
|
|
|
//! Encapsulation of BuildCache to perform the
|
|
//! evaluation of the Taylor expansion for beziercurves
|
|
//! at parameter 0.
|
|
//! Warning: To be used for Beziercurves ONLY!!!
|
|
Standard_EXPORT static void PolesCoefficients(const TColgp_Array1OfPnt& Poles,
|
|
const TColStd_Array1OfReal* Weights,
|
|
TColgp_Array1OfPnt& CachePoles,
|
|
TColStd_Array1OfReal* CacheWeights);
|
|
|
|
//! Returns pointer to statically allocated array representing
|
|
//! flat knots for bezier curve of the specified degree.
|
|
//! Raises OutOfRange if Degree > MaxDegree()
|
|
Standard_EXPORT static const Standard_Real& FlatBezierKnots(const Standard_Integer Degree);
|
|
|
|
//! builds the Schoenberg points from the flat knot
|
|
//! used to interpolate a BSpline since the
|
|
//! BSpline matrix is invertible.
|
|
Standard_EXPORT static void BuildSchoenbergPoints(const Standard_Integer Degree,
|
|
const TColStd_Array1OfReal& FlatKnots,
|
|
TColStd_Array1OfReal& Parameters);
|
|
|
|
//! Performs the interpolation of the data given in
|
|
//! the Poles array according to the requests in
|
|
//! ContactOrderArray that is : if
|
|
//! ContactOrderArray(i) has value d it means that
|
|
//! Poles(i) contains the dth derivative of the
|
|
//! function to be interpolated. The length L of the
|
|
//! following arrays must be the same :
|
|
//! Parameters, ContactOrderArray, Poles,
|
|
//! The length of FlatKnots is Degree + L + 1
|
|
//! Warning:
|
|
//! the method used to do that interpolation is
|
|
//! gauss elimination WITHOUT pivoting. Thus if the
|
|
//! diagonal is not dominant there is no guarantee
|
|
//! that the algorithm will work. Nevertheless for
|
|
//! Cubic interpolation or interpolation at Scheonberg
|
|
//! points the method will work
|
|
//! The InversionProblem will report 0 if there was no
|
|
//! problem else it will give the index of the faulty
|
|
//! pivot
|
|
Standard_EXPORT static void Interpolate(const Standard_Integer Degree,
|
|
const TColStd_Array1OfReal& FlatKnots,
|
|
const TColStd_Array1OfReal& Parameters,
|
|
const TColStd_Array1OfInteger& ContactOrderArray,
|
|
TColgp_Array1OfPnt& Poles,
|
|
Standard_Integer& InversionProblem);
|
|
|
|
//! Performs the interpolation of the data given in
|
|
//! the Poles array according to the requests in
|
|
//! ContactOrderArray that is : if
|
|
//! ContactOrderArray(i) has value d it means that
|
|
//! Poles(i) contains the dth derivative of the
|
|
//! function to be interpolated. The length L of the
|
|
//! following arrays must be the same :
|
|
//! Parameters, ContactOrderArray, Poles,
|
|
//! The length of FlatKnots is Degree + L + 1
|
|
//! Warning:
|
|
//! the method used to do that interpolation is
|
|
//! gauss elimination WITHOUT pivoting. Thus if the
|
|
//! diagonal is not dominant there is no guarantee
|
|
//! that the algorithm will work. Nevertheless for
|
|
//! Cubic interpolation at knots or interpolation at Scheonberg
|
|
//! points the method will work.
|
|
//! The InversionProblem w
|
|
//! ll report 0 if there was no
|
|
//! problem else it will give the index of the faulty
|
|
//! pivot
|
|
Standard_EXPORT static void Interpolate(const Standard_Integer Degree,
|
|
const TColStd_Array1OfReal& FlatKnots,
|
|
const TColStd_Array1OfReal& Parameters,
|
|
const TColStd_Array1OfInteger& ContactOrderArray,
|
|
TColgp_Array1OfPnt2d& Poles,
|
|
Standard_Integer& InversionProblem);
|
|
|
|
//! Performs the interpolation of the data given in
|
|
//! the Poles array according to the requests in
|
|
//! ContactOrderArray that is : if
|
|
//! ContactOrderArray(i) has value d it means that
|
|
//! Poles(i) contains the dth derivative of the
|
|
//! function to be interpolated. The length L of the
|
|
//! following arrays must be the same :
|
|
//! Parameters, ContactOrderArray, Poles,
|
|
//! The length of FlatKnots is Degree + L + 1
|
|
//! Warning:
|
|
//! the method used to do that interpolation is
|
|
//! gauss elimination WITHOUT pivoting. Thus if the
|
|
//! diagonal is not dominant there is no guarantee
|
|
//! that the algorithm will work. Nevertheless for
|
|
//! Cubic interpolation at knots or interpolation at Scheonberg
|
|
//! points the method will work.
|
|
//! The InversionProblem will report 0 if there was no
|
|
//! problem else it will give the index of the faulty
|
|
//! pivot
|
|
Standard_EXPORT static void Interpolate(const Standard_Integer Degree,
|
|
const TColStd_Array1OfReal& FlatKnots,
|
|
const TColStd_Array1OfReal& Parameters,
|
|
const TColStd_Array1OfInteger& ContactOrderArray,
|
|
TColgp_Array1OfPnt& Poles,
|
|
TColStd_Array1OfReal& Weights,
|
|
Standard_Integer& InversionProblem);
|
|
|
|
//! Performs the interpolation of the data given in
|
|
//! the Poles array according to the requests in
|
|
//! ContactOrderArray that is : if
|
|
//! ContactOrderArray(i) has value d it means that
|
|
//! Poles(i) contains the dth derivative of the
|
|
//! function to be interpolated. The length L of the
|
|
//! following arrays must be the same :
|
|
//! Parameters, ContactOrderArray, Poles,
|
|
//! The length of FlatKnots is Degree + L + 1
|
|
//! Warning:
|
|
//! the method used to do that interpolation is
|
|
//! gauss elimination WITHOUT pivoting. Thus if the
|
|
//! diagonal is not dominant there is no guarantee
|
|
//! that the algorithm will work. Nevertheless for
|
|
//! Cubic interpolation at knots or interpolation at Scheonberg
|
|
//! points the method will work.
|
|
//! The InversionProblem w
|
|
//! ll report 0 if there was no
|
|
//! problem else it will give the i
|
|
Standard_EXPORT static void Interpolate(const Standard_Integer Degree,
|
|
const TColStd_Array1OfReal& FlatKnots,
|
|
const TColStd_Array1OfReal& Parameters,
|
|
const TColStd_Array1OfInteger& ContactOrderArray,
|
|
TColgp_Array1OfPnt2d& Poles,
|
|
TColStd_Array1OfReal& Weights,
|
|
Standard_Integer& InversionProblem);
|
|
|
|
//! Performs the interpolation of the data given in
|
|
//! the Poles array according to the requests in
|
|
//! ContactOrderArray that is : if
|
|
//! ContactOrderArray(i) has value d it means that
|
|
//! Poles(i) contains the dth derivative of the
|
|
//! function to be interpolated. The length L of the
|
|
//! following arrays must be the same :
|
|
//! Parameters, ContactOrderArray
|
|
//! The length of FlatKnots is Degree + L + 1
|
|
//! The PolesArray is an seen as an
|
|
//! Array[1..N][1..ArrayDimension] with N = tge length
|
|
//! of the parameters array
|
|
//! Warning:
|
|
//! the method used to do that interpolation is
|
|
//! gauss elimination WITHOUT pivoting. Thus if the
|
|
//! diagonal is not dominant there is no guarantee
|
|
//! that the algorithm will work. Nevertheless for
|
|
//! Cubic interpolation or interpolation at Scheonberg
|
|
//! points the method will work
|
|
//! The InversionProblem will report 0 if there was no
|
|
//! problem else it will give the index of the faulty
|
|
//! pivot
|
|
Standard_EXPORT static void Interpolate(const Standard_Integer Degree,
|
|
const TColStd_Array1OfReal& FlatKnots,
|
|
const TColStd_Array1OfReal& Parameters,
|
|
const TColStd_Array1OfInteger& ContactOrderArray,
|
|
const Standard_Integer ArrayDimension,
|
|
Standard_Real& Poles,
|
|
Standard_Integer& InversionProblem);
|
|
|
|
Standard_EXPORT static void Interpolate(const Standard_Integer Degree,
|
|
const TColStd_Array1OfReal& FlatKnots,
|
|
const TColStd_Array1OfReal& Parameters,
|
|
const TColStd_Array1OfInteger& ContactOrderArray,
|
|
const Standard_Integer ArrayDimension,
|
|
Standard_Real& Poles,
|
|
Standard_Real& Weights,
|
|
Standard_Integer& InversionProblem);
|
|
|
|
//! Find the new poles which allows an old point (with a
|
|
//! given u as parameter) to reach a new position
|
|
//! Index1 and Index2 indicate the range of poles we can move
|
|
//! (1, NbPoles-1) or (2, NbPoles) -> no constraint for one side
|
|
//! don't enter (1,NbPoles) -> error: rigid move
|
|
//! (2, NbPoles-1) -> the ends are enforced
|
|
//! (3, NbPoles-2) -> the ends and the tangency are enforced
|
|
//! if Problem in BSplineBasis calculation, no change for the curve
|
|
//! and FirstIndex, LastIndex = 0
|
|
Standard_EXPORT static void MovePoint(const Standard_Real U,
|
|
const gp_Vec2d& Displ,
|
|
const Standard_Integer Index1,
|
|
const Standard_Integer Index2,
|
|
const Standard_Integer Degree,
|
|
const TColgp_Array1OfPnt2d& Poles,
|
|
const TColStd_Array1OfReal* Weights,
|
|
const TColStd_Array1OfReal& FlatKnots,
|
|
Standard_Integer& FirstIndex,
|
|
Standard_Integer& LastIndex,
|
|
TColgp_Array1OfPnt2d& NewPoles);
|
|
|
|
//! Find the new poles which allows an old point (with a
|
|
//! given u as parameter) to reach a new position
|
|
//! Index1 and Index2 indicate the range of poles we can move
|
|
//! (1, NbPoles-1) or (2, NbPoles) -> no constraint for one side
|
|
//! don't enter (1,NbPoles) -> error: rigid move
|
|
//! (2, NbPoles-1) -> the ends are enforced
|
|
//! (3, NbPoles-2) -> the ends and the tangency are enforced
|
|
//! if Problem in BSplineBasis calculation, no change for the curve
|
|
//! and FirstIndex, LastIndex = 0
|
|
Standard_EXPORT static void MovePoint(const Standard_Real U,
|
|
const gp_Vec& Displ,
|
|
const Standard_Integer Index1,
|
|
const Standard_Integer Index2,
|
|
const Standard_Integer Degree,
|
|
const TColgp_Array1OfPnt& Poles,
|
|
const TColStd_Array1OfReal* Weights,
|
|
const TColStd_Array1OfReal& FlatKnots,
|
|
Standard_Integer& FirstIndex,
|
|
Standard_Integer& LastIndex,
|
|
TColgp_Array1OfPnt& NewPoles);
|
|
|
|
//! This is the dimension free version of the utility
|
|
//! U is the parameter must be within the first FlatKnots and the
|
|
//! last FlatKnots Delta is the amount the curve has to be moved
|
|
//! DeltaDerivative is the amount the derivative has to be moved.
|
|
//! Delta and DeltaDerivative must be array of dimension
|
|
//! ArrayDimension Degree is the degree of the BSpline and the
|
|
//! FlatKnots are the knots of the BSpline Starting Condition if =
|
|
//! -1 means the starting point of the curve can move
|
|
//! = 0 means the
|
|
//! starting point of the curve cannot move but tangent starting
|
|
//! point of the curve cannot move
|
|
//! = 1 means the starting point and tangents cannot move
|
|
//! = 2 means the starting point tangent and curvature cannot move
|
|
//! = ...
|
|
//! Same holds for EndingCondition
|
|
//! Poles are the poles of the curve
|
|
//! Weights are the weights of the curve if not NULL
|
|
//! NewPoles are the poles of the deformed curve
|
|
//! ErrorStatus will be 0 if no error happened
|
|
//! 1 if there are not enough knots/poles
|
|
//! the imposed conditions
|
|
//! The way to solve this problem is to add knots to the BSpline
|
|
//! If StartCondition = 1 and EndCondition = 1 then you need at least
|
|
//! 4 + 2 = 6 poles so for example to have a C1 cubic you will need
|
|
//! have at least 2 internal knots.
|
|
Standard_EXPORT static void MovePointAndTangent(const Standard_Real U,
|
|
const Standard_Integer ArrayDimension,
|
|
Standard_Real& Delta,
|
|
Standard_Real& DeltaDerivative,
|
|
const Standard_Real Tolerance,
|
|
const Standard_Integer Degree,
|
|
const Standard_Integer StartingCondition,
|
|
const Standard_Integer EndingCondition,
|
|
Standard_Real& Poles,
|
|
const TColStd_Array1OfReal* Weights,
|
|
const TColStd_Array1OfReal& FlatKnots,
|
|
Standard_Real& NewPoles,
|
|
Standard_Integer& ErrorStatus);
|
|
|
|
//! This is the dimension free version of the utility
|
|
//! U is the parameter must be within the first FlatKnots and the
|
|
//! last FlatKnots Delta is the amount the curve has to be moved
|
|
//! DeltaDerivative is the amount the derivative has to be moved.
|
|
//! Delta and DeltaDerivative must be array of dimension
|
|
//! ArrayDimension Degree is the degree of the BSpline and the
|
|
//! FlatKnots are the knots of the BSpline Starting Condition if =
|
|
//! -1 means the starting point of the curve can move
|
|
//! = 0 means the
|
|
//! starting point of the curve cannot move but tangent starting
|
|
//! point of the curve cannot move
|
|
//! = 1 means the starting point and tangents cannot move
|
|
//! = 2 means the starting point tangent and curvature cannot move
|
|
//! = ...
|
|
//! Same holds for EndingCondition
|
|
//! Poles are the poles of the curve
|
|
//! Weights are the weights of the curve if not NULL
|
|
//! NewPoles are the poles of the deformed curve
|
|
//! ErrorStatus will be 0 if no error happened
|
|
//! 1 if there are not enough knots/poles
|
|
//! the imposed conditions
|
|
//! The way to solve this problem is to add knots to the BSpline
|
|
//! If StartCondition = 1 and EndCondition = 1 then you need at least
|
|
//! 4 + 2 = 6 poles so for example to have a C1 cubic you will need
|
|
//! have at least 2 internal knots.
|
|
Standard_EXPORT static void MovePointAndTangent(const Standard_Real U,
|
|
const gp_Vec& Delta,
|
|
const gp_Vec& DeltaDerivative,
|
|
const Standard_Real Tolerance,
|
|
const Standard_Integer Degree,
|
|
const Standard_Integer StartingCondition,
|
|
const Standard_Integer EndingCondition,
|
|
const TColgp_Array1OfPnt& Poles,
|
|
const TColStd_Array1OfReal* Weights,
|
|
const TColStd_Array1OfReal& FlatKnots,
|
|
TColgp_Array1OfPnt& NewPoles,
|
|
Standard_Integer& ErrorStatus);
|
|
|
|
//! This is the dimension free version of the utility
|
|
//! U is the parameter must be within the first FlatKnots and the
|
|
//! last FlatKnots Delta is the amount the curve has to be moved
|
|
//! DeltaDerivative is the amount the derivative has to be moved.
|
|
//! Delta and DeltaDerivative must be array of dimension
|
|
//! ArrayDimension Degree is the degree of the BSpline and the
|
|
//! FlatKnots are the knots of the BSpline Starting Condition if =
|
|
//! -1 means the starting point of the curve can move
|
|
//! = 0 means the
|
|
//! starting point of the curve cannot move but tangent starting
|
|
//! point of the curve cannot move
|
|
//! = 1 means the starting point and tangents cannot move
|
|
//! = 2 means the starting point tangent and curvature cannot move
|
|
//! = ...
|
|
//! Same holds for EndingCondition
|
|
//! Poles are the poles of the curve
|
|
//! Weights are the weights of the curve if not NULL
|
|
//! NewPoles are the poles of the deformed curve
|
|
//! ErrorStatus will be 0 if no error happened
|
|
//! 1 if there are not enough knots/poles
|
|
//! the imposed conditions
|
|
//! The way to solve this problem is to add knots to the BSpline
|
|
//! If StartCondition = 1 and EndCondition = 1 then you need at least
|
|
//! 4 + 2 = 6 poles so for example to have a C1 cubic you will need
|
|
//! have at least 2 internal knots.
|
|
Standard_EXPORT static void MovePointAndTangent(const Standard_Real U,
|
|
const gp_Vec2d& Delta,
|
|
const gp_Vec2d& DeltaDerivative,
|
|
const Standard_Real Tolerance,
|
|
const Standard_Integer Degree,
|
|
const Standard_Integer StartingCondition,
|
|
const Standard_Integer EndingCondition,
|
|
const TColgp_Array1OfPnt2d& Poles,
|
|
const TColStd_Array1OfReal* Weights,
|
|
const TColStd_Array1OfReal& FlatKnots,
|
|
TColgp_Array1OfPnt2d& NewPoles,
|
|
Standard_Integer& ErrorStatus);
|
|
|
|
//! given a tolerance in 3D space returns a
|
|
//! tolerance in U parameter space such that
|
|
//! all u1 and u0 in the domain of the curve f(u)
|
|
//! | u1 - u0 | < UTolerance and
|
|
//! we have |f (u1) - f (u0)| < Tolerance3D
|
|
Standard_EXPORT static void Resolution(Standard_Real& PolesArray,
|
|
const Standard_Integer ArrayDimension,
|
|
const Standard_Integer NumPoles,
|
|
const TColStd_Array1OfReal* Weights,
|
|
const TColStd_Array1OfReal& FlatKnots,
|
|
const Standard_Integer Degree,
|
|
const Standard_Real Tolerance3D,
|
|
Standard_Real& UTolerance);
|
|
|
|
//! given a tolerance in 3D space returns a
|
|
//! tolerance in U parameter space such that
|
|
//! all u1 and u0 in the domain of the curve f(u)
|
|
//! | u1 - u0 | < UTolerance and
|
|
//! we have |f (u1) - f (u0)| < Tolerance3D
|
|
Standard_EXPORT static void Resolution(const TColgp_Array1OfPnt& Poles,
|
|
const TColStd_Array1OfReal* Weights,
|
|
const Standard_Integer NumPoles,
|
|
const TColStd_Array1OfReal& FlatKnots,
|
|
const Standard_Integer Degree,
|
|
const Standard_Real Tolerance3D,
|
|
Standard_Real& UTolerance);
|
|
|
|
//! given a tolerance in 3D space returns a
|
|
//! tolerance in U parameter space such that
|
|
//! all u1 and u0 in the domain of the curve f(u)
|
|
//! | u1 - u0 | < UTolerance and
|
|
//! we have |f (u1) - f (u0)| < Tolerance3D
|
|
Standard_EXPORT static void Resolution(const TColgp_Array1OfPnt2d& Poles,
|
|
const TColStd_Array1OfReal* Weights,
|
|
const Standard_Integer NumPoles,
|
|
const TColStd_Array1OfReal& FlatKnots,
|
|
const Standard_Integer Degree,
|
|
const Standard_Real Tolerance3D,
|
|
Standard_Real& UTolerance);
|
|
|
|
//! Splits the given range to BSpline intervals of given continuity
|
|
//! @param[in] theKnots the knots of BSpline
|
|
//! @param[in] theMults the knots' multiplicities
|
|
//! @param[in] theDegree the degree of BSpline
|
|
//! @param[in] isPeriodic the periodicity of BSpline
|
|
//! @param[in] theContinuity the target interval's continuity
|
|
//! @param[in] theFirst the begin of the target range
|
|
//! @param[in] theLast the end of the target range
|
|
//! @param[in] theTolerance the tolerance
|
|
//! @param[in,out] theIntervals the array to store intervals if isn't nullptr
|
|
//! @return the number of intervals
|
|
Standard_EXPORT static Standard_Integer Intervals(const TColStd_Array1OfReal& theKnots,
|
|
const TColStd_Array1OfInteger& theMults,
|
|
Standard_Integer theDegree,
|
|
Standard_Boolean isPeriodic,
|
|
Standard_Integer theContinuity,
|
|
Standard_Real theFirst,
|
|
Standard_Real theLast,
|
|
Standard_Real theTolerance,
|
|
TColStd_Array1OfReal* theIntervals);
|
|
|
|
protected:
|
|
private:
|
|
Standard_EXPORT static void LocateParameter(const TColStd_Array1OfReal& Knots,
|
|
const Standard_Real U,
|
|
const Standard_Boolean Periodic,
|
|
const Standard_Integer K1,
|
|
const Standard_Integer K2,
|
|
Standard_Integer& Index,
|
|
Standard_Real& NewU,
|
|
const Standard_Real Uf,
|
|
const Standard_Real Ue);
|
|
};
|
|
|
|
#include <BSplCLib.lxx>
|
|
|
|
#endif // _BSplCLib_HeaderFile
|