1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-04-03 17:56:21 +03:00
occt/src/BSplCLib/BSplCLib.hxx

2414 lines
135 KiB
C++

// Created on: 1991-08-09
// Created by: Jean Claude VAUTHIER
// Copyright (c) 1991-1999 Matra Datavision
// Copyright (c) 1999-2014 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
#ifndef _BSplCLib_HeaderFile
#define _BSplCLib_HeaderFile
#include <BSplCLib_EvaluatorFunction.hxx>
#include <BSplCLib_KnotDistribution.hxx>
#include <BSplCLib_MultDistribution.hxx>
#include <GeomAbs_BSplKnotDistribution.hxx>
#include <Standard.hxx>
#include <Standard_DefineAlloc.hxx>
#include <Standard_Handle.hxx>
#include <Standard_Integer.hxx>
#include <Standard_Real.hxx>
#include <TColgp_Array1OfPnt.hxx>
#include <TColgp_Array1OfPnt2d.hxx>
#include <TColStd_Array1OfReal.hxx>
#include <TColStd_Array2OfReal.hxx>
#include <TColStd_HArray1OfInteger.hxx>
#include <TColStd_HArray1OfReal.hxx>
class gp_Pnt;
class gp_Pnt2d;
class gp_Vec;
class gp_Vec2d;
class math_Matrix;
//! BSplCLib B-spline curve Library.
//!
//! The BSplCLib package is a basic library for BSplines. It
//! provides three categories of functions.
//!
//! * Management methods to process knots and multiplicities.
//!
//! * Multi-Dimensions spline methods. BSpline methods where
//! poles have an arbitrary number of dimensions. They divides
//! in two groups :
//!
//! - Global methods modifying the whole set of poles. The
//! poles are described by an array of Reals and a
//! Dimension. Example : Inserting knots.
//!
//! - Local methods computing points and derivatives. The
//! poles are described by a pointer on a local array of
//! Reals and a Dimension. The local array is modified.
//!
//! * 2D and 3D spline curves methods.
//!
//! Methods for 2d and 3d BSplines curves rational or not
//! rational.
//!
//! Those methods have the following structure :
//!
//! - They extract the pole information in a working array.
//!
//! - They process the working array with the
//! multi-dimension methods. (for example a 3d rational
//! curve is processed as a 4 dimension curve).
//!
//! - They get back the result in the original dimension.
//!
//! Note that the bspline surface methods found in the
//! package BSplSLib uses the same structure and rely on
//! BSplCLib.
//!
//! In the following list of methods the 2d and 3d curve
//! methods will be described with the corresponding
//! multi-dimension method.
//!
//! The 3d or 2d B-spline curve is defined with :
//!
//! . its control points : TColgp_Array1OfPnt(2d) Poles
//! . its weights : TColStd_Array1OfReal Weights
//! . its knots : TColStd_Array1OfReal Knots
//! . its multiplicities : TColStd_Array1OfInteger Mults
//! . its degree : Standard_Integer Degree
//! . its periodicity : Standard_Boolean Periodic
//!
//! Warnings :
//! The bounds of Poles and Weights should be the same.
//! The bounds of Knots and Mults should be the same.
//!
//! Note: weight and multiplicity arrays can be passed by pointer for
//! some functions so that NULL pointer is valid.
//! That means no weights/no multiplicities passed.
//!
//! No weights (BSplCLib::NoWeights()) means the curve is non rational.
//! No mults (BSplCLib::NoMults()) means the knots are "flat" knots.
//!
//! KeyWords :
//! B-spline curve, Functions, Library
//!
//! References :
//! . A survey of curves and surfaces methods in CADG Wolfgang
//! BOHM CAGD 1 (1984)
//! . On de Boor-like algorithms and blossoming Wolfgang BOEHM
//! cagd 5 (1988)
//! . Blossoming and knot insertion algorithms for B-spline curves
//! Ronald N. GOLDMAN
//! . Modelisation des surfaces en CAO, Henri GIAUME Peugeot SA
//! . Curves and Surfaces for Computer Aided Geometric Design,
//! a practical guide Gerald Farin
class BSplCLib
{
public:
DEFINE_STANDARD_ALLOC
//! This routine searches the position of the real value theX
//! in the monotonically increasing set of real values theArray using bisection algorithm.
//!
//! If the given value is out of range or array values, algorithm returns either
//! theArray.Lower()-1 or theArray.Upper()+1 depending on theX position in the ordered set.
//!
//! This routine is used to locate a knot value in a set of knots.
Standard_EXPORT static void Hunt(const TColStd_Array1OfReal& theArray,
const Standard_Real theX,
Standard_Integer& theXPos);
//! Computes the index of the knots value which gives
//! the start point of the curve.
Standard_EXPORT static Standard_Integer FirstUKnotIndex(const Standard_Integer Degree,
const TColStd_Array1OfInteger& Mults);
//! Computes the index of the knots value which gives
//! the end point of the curve.
Standard_EXPORT static Standard_Integer LastUKnotIndex(const Standard_Integer Degree,
const TColStd_Array1OfInteger& Mults);
//! Computes the index of the flats knots sequence
//! corresponding to <Index> in the knots sequence
//! which multiplicities are <Mults>.
Standard_EXPORT static Standard_Integer FlatIndex(const Standard_Integer Degree,
const Standard_Integer Index,
const TColStd_Array1OfInteger& Mults,
const Standard_Boolean Periodic);
//! Locates the parametric value U in the knots
//! sequence between the knot K1 and the knot K2.
//! The value return in Index verifies.
//!
//! Knots(Index) <= U < Knots(Index + 1)
//! if U <= Knots (K1) then Index = K1
//! if U >= Knots (K2) then Index = K2 - 1
//!
//! If Periodic is True U may be modified to fit in
//! the range Knots(K1), Knots(K2). In any case the
//! correct value is returned in NewU.
//!
//! Warnings :Index is used as input data to initialize the
//! searching function.
//! Warning: Knots have to be "with repetitions"
Standard_EXPORT static void LocateParameter(const Standard_Integer Degree,
const TColStd_Array1OfReal& Knots,
const TColStd_Array1OfInteger& Mults,
const Standard_Real U,
const Standard_Boolean IsPeriodic,
const Standard_Integer FromK1,
const Standard_Integer ToK2,
Standard_Integer& KnotIndex,
Standard_Real& NewU);
//! Locates the parametric value U in the knots
//! sequence between the knot K1 and the knot K2.
//! The value return in Index verifies.
//!
//! Knots(Index) <= U < Knots(Index + 1)
//! if U <= Knots (K1) then Index = K1
//! if U >= Knots (K2) then Index = K2 - 1
//!
//! If Periodic is True U may be modified to fit in
//! the range Knots(K1), Knots(K2). In any case the
//! correct value is returned in NewU.
//!
//! Warnings :Index is used as input data to initialize the
//! searching function.
//! Warning: Knots have to be "flat"
Standard_EXPORT static void LocateParameter(const Standard_Integer Degree,
const TColStd_Array1OfReal& Knots,
const Standard_Real U,
const Standard_Boolean IsPeriodic,
const Standard_Integer FromK1,
const Standard_Integer ToK2,
Standard_Integer& KnotIndex,
Standard_Real& NewU);
Standard_EXPORT static void LocateParameter(const Standard_Integer Degree,
const TColStd_Array1OfReal& Knots,
const TColStd_Array1OfInteger* Mults,
const Standard_Real U,
const Standard_Boolean Periodic,
Standard_Integer& Index,
Standard_Real& NewU);
//! Finds the greatest multiplicity in a set of knots
//! between K1 and K2. Mults is the multiplicity
//! associated with each knot value.
Standard_EXPORT static Standard_Integer MaxKnotMult(const TColStd_Array1OfInteger& Mults,
const Standard_Integer K1,
const Standard_Integer K2);
//! Finds the lowest multiplicity in a set of knots
//! between K1 and K2. Mults is the multiplicity
//! associated with each knot value.
Standard_EXPORT static Standard_Integer MinKnotMult(const TColStd_Array1OfInteger& Mults,
const Standard_Integer K1,
const Standard_Integer K2);
//! Returns the number of poles of the curve. Returns 0 if
//! one of the multiplicities is incorrect.
//!
//! * Non positive.
//!
//! * Greater than Degree, or Degree+1 at the first and
//! last knot of a non periodic curve.
//!
//! * The last periodicity on a periodic curve is not
//! equal to the first.
Standard_EXPORT static Standard_Integer NbPoles(const Standard_Integer Degree,
const Standard_Boolean Periodic,
const TColStd_Array1OfInteger& Mults);
//! Returns the length of the sequence of knots with
//! repetition.
//!
//! Periodic :
//!
//! Sum(Mults(i), i = Mults.Lower(); i <= Mults.Upper());
//!
//! Non Periodic :
//!
//! Sum(Mults(i); i = Mults.Lower(); i < Mults.Upper())
//! + 2 * Degree
Standard_EXPORT static Standard_Integer KnotSequenceLength(const TColStd_Array1OfInteger& Mults,
const Standard_Integer Degree,
const Standard_Boolean Periodic);
Standard_EXPORT static void KnotSequence(const TColStd_Array1OfReal& Knots,
const TColStd_Array1OfInteger& Mults,
TColStd_Array1OfReal& KnotSeq,
const Standard_Boolean Periodic = Standard_False);
//! Computes the sequence of knots KnotSeq with
//! repetition of the knots of multiplicity greater
//! than 1.
//!
//! Length of KnotSeq must be KnotSequenceLength(Mults,Degree,Periodic)
Standard_EXPORT static void KnotSequence(const TColStd_Array1OfReal& Knots,
const TColStd_Array1OfInteger& Mults,
const Standard_Integer Degree,
const Standard_Boolean Periodic,
TColStd_Array1OfReal& KnotSeq);
//! Returns the length of the sequence of knots (and
//! Mults) without repetition.
Standard_EXPORT static Standard_Integer KnotsLength(
const TColStd_Array1OfReal& KnotSeq,
const Standard_Boolean Periodic = Standard_False);
//! Computes the sequence of knots Knots without
//! repetition of the knots of multiplicity greater
//! than 1.
//!
//! Length of <Knots> and <Mults> must be
//! KnotsLength(KnotSequence,Periodic)
Standard_EXPORT static void Knots(const TColStd_Array1OfReal& KnotSeq,
TColStd_Array1OfReal& Knots,
TColStd_Array1OfInteger& Mults,
const Standard_Boolean Periodic = Standard_False);
//! Analyses if the knots distribution is "Uniform"
//! or "NonUniform" between the knot FromK1 and the
//! knot ToK2. There is no repetition of knot in the
//! knots'sequence <Knots>.
Standard_EXPORT static BSplCLib_KnotDistribution KnotForm(const TColStd_Array1OfReal& Knots,
const Standard_Integer FromK1,
const Standard_Integer ToK2);
//! Analyses the distribution of multiplicities between
//! the knot FromK1 and the Knot ToK2.
Standard_EXPORT static BSplCLib_MultDistribution MultForm(const TColStd_Array1OfInteger& Mults,
const Standard_Integer FromK1,
const Standard_Integer ToK2);
//! Analyzes the array of knots.
//! Returns the form and the maximum knot multiplicity.
Standard_EXPORT static void KnotAnalysis(const Standard_Integer Degree,
const Standard_Boolean Periodic,
const TColStd_Array1OfReal& CKnots,
const TColStd_Array1OfInteger& CMults,
GeomAbs_BSplKnotDistribution& KnotForm,
Standard_Integer& MaxKnotMult);
//! Reparametrizes a B-spline curve to [U1, U2].
//! The knot values are recomputed such that Knots (Lower) = U1
//! and Knots (Upper) = U2 but the knot form is not modified.
//! Warnings :
//! In the array Knots the values must be in ascending order.
//! U1 must not be equal to U2 to avoid division by zero.
Standard_EXPORT static void Reparametrize(const Standard_Real U1,
const Standard_Real U2,
TColStd_Array1OfReal& Knots);
//! Reverses the array knots to become the knots
//! sequence of the reversed curve.
Standard_EXPORT static void Reverse(TColStd_Array1OfReal& Knots);
//! Reverses the array of multiplicities.
Standard_EXPORT static void Reverse(TColStd_Array1OfInteger& Mults);
//! Reverses the array of poles. Last is the index of
//! the new first pole. On a non periodic curve last
//! is Poles.Upper(). On a periodic curve last is
//!
//! (number of flat knots - degree - 1)
//!
//! or
//!
//! (sum of multiplicities(but for the last) + degree
//! - 1)
Standard_EXPORT static void Reverse(TColgp_Array1OfPnt& Poles, const Standard_Integer Last);
//! Reverses the array of poles.
Standard_EXPORT static void Reverse(TColgp_Array1OfPnt2d& Poles, const Standard_Integer Last);
//! Reverses the array of poles.
Standard_EXPORT static void Reverse(TColStd_Array1OfReal& Weights, const Standard_Integer Last);
//! Returns False if all the weights of the array <Weights>
//! between I1 an I2 are identic. Epsilon is used for
//! comparing weights. If Epsilon is 0. the Epsilon of the
//! first weight is used.
Standard_EXPORT static Standard_Boolean IsRational(const TColStd_Array1OfReal& Weights,
const Standard_Integer I1,
const Standard_Integer I2,
const Standard_Real Epsilon = 0.0);
//! returns the degree maxima for a BSplineCurve.
static Standard_Integer MaxDegree();
//! Perform the Boor algorithm to evaluate a point at
//! parameter <U>, with <Degree> and <Dimension>.
//!
//! Poles is an array of Reals of size
//!
//! <Dimension> * <Degree>+1
//!
//! Containing the poles. At the end <Poles> contains
//! the current point.
Standard_EXPORT static void Eval(const Standard_Real U,
const Standard_Integer Degree,
Standard_Real& Knots,
const Standard_Integer Dimension,
Standard_Real& Poles);
//! Performs the Boor Algorithm at parameter <U> with
//! the given <Degree> and the array of <Knots> on the
//! poles <Poles> of dimension <Dimension>. The schema
//! is computed until level <Depth> on a basis of
//! <Length+1> poles.
//!
//! * Knots is an array of reals of length :
//!
//! <Length> + <Degree>
//!
//! * Poles is an array of reals of length :
//!
//! (2 * <Length> + 1) * <Dimension>
//!
//! The poles values must be set in the array at the
//! positions.
//!
//! 0..Dimension,
//!
//! 2 * Dimension ..
//! 3 * Dimension
//!
//! 4 * Dimension ..
//! 5 * Dimension
//!
//! ...
//!
//! The results are found in the array poles depending
//! on the Depth. (See the method GetPole).
Standard_EXPORT static void BoorScheme(const Standard_Real U,
const Standard_Integer Degree,
Standard_Real& Knots,
const Standard_Integer Dimension,
Standard_Real& Poles,
const Standard_Integer Depth,
const Standard_Integer Length);
//! Compute the content of Pole before the BoorScheme.
//! This method is used to remove poles.
//!
//! U is the poles to remove, Knots should contains the
//! knots of the curve after knot removal.
//!
//! The first and last poles do not change, the other
//! poles are computed by averaging two possible values.
//! The distance between the two possible poles is
//! computed, if it is higher than <Tolerance> False is
//! returned.
Standard_EXPORT static Standard_Boolean AntiBoorScheme(const Standard_Real U,
const Standard_Integer Degree,
Standard_Real& Knots,
const Standard_Integer Dimension,
Standard_Real& Poles,
const Standard_Integer Depth,
const Standard_Integer Length,
const Standard_Real Tolerance);
//! Computes the poles of the BSpline giving the
//! derivatives of order <Order>.
//!
//! The formula for the first order is
//!
//! Pole(i) = Degree * (Pole(i+1) - Pole(i)) /
//! (Knots(i+Degree+1) - Knots(i+1))
//!
//! This formula is repeated (Degree is decremented at
//! each step).
Standard_EXPORT static void Derivative(const Standard_Integer Degree,
Standard_Real& Knots,
const Standard_Integer Dimension,
const Standard_Integer Length,
const Standard_Integer Order,
Standard_Real& Poles);
//! Performs the Bohm Algorithm at parameter <U>. This
//! algorithm computes the value and all the derivatives
//! up to order N (N <= Degree).
//!
//! <Poles> is the original array of poles.
//!
//! The result in <Poles> is the value and the
//! derivatives. Poles[0] is the value, Poles[Degree]
//! is the last derivative.
Standard_EXPORT static void Bohm(const Standard_Real U,
const Standard_Integer Degree,
const Standard_Integer N,
Standard_Real& Knots,
const Standard_Integer Dimension,
Standard_Real& Poles);
//! Used as argument for a non rational curve.
static TColStd_Array1OfReal* NoWeights();
//! Used as argument for a flatknots evaluation.
static TColStd_Array1OfInteger* NoMults();
//! Stores in LK the useful knots for the BoorSchem
//! on the span Knots(Index) - Knots(Index+1)
Standard_EXPORT static void BuildKnots(const Standard_Integer Degree,
const Standard_Integer Index,
const Standard_Boolean Periodic,
const TColStd_Array1OfReal& Knots,
const TColStd_Array1OfInteger* Mults,
Standard_Real& LK);
//! Return the index of the first Pole to use on the
//! span Mults(Index) - Mults(Index+1). This index
//! must be added to Poles.Lower().
Standard_EXPORT static Standard_Integer PoleIndex(const Standard_Integer Degree,
const Standard_Integer Index,
const Standard_Boolean Periodic,
const TColStd_Array1OfInteger& Mults);
Standard_EXPORT static void BuildEval(const Standard_Integer Degree,
const Standard_Integer Index,
const TColStd_Array1OfReal& Poles,
const TColStd_Array1OfReal* Weights,
Standard_Real& LP);
Standard_EXPORT static void BuildEval(const Standard_Integer Degree,
const Standard_Integer Index,
const TColgp_Array1OfPnt& Poles,
const TColStd_Array1OfReal* Weights,
Standard_Real& LP);
//! Copy in <LP> the poles and weights for the Eval
//! scheme. starting from Poles(Poles.Lower()+Index)
Standard_EXPORT static void BuildEval(const Standard_Integer Degree,
const Standard_Integer Index,
const TColgp_Array1OfPnt2d& Poles,
const TColStd_Array1OfReal* Weights,
Standard_Real& LP);
//! Copy in <LP> poles for <Dimension> Boor scheme.
//! Starting from <Index> * <Dimension>, copy
//! <Length+1> poles.
Standard_EXPORT static void BuildBoor(const Standard_Integer Index,
const Standard_Integer Length,
const Standard_Integer Dimension,
const TColStd_Array1OfReal& Poles,
Standard_Real& LP);
//! Returns the index in the Boor result array of the
//! poles <Index>. If the Boor algorithm was perform
//! with <Length> and <Depth>.
Standard_EXPORT static Standard_Integer BoorIndex(const Standard_Integer Index,
const Standard_Integer Length,
const Standard_Integer Depth);
//! Copy the pole at position <Index> in the Boor
//! scheme of dimension <Dimension> to <Position> in
//! the array <Pole>. <Position> is updated.
Standard_EXPORT static void GetPole(const Standard_Integer Index,
const Standard_Integer Length,
const Standard_Integer Depth,
const Standard_Integer Dimension,
Standard_Real& LocPoles,
Standard_Integer& Position,
TColStd_Array1OfReal& Pole);
//! Returns in <NbPoles, NbKnots> the new number of poles
//! and knots if the sequence of knots <AddKnots,
//! AddMults> is inserted in the sequence <Knots, Mults>.
//!
//! Epsilon is used to compare knots for equality.
//!
//! If Add is True the multiplicities on equal knots are
//! added.
//!
//! If Add is False the max value of the multiplicities is
//! kept.
//!
//! Return False if :
//! The knew knots are knot increasing.
//! The new knots are not in the range.
Standard_EXPORT static Standard_Boolean PrepareInsertKnots(
const Standard_Integer Degree,
const Standard_Boolean Periodic,
const TColStd_Array1OfReal& Knots,
const TColStd_Array1OfInteger& Mults,
const TColStd_Array1OfReal& AddKnots,
const TColStd_Array1OfInteger* AddMults,
Standard_Integer& NbPoles,
Standard_Integer& NbKnots,
const Standard_Real Epsilon,
const Standard_Boolean Add = Standard_True);
Standard_EXPORT static void InsertKnots(const Standard_Integer Degree,
const Standard_Boolean Periodic,
const Standard_Integer Dimension,
const TColStd_Array1OfReal& Poles,
const TColStd_Array1OfReal& Knots,
const TColStd_Array1OfInteger& Mults,
const TColStd_Array1OfReal& AddKnots,
const TColStd_Array1OfInteger* AddMults,
TColStd_Array1OfReal& NewPoles,
TColStd_Array1OfReal& NewKnots,
TColStd_Array1OfInteger& NewMults,
const Standard_Real Epsilon,
const Standard_Boolean Add = Standard_True);
Standard_EXPORT static void InsertKnots(const Standard_Integer Degree,
const Standard_Boolean Periodic,
const TColgp_Array1OfPnt& Poles,
const TColStd_Array1OfReal* Weights,
const TColStd_Array1OfReal& Knots,
const TColStd_Array1OfInteger& Mults,
const TColStd_Array1OfReal& AddKnots,
const TColStd_Array1OfInteger* AddMults,
TColgp_Array1OfPnt& NewPoles,
TColStd_Array1OfReal* NewWeights,
TColStd_Array1OfReal& NewKnots,
TColStd_Array1OfInteger& NewMults,
const Standard_Real Epsilon,
const Standard_Boolean Add = Standard_True);
//! Insert a sequence of knots <AddKnots> with
//! multiplicities <AddMults>. <AddKnots> must be a non
//! decreasing sequence and verifies :
//!
//! Knots(Knots.Lower()) <= AddKnots(AddKnots.Lower())
//! Knots(Knots.Upper()) >= AddKnots(AddKnots.Upper())
//!
//! The NewPoles and NewWeights arrays must have a length :
//! Poles.Length() + Sum(AddMults())
//!
//! When a knot to insert is identic to an existing knot the
//! multiplicities are added.
//!
//! Epsilon is used to test knots for equality.
//!
//! When AddMult is negative or null the knot is not inserted.
//! No multiplicity will becomes higher than the degree.
//!
//! The new Knots and Multiplicities are copied in <NewKnots>
//! and <NewMults>.
//!
//! All the New arrays should be correctly dimensioned.
//!
//! When all the new knots are existing knots, i.e. only the
//! multiplicities will change it is safe to use the same
//! arrays as input and output.
Standard_EXPORT static void InsertKnots(const Standard_Integer Degree,
const Standard_Boolean Periodic,
const TColgp_Array1OfPnt2d& Poles,
const TColStd_Array1OfReal* Weights,
const TColStd_Array1OfReal& Knots,
const TColStd_Array1OfInteger& Mults,
const TColStd_Array1OfReal& AddKnots,
const TColStd_Array1OfInteger* AddMults,
TColgp_Array1OfPnt2d& NewPoles,
TColStd_Array1OfReal* NewWeights,
TColStd_Array1OfReal& NewKnots,
TColStd_Array1OfInteger& NewMults,
const Standard_Real Epsilon,
const Standard_Boolean Add = Standard_True);
Standard_EXPORT static void InsertKnot(const Standard_Integer UIndex,
const Standard_Real U,
const Standard_Integer UMult,
const Standard_Integer Degree,
const Standard_Boolean Periodic,
const TColgp_Array1OfPnt& Poles,
const TColStd_Array1OfReal* Weights,
const TColStd_Array1OfReal& Knots,
const TColStd_Array1OfInteger& Mults,
TColgp_Array1OfPnt& NewPoles,
TColStd_Array1OfReal* NewWeights);
//! Insert a new knot U of multiplicity UMult in the
//! knot sequence.
//!
//! The location of the new Knot should be given as an input
//! data. UIndex locates the new knot U in the knot sequence
//! and Knots (UIndex) < U < Knots (UIndex + 1).
//!
//! The new control points corresponding to this insertion are
//! returned. Knots and Mults are not updated.
Standard_EXPORT static void InsertKnot(const Standard_Integer UIndex,
const Standard_Real U,
const Standard_Integer UMult,
const Standard_Integer Degree,
const Standard_Boolean Periodic,
const TColgp_Array1OfPnt2d& Poles,
const TColStd_Array1OfReal* Weights,
const TColStd_Array1OfReal& Knots,
const TColStd_Array1OfInteger& Mults,
TColgp_Array1OfPnt2d& NewPoles,
TColStd_Array1OfReal* NewWeights);
Standard_EXPORT static void RaiseMultiplicity(const Standard_Integer KnotIndex,
const Standard_Integer Mult,
const Standard_Integer Degree,
const Standard_Boolean Periodic,
const TColgp_Array1OfPnt& Poles,
const TColStd_Array1OfReal* Weights,
const TColStd_Array1OfReal& Knots,
const TColStd_Array1OfInteger& Mults,
TColgp_Array1OfPnt& NewPoles,
TColStd_Array1OfReal* NewWeights);
//! Raise the multiplicity of knot to <UMult>.
//!
//! The new control points are returned. Knots and Mults are
//! not updated.
Standard_EXPORT static void RaiseMultiplicity(const Standard_Integer KnotIndex,
const Standard_Integer Mult,
const Standard_Integer Degree,
const Standard_Boolean Periodic,
const TColgp_Array1OfPnt2d& Poles,
const TColStd_Array1OfReal* Weights,
const TColStd_Array1OfReal& Knots,
const TColStd_Array1OfInteger& Mults,
TColgp_Array1OfPnt2d& NewPoles,
TColStd_Array1OfReal* NewWeights);
Standard_EXPORT static Standard_Boolean RemoveKnot(const Standard_Integer Index,
const Standard_Integer Mult,
const Standard_Integer Degree,
const Standard_Boolean Periodic,
const Standard_Integer Dimension,
const TColStd_Array1OfReal& Poles,
const TColStd_Array1OfReal& Knots,
const TColStd_Array1OfInteger& Mults,
TColStd_Array1OfReal& NewPoles,
TColStd_Array1OfReal& NewKnots,
TColStd_Array1OfInteger& NewMults,
const Standard_Real Tolerance);
Standard_EXPORT static Standard_Boolean RemoveKnot(const Standard_Integer Index,
const Standard_Integer Mult,
const Standard_Integer Degree,
const Standard_Boolean Periodic,
const TColgp_Array1OfPnt& Poles,
const TColStd_Array1OfReal* Weights,
const TColStd_Array1OfReal& Knots,
const TColStd_Array1OfInteger& Mults,
TColgp_Array1OfPnt& NewPoles,
TColStd_Array1OfReal* NewWeights,
TColStd_Array1OfReal& NewKnots,
TColStd_Array1OfInteger& NewMults,
const Standard_Real Tolerance);
//! Decrement the multiplicity of <Knots(Index)>
//! to <Mult>. If <Mult> is null the knot is
//! removed.
//!
//! As there are two ways to compute the new poles
//! the midlle will be used as long as the
//! distance is lower than Tolerance.
//!
//! If a distance is bigger than tolerance the
//! methods returns False and the new arrays are
//! not modified.
//!
//! A low tolerance can be used to test if the
//! knot can be removed without modifying the
//! curve.
//!
//! A high tolerance can be used to "smooth" the
//! curve.
Standard_EXPORT static Standard_Boolean RemoveKnot(const Standard_Integer Index,
const Standard_Integer Mult,
const Standard_Integer Degree,
const Standard_Boolean Periodic,
const TColgp_Array1OfPnt2d& Poles,
const TColStd_Array1OfReal* Weights,
const TColStd_Array1OfReal& Knots,
const TColStd_Array1OfInteger& Mults,
TColgp_Array1OfPnt2d& NewPoles,
TColStd_Array1OfReal* NewWeights,
TColStd_Array1OfReal& NewKnots,
TColStd_Array1OfInteger& NewMults,
const Standard_Real Tolerance);
//! Returns the number of knots of a curve with
//! multiplicities <Mults> after elevating the degree from
//! <Degree> to <NewDegree>. See the IncreaseDegree method
//! for more comments.
Standard_EXPORT static Standard_Integer IncreaseDegreeCountKnots(
const Standard_Integer Degree,
const Standard_Integer NewDegree,
const Standard_Boolean Periodic,
const TColStd_Array1OfInteger& Mults);
Standard_EXPORT static void IncreaseDegree(const Standard_Integer Degree,
const Standard_Integer NewDegree,
const Standard_Boolean Periodic,
const Standard_Integer Dimension,
const TColStd_Array1OfReal& Poles,
const TColStd_Array1OfReal& Knots,
const TColStd_Array1OfInteger& Mults,
TColStd_Array1OfReal& NewPoles,
TColStd_Array1OfReal& NewKnots,
TColStd_Array1OfInteger& NewMults);
Standard_EXPORT static void IncreaseDegree(const Standard_Integer Degree,
const Standard_Integer NewDegree,
const Standard_Boolean Periodic,
const TColgp_Array1OfPnt& Poles,
const TColStd_Array1OfReal* Weights,
const TColStd_Array1OfReal& Knots,
const TColStd_Array1OfInteger& Mults,
TColgp_Array1OfPnt& NewPoles,
TColStd_Array1OfReal* NewWeights,
TColStd_Array1OfReal& NewKnots,
TColStd_Array1OfInteger& NewMults);
Standard_EXPORT static void IncreaseDegree(const Standard_Integer Degree,
const Standard_Integer NewDegree,
const Standard_Boolean Periodic,
const TColgp_Array1OfPnt2d& Poles,
const TColStd_Array1OfReal* Weights,
const TColStd_Array1OfReal& Knots,
const TColStd_Array1OfInteger& Mults,
TColgp_Array1OfPnt2d& NewPoles,
TColStd_Array1OfReal* NewWeights,
TColStd_Array1OfReal& NewKnots,
TColStd_Array1OfInteger& NewMults);
Standard_EXPORT static void IncreaseDegree(const Standard_Integer NewDegree,
const TColgp_Array1OfPnt& Poles,
const TColStd_Array1OfReal* Weights,
TColgp_Array1OfPnt& NewPoles,
TColStd_Array1OfReal* NewWeights);
//! Increase the degree of a bspline (or bezier) curve
//! of dimension theDimension form theDegree to theNewDegree.
//!
//! The number of poles in the new curve is:
//! @code
//! Poles.Length() + (NewDegree - Degree) * Number of spans
//! @endcode
//! Where the number of spans is:
//! @code
//! LastUKnotIndex(Mults) - FirstUKnotIndex(Mults) + 1
//! @endcode
//! for a non-periodic curve, and
//! @code
//! Knots.Length() - 1
//! @endcode
//! for a periodic curve.
//!
//! The multiplicities of all knots are increased by the degree elevation.
//!
//! The new knots are usually the same knots with the
//! exception of a non-periodic curve with the first
//! and last multiplicity not equal to Degree+1 where
//! knots are removed form the start and the bottom
//! until the sum of the multiplicities is equal to
//! NewDegree+1 at the knots corresponding to the
//! first and last parameters of the curve.
//!
//! Example: Suppose a curve of degree 3 starting
//! with following knots and multiplicities:
//! @code
//! knot : 0. 1. 2.
//! mult : 1 2 1
//! @endcode
//!
//! The FirstUKnot is 2.0 because the sum of multiplicities is
//! @code
//! Degree+1 : 1 + 2 + 1 = 4 = 3 + 1
//! @endcode
//! i.e. the first parameter of the curve is 2.0 and
//! will still be 2.0 after degree elevation.
//! Let raise this curve to degree 4.
//! The multiplicities are increased by 2.
//!
//! They become 2 3 2.
//! But we need a sum of multiplicities of 5 at knot 2.
//! So the first knot is removed and the new knots are:
//! @code
//! knot : 1. 2.
//! mult : 3 2
//! @endcode
//! The multiplicity of the first knot may also be reduced if the sum is still too big.
//!
//! In the most common situations (periodic curve or curve with first
//! and last multiplicities equals to Degree+1) the knots are knot changes.
//!
//! The method IncreaseDegreeCountKnots can be used to compute the new number of knots.
Standard_EXPORT static void IncreaseDegree(const Standard_Integer theNewDegree,
const TColgp_Array1OfPnt2d& thePoles,
const TColStd_Array1OfReal* theWeights,
TColgp_Array1OfPnt2d& theNewPoles,
TColStd_Array1OfReal* theNewWeights);
//! Set in <NbKnots> and <NbPolesToAdd> the number of Knots and
//! Poles of the NotPeriodic Curve identical at the
//! periodic curve with a degree <Degree> , a
//! knots-distribution with Multiplicities <Mults>.
Standard_EXPORT static void PrepareUnperiodize(const Standard_Integer Degree,
const TColStd_Array1OfInteger& Mults,
Standard_Integer& NbKnots,
Standard_Integer& NbPoles);
Standard_EXPORT static void Unperiodize(const Standard_Integer Degree,
const Standard_Integer Dimension,
const TColStd_Array1OfInteger& Mults,
const TColStd_Array1OfReal& Knots,
const TColStd_Array1OfReal& Poles,
TColStd_Array1OfInteger& NewMults,
TColStd_Array1OfReal& NewKnots,
TColStd_Array1OfReal& NewPoles);
Standard_EXPORT static void Unperiodize(const Standard_Integer Degree,
const TColStd_Array1OfInteger& Mults,
const TColStd_Array1OfReal& Knots,
const TColgp_Array1OfPnt& Poles,
const TColStd_Array1OfReal* Weights,
TColStd_Array1OfInteger& NewMults,
TColStd_Array1OfReal& NewKnots,
TColgp_Array1OfPnt& NewPoles,
TColStd_Array1OfReal* NewWeights);
Standard_EXPORT static void Unperiodize(const Standard_Integer Degree,
const TColStd_Array1OfInteger& Mults,
const TColStd_Array1OfReal& Knots,
const TColgp_Array1OfPnt2d& Poles,
const TColStd_Array1OfReal* Weights,
TColStd_Array1OfInteger& NewMults,
TColStd_Array1OfReal& NewKnots,
TColgp_Array1OfPnt2d& NewPoles,
TColStd_Array1OfReal* NewWeights);
//! Set in <NbKnots> and <NbPoles> the number of Knots and
//! Poles of the curve resulting from the trimming of the
//! BSplinecurve defined with <degree>, <knots>, <mults>
Standard_EXPORT static void PrepareTrimming(const Standard_Integer Degree,
const Standard_Boolean Periodic,
const TColStd_Array1OfReal& Knots,
const TColStd_Array1OfInteger& Mults,
const Standard_Real U1,
const Standard_Real U2,
Standard_Integer& NbKnots,
Standard_Integer& NbPoles);
Standard_EXPORT static void Trimming(const Standard_Integer Degree,
const Standard_Boolean Periodic,
const Standard_Integer Dimension,
const TColStd_Array1OfReal& Knots,
const TColStd_Array1OfInteger& Mults,
const TColStd_Array1OfReal& Poles,
const Standard_Real U1,
const Standard_Real U2,
TColStd_Array1OfReal& NewKnots,
TColStd_Array1OfInteger& NewMults,
TColStd_Array1OfReal& NewPoles);
Standard_EXPORT static void Trimming(const Standard_Integer Degree,
const Standard_Boolean Periodic,
const TColStd_Array1OfReal& Knots,
const TColStd_Array1OfInteger& Mults,
const TColgp_Array1OfPnt& Poles,
const TColStd_Array1OfReal* Weights,
const Standard_Real U1,
const Standard_Real U2,
TColStd_Array1OfReal& NewKnots,
TColStd_Array1OfInteger& NewMults,
TColgp_Array1OfPnt& NewPoles,
TColStd_Array1OfReal* NewWeights);
Standard_EXPORT static void Trimming(const Standard_Integer Degree,
const Standard_Boolean Periodic,
const TColStd_Array1OfReal& Knots,
const TColStd_Array1OfInteger& Mults,
const TColgp_Array1OfPnt2d& Poles,
const TColStd_Array1OfReal* Weights,
const Standard_Real U1,
const Standard_Real U2,
TColStd_Array1OfReal& NewKnots,
TColStd_Array1OfInteger& NewMults,
TColgp_Array1OfPnt2d& NewPoles,
TColStd_Array1OfReal* NewWeights);
Standard_EXPORT static void D0(const Standard_Real U,
const Standard_Integer Index,
const Standard_Integer Degree,
const Standard_Boolean Periodic,
const TColStd_Array1OfReal& Poles,
const TColStd_Array1OfReal* Weights,
const TColStd_Array1OfReal& Knots,
const TColStd_Array1OfInteger* Mults,
Standard_Real& P);
Standard_EXPORT static void D0(const Standard_Real U,
const Standard_Integer Index,
const Standard_Integer Degree,
const Standard_Boolean Periodic,
const TColgp_Array1OfPnt& Poles,
const TColStd_Array1OfReal* Weights,
const TColStd_Array1OfReal& Knots,
const TColStd_Array1OfInteger* Mults,
gp_Pnt& P);
Standard_EXPORT static void D0(const Standard_Real U,
const Standard_Integer UIndex,
const Standard_Integer Degree,
const Standard_Boolean Periodic,
const TColgp_Array1OfPnt2d& Poles,
const TColStd_Array1OfReal* Weights,
const TColStd_Array1OfReal& Knots,
const TColStd_Array1OfInteger* Mults,
gp_Pnt2d& P);
Standard_EXPORT static void D0(const Standard_Real U,
const TColgp_Array1OfPnt& Poles,
const TColStd_Array1OfReal* Weights,
gp_Pnt& P);
Standard_EXPORT static void D0(const Standard_Real U,
const TColgp_Array1OfPnt2d& Poles,
const TColStd_Array1OfReal* Weights,
gp_Pnt2d& P);
Standard_EXPORT static void D1(const Standard_Real U,
const Standard_Integer Index,
const Standard_Integer Degree,
const Standard_Boolean Periodic,
const TColStd_Array1OfReal& Poles,
const TColStd_Array1OfReal* Weights,
const TColStd_Array1OfReal& Knots,
const TColStd_Array1OfInteger* Mults,
Standard_Real& P,
Standard_Real& V);
Standard_EXPORT static void D1(const Standard_Real U,
const Standard_Integer Index,
const Standard_Integer Degree,
const Standard_Boolean Periodic,
const TColgp_Array1OfPnt& Poles,
const TColStd_Array1OfReal* Weights,
const TColStd_Array1OfReal& Knots,
const TColStd_Array1OfInteger* Mults,
gp_Pnt& P,
gp_Vec& V);
Standard_EXPORT static void D1(const Standard_Real U,
const Standard_Integer UIndex,
const Standard_Integer Degree,
const Standard_Boolean Periodic,
const TColgp_Array1OfPnt2d& Poles,
const TColStd_Array1OfReal* Weights,
const TColStd_Array1OfReal& Knots,
const TColStd_Array1OfInteger* Mults,
gp_Pnt2d& P,
gp_Vec2d& V);
Standard_EXPORT static void D1(const Standard_Real U,
const TColgp_Array1OfPnt& Poles,
const TColStd_Array1OfReal* Weights,
gp_Pnt& P,
gp_Vec& V);
Standard_EXPORT static void D1(const Standard_Real U,
const TColgp_Array1OfPnt2d& Poles,
const TColStd_Array1OfReal* Weights,
gp_Pnt2d& P,
gp_Vec2d& V);
Standard_EXPORT static void D2(const Standard_Real U,
const Standard_Integer Index,
const Standard_Integer Degree,
const Standard_Boolean Periodic,
const TColStd_Array1OfReal& Poles,
const TColStd_Array1OfReal* Weights,
const TColStd_Array1OfReal& Knots,
const TColStd_Array1OfInteger* Mults,
Standard_Real& P,
Standard_Real& V1,
Standard_Real& V2);
Standard_EXPORT static void D2(const Standard_Real U,
const Standard_Integer Index,
const Standard_Integer Degree,
const Standard_Boolean Periodic,
const TColgp_Array1OfPnt& Poles,
const TColStd_Array1OfReal* Weights,
const TColStd_Array1OfReal& Knots,
const TColStd_Array1OfInteger* Mults,
gp_Pnt& P,
gp_Vec& V1,
gp_Vec& V2);
Standard_EXPORT static void D2(const Standard_Real U,
const Standard_Integer UIndex,
const Standard_Integer Degree,
const Standard_Boolean Periodic,
const TColgp_Array1OfPnt2d& Poles,
const TColStd_Array1OfReal* Weights,
const TColStd_Array1OfReal& Knots,
const TColStd_Array1OfInteger* Mults,
gp_Pnt2d& P,
gp_Vec2d& V1,
gp_Vec2d& V2);
Standard_EXPORT static void D2(const Standard_Real U,
const TColgp_Array1OfPnt& Poles,
const TColStd_Array1OfReal* Weights,
gp_Pnt& P,
gp_Vec& V1,
gp_Vec& V2);
Standard_EXPORT static void D2(const Standard_Real U,
const TColgp_Array1OfPnt2d& Poles,
const TColStd_Array1OfReal* Weights,
gp_Pnt2d& P,
gp_Vec2d& V1,
gp_Vec2d& V2);
Standard_EXPORT static void D3(const Standard_Real U,
const Standard_Integer Index,
const Standard_Integer Degree,
const Standard_Boolean Periodic,
const TColStd_Array1OfReal& Poles,
const TColStd_Array1OfReal* Weights,
const TColStd_Array1OfReal& Knots,
const TColStd_Array1OfInteger* Mults,
Standard_Real& P,
Standard_Real& V1,
Standard_Real& V2,
Standard_Real& V3);
Standard_EXPORT static void D3(const Standard_Real U,
const Standard_Integer Index,
const Standard_Integer Degree,
const Standard_Boolean Periodic,
const TColgp_Array1OfPnt& Poles,
const TColStd_Array1OfReal* Weights,
const TColStd_Array1OfReal& Knots,
const TColStd_Array1OfInteger* Mults,
gp_Pnt& P,
gp_Vec& V1,
gp_Vec& V2,
gp_Vec& V3);
Standard_EXPORT static void D3(const Standard_Real U,
const Standard_Integer UIndex,
const Standard_Integer Degree,
const Standard_Boolean Periodic,
const TColgp_Array1OfPnt2d& Poles,
const TColStd_Array1OfReal* Weights,
const TColStd_Array1OfReal& Knots,
const TColStd_Array1OfInteger* Mults,
gp_Pnt2d& P,
gp_Vec2d& V1,
gp_Vec2d& V2,
gp_Vec2d& V3);
Standard_EXPORT static void D3(const Standard_Real U,
const TColgp_Array1OfPnt& Poles,
const TColStd_Array1OfReal* Weights,
gp_Pnt& P,
gp_Vec& V1,
gp_Vec& V2,
gp_Vec& V3);
Standard_EXPORT static void D3(const Standard_Real U,
const TColgp_Array1OfPnt2d& Poles,
const TColStd_Array1OfReal* Weights,
gp_Pnt2d& P,
gp_Vec2d& V1,
gp_Vec2d& V2,
gp_Vec2d& V3);
Standard_EXPORT static void DN(const Standard_Real U,
const Standard_Integer N,
const Standard_Integer Index,
const Standard_Integer Degree,
const Standard_Boolean Periodic,
const TColStd_Array1OfReal& Poles,
const TColStd_Array1OfReal* Weights,
const TColStd_Array1OfReal& Knots,
const TColStd_Array1OfInteger* Mults,
Standard_Real& VN);
Standard_EXPORT static void DN(const Standard_Real U,
const Standard_Integer N,
const Standard_Integer Index,
const Standard_Integer Degree,
const Standard_Boolean Periodic,
const TColgp_Array1OfPnt& Poles,
const TColStd_Array1OfReal* Weights,
const TColStd_Array1OfReal& Knots,
const TColStd_Array1OfInteger* Mults,
gp_Vec& VN);
Standard_EXPORT static void DN(const Standard_Real U,
const Standard_Integer N,
const Standard_Integer UIndex,
const Standard_Integer Degree,
const Standard_Boolean Periodic,
const TColgp_Array1OfPnt2d& Poles,
const TColStd_Array1OfReal* Weights,
const TColStd_Array1OfReal& Knots,
const TColStd_Array1OfInteger* Mults,
gp_Vec2d& V);
Standard_EXPORT static void DN(const Standard_Real U,
const Standard_Integer N,
const TColgp_Array1OfPnt& Poles,
const TColStd_Array1OfReal& Weights,
gp_Pnt& P,
gp_Vec& VN);
//! The above functions compute values and
//! derivatives in the following situations :
//!
//! * 3D, 2D and 1D
//!
//! * Rational or not Rational.
//!
//! * Knots and multiplicities or "flat knots" without
//! multiplicities.
//!
//! * The <Index> is the localization of the
//! parameter in the knot sequence. If <Index> is out
//! of range the correct value will be searched.
//!
//! VERY IMPORTANT!!!
//! USE BSplCLib::NoWeights() as Weights argument for non
//! rational curves computations.
Standard_EXPORT static void DN(const Standard_Real U,
const Standard_Integer N,
const TColgp_Array1OfPnt2d& Poles,
const TColStd_Array1OfReal& Weights,
gp_Pnt2d& P,
gp_Vec2d& VN);
//! This evaluates the Bspline Basis at a
//! given parameter Parameter up to the
//! requested DerivativeOrder and store the
//! result in the array BsplineBasis in the
//! following fashion
//! BSplineBasis(1,1) =
//! value of first non vanishing
//! Bspline function which has Index FirstNonZeroBsplineIndex
//! BsplineBasis(1,2) =
//! value of second non vanishing
//! Bspline function which has Index
//! FirstNonZeroBsplineIndex + 1
//! BsplineBasis(1,n) =
//! value of second non vanishing non vanishing
//! Bspline function which has Index
//! FirstNonZeroBsplineIndex + n (n <= Order)
//! BSplineBasis(2,1) =
//! value of derivative of first non vanishing
//! Bspline function which has Index FirstNonZeroBsplineIndex
//! BSplineBasis(N,1) =
//! value of Nth derivative of first non vanishing
//! Bspline function which has Index FirstNonZeroBsplineIndex
//! if N <= DerivativeOrder + 1
Standard_EXPORT static Standard_Integer EvalBsplineBasis(
const Standard_Integer DerivativeOrder,
const Standard_Integer Order,
const TColStd_Array1OfReal& FlatKnots,
const Standard_Real Parameter,
Standard_Integer& FirstNonZeroBsplineIndex,
math_Matrix& BsplineBasis,
const Standard_Boolean isPeriodic = Standard_False);
//! This Builds a fully blown Matrix of
//! (ni)
//! Bi (tj)
//!
//! with i and j within 1..Order + NumPoles
//! The integer ni is the ith slot of the
//! array OrderArray, tj is the jth slot of
//! the array Parameters
Standard_EXPORT static Standard_Integer BuildBSpMatrix(const TColStd_Array1OfReal& Parameters,
const TColStd_Array1OfInteger& OrderArray,
const TColStd_Array1OfReal& FlatKnots,
const Standard_Integer Degree,
math_Matrix& Matrix,
Standard_Integer& UpperBandWidth,
Standard_Integer& LowerBandWidth);
//! this factors the Banded Matrix in
//! the LU form with a Banded storage of
//! components of the L matrix
//! WARNING : do not use if the Matrix is
//! totally positive (It is the case for
//! Bspline matrices build as above with
//! parameters being the Schoenberg points
Standard_EXPORT static Standard_Integer FactorBandedMatrix(math_Matrix& Matrix,
const Standard_Integer UpperBandWidth,
const Standard_Integer LowerBandWidth,
Standard_Integer& PivotIndexProblem);
//! This solves the system Matrix.X = B
//! with when Matrix is factored in LU form
//! The Array is an seen as an
//! Array[1..N][1..ArrayDimension] with N =
//! the rank of the matrix Matrix. The
//! result is stored in Array when each
//! coordinate is solved that is B is the
//! array whose values are
//! B[i] = Array[i][p] for each p in 1..ArrayDimension
Standard_EXPORT static Standard_Integer SolveBandedSystem(const math_Matrix& Matrix,
const Standard_Integer UpperBandWidth,
const Standard_Integer LowerBandWidth,
const Standard_Integer ArrayDimension,
Standard_Real& Array);
//! This solves the system Matrix.X = B
//! with when Matrix is factored in LU form
//! The Array has the length of
//! the rank of the matrix Matrix. The
//! result is stored in Array when each
//! coordinate is solved that is B is the
//! array whose values are
//! B[i] = Array[i][p] for each p in 1..ArrayDimension
Standard_EXPORT static Standard_Integer SolveBandedSystem(const math_Matrix& Matrix,
const Standard_Integer UpperBandWidth,
const Standard_Integer LowerBandWidth,
TColgp_Array1OfPnt2d& Array);
//! This solves the system Matrix.X = B
//! with when Matrix is factored in LU form
//! The Array has the length of
//! the rank of the matrix Matrix. The
//! result is stored in Array when each
//! coordinate is solved that is B is the
//! array whose values are
//! B[i] = Array[i][p] for each p in 1..ArrayDimension
Standard_EXPORT static Standard_Integer SolveBandedSystem(const math_Matrix& Matrix,
const Standard_Integer UpperBandWidth,
const Standard_Integer LowerBandWidth,
TColgp_Array1OfPnt& Array);
Standard_EXPORT static Standard_Integer SolveBandedSystem(const math_Matrix& Matrix,
const Standard_Integer UpperBandWidth,
const Standard_Integer LowerBandWidth,
const Standard_Boolean HomogenousFlag,
const Standard_Integer ArrayDimension,
Standard_Real& Array,
Standard_Real& Weights);
//! This solves the system Matrix.X = B
//! with when Matrix is factored in LU form
//! The Array is an seen as an
//! Array[1..N][1..ArrayDimension] with N =
//! the rank of the matrix Matrix. The
//! result is stored in Array when each
//! coordinate is solved that is B is the
//! array whose values are B[i] =
//! Array[i][p] for each p in
//! 1..ArrayDimension. If HomogeneousFlag ==
//! 0 the Poles are multiplied by the
//! Weights upon Entry and once
//! interpolation is carried over the
//! result of the poles are divided by the
//! result of the interpolation of the
//! weights. Otherwise if HomogenousFlag == 1
//! the Poles and Weights are treated homogeneously
//! that is that those are interpolated as they
//! are and result is returned without division
//! by the interpolated weights.
Standard_EXPORT static Standard_Integer SolveBandedSystem(const math_Matrix& Matrix,
const Standard_Integer UpperBandWidth,
const Standard_Integer LowerBandWidth,
const Standard_Boolean HomogenousFlag,
TColgp_Array1OfPnt2d& Array,
TColStd_Array1OfReal& Weights);
//! This solves the system Matrix.X = B
//! with when Matrix is factored in LU form
//! The Array is an seen as an
//! Array[1..N][1..ArrayDimension] with N =
//! the rank of the matrix Matrix. The
//! result is stored in Array when each
//! coordinate is solved that is B is the
//! array whose values are
//! B[i] = Array[i][p] for each p in 1..ArrayDimension
//! If HomogeneousFlag ==
//! 0 the Poles are multiplied by the
//! Weights upon Entry and once
//! interpolation is carried over the
//! result of the poles are divided by the
//! result of the interpolation of the
//! weights. Otherwise if HomogenousFlag == 1
//! the Poles and Weights are treated homogeneously
//! that is that those are interpolated as they
//! are and result is returned without division
//! by the interpolated weights.
Standard_EXPORT static Standard_Integer SolveBandedSystem(const math_Matrix& Matrix,
const Standard_Integer UpperBandWidth,
const Standard_Integer LowerBandWidth,
const Standard_Boolean HomogeneousFlag,
TColgp_Array1OfPnt& Array,
TColStd_Array1OfReal& Weights);
//! Merges two knot vector by setting the starting and
//! ending values to StartValue and EndValue
Standard_EXPORT static void MergeBSplineKnots(const Standard_Real Tolerance,
const Standard_Real StartValue,
const Standard_Real EndValue,
const Standard_Integer Degree1,
const TColStd_Array1OfReal& Knots1,
const TColStd_Array1OfInteger& Mults1,
const Standard_Integer Degree2,
const TColStd_Array1OfReal& Knots2,
const TColStd_Array1OfInteger& Mults2,
Standard_Integer& NumPoles,
Handle(TColStd_HArray1OfReal)& NewKnots,
Handle(TColStd_HArray1OfInteger)& NewMults);
//! This function will compose a given Vectorial BSpline F(t)
//! defined by its BSplineDegree and BSplineFlatKnotsl,
//! its Poles array which are coded as an array of Real
//! of the form [1..NumPoles][1..PolesDimension] with a
//! function a(t) which is assumed to satisfy the
//! following:
//!
//! 1. F(a(t)) is a polynomial BSpline
//! that can be expressed exactly as a BSpline of degree
//! NewDegree on the knots FlatKnots
//!
//! 2. a(t) defines a differentiable
//! isomorphism between the range of FlatKnots to the range
//! of BSplineFlatKnots which is the
//! same as the range of F(t)
//!
//! Warning: it is
//! the caller's responsibility to insure that conditions
//! 1. and 2. above are satisfied : no check whatsoever
//! is made in this method
//!
//! theStatus will return 0 if OK else it will return the pivot index
//! of the matrix that was inverted to compute the multiplied
//! BSpline : the method used is interpolation at Schoenenberg
//! points of F(a(t))
Standard_EXPORT static void FunctionReparameterise(const BSplCLib_EvaluatorFunction& Function,
const Standard_Integer BSplineDegree,
const TColStd_Array1OfReal& BSplineFlatKnots,
const Standard_Integer PolesDimension,
Standard_Real& Poles,
const TColStd_Array1OfReal& FlatKnots,
const Standard_Integer NewDegree,
Standard_Real& NewPoles,
Standard_Integer& theStatus);
//! This function will compose a given Vectorial BSpline F(t)
//! defined by its BSplineDegree and BSplineFlatKnotsl,
//! its Poles array which are coded as an array of Real
//! of the form [1..NumPoles][1..PolesDimension] with a
//! function a(t) which is assumed to satisfy the
//! following:
//!
//! 1. F(a(t)) is a polynomial BSpline
//! that can be expressed exactly as a BSpline of degree
//! NewDegree on the knots FlatKnots
//!
//! 2. a(t) defines a differentiable
//! isomorphism between the range of FlatKnots to the range
//! of BSplineFlatKnots which is the
//! same as the range of F(t)
//!
//! Warning: it is
//! the caller's responsibility to insure that conditions
//! 1. and 2. above are satisfied : no check whatsoever
//! is made in this method
//!
//! theStatus will return 0 if OK else it will return the pivot index
//! of the matrix that was inverted to compute the multiplied
//! BSpline : the method used is interpolation at Schoenenberg
//! points of F(a(t))
Standard_EXPORT static void FunctionReparameterise(const BSplCLib_EvaluatorFunction& Function,
const Standard_Integer BSplineDegree,
const TColStd_Array1OfReal& BSplineFlatKnots,
const TColStd_Array1OfReal& Poles,
const TColStd_Array1OfReal& FlatKnots,
const Standard_Integer NewDegree,
TColStd_Array1OfReal& NewPoles,
Standard_Integer& theStatus);
//! this will compose a given Vectorial BSpline F(t)
//! defined by its BSplineDegree and BSplineFlatKnotsl,
//! its Poles array which are coded as an array of Real
//! of the form [1..NumPoles][1..PolesDimension] with a
//! function a(t) which is assumed to satisfy the
//! following : 1. F(a(t)) is a polynomial BSpline
//! that can be expressed exactly as a BSpline of degree
//! NewDegree on the knots FlatKnots
//! 2. a(t) defines a differentiable
//! isomorphism between the range of FlatKnots to the range
//! of BSplineFlatKnots which is the
//! same as the range of F(t)
//! Warning: it is
//! the caller's responsibility to insure that conditions
//! 1. and 2. above are satisfied : no check whatsoever
//! is made in this method
//! theStatus will return 0 if OK else it will return the pivot index
//! of the matrix that was inverted to compute the multiplied
//! BSpline : the method used is interpolation at Schoenenberg
//! points of F(a(t))
Standard_EXPORT static void FunctionReparameterise(const BSplCLib_EvaluatorFunction& Function,
const Standard_Integer BSplineDegree,
const TColStd_Array1OfReal& BSplineFlatKnots,
const TColgp_Array1OfPnt& Poles,
const TColStd_Array1OfReal& FlatKnots,
const Standard_Integer NewDegree,
TColgp_Array1OfPnt& NewPoles,
Standard_Integer& theStatus);
//! this will compose a given Vectorial BSpline F(t)
//! defined by its BSplineDegree and BSplineFlatKnotsl,
//! its Poles array which are coded as an array of Real
//! of the form [1..NumPoles][1..PolesDimension] with a
//! function a(t) which is assumed to satisfy the
//! following : 1. F(a(t)) is a polynomial BSpline
//! that can be expressed exactly as a BSpline of degree
//! NewDegree on the knots FlatKnots
//! 2. a(t) defines a differentiable
//! isomorphism between the range of FlatKnots to the range
//! of BSplineFlatKnots which is the
//! same as the range of F(t)
//! Warning: it is
//! the caller's responsibility to insure that conditions
//! 1. and 2. above are satisfied : no check whatsoever
//! is made in this method
//! theStatus will return 0 if OK else it will return the pivot index
//! of the matrix that was inverted to compute the multiplied
//! BSpline : the method used is interpolation at Schoenenberg
//! points of F(a(t))
Standard_EXPORT static void FunctionReparameterise(const BSplCLib_EvaluatorFunction& Function,
const Standard_Integer BSplineDegree,
const TColStd_Array1OfReal& BSplineFlatKnots,
const TColgp_Array1OfPnt2d& Poles,
const TColStd_Array1OfReal& FlatKnots,
const Standard_Integer NewDegree,
TColgp_Array1OfPnt2d& NewPoles,
Standard_Integer& theStatus);
//! this will multiply a given Vectorial BSpline F(t)
//! defined by its BSplineDegree and BSplineFlatKnotsl,
//! its Poles array which are coded as an array of Real
//! of the form [1..NumPoles][1..PolesDimension] by a
//! function a(t) which is assumed to satisfy the
//! following : 1. a(t) * F(t) is a polynomial BSpline
//! that can be expressed exactly as a BSpline of degree
//! NewDegree on the knots FlatKnots 2. the range of a(t)
//! is the same as the range of F(t)
//! Warning: it is
//! the caller's responsibility to insure that conditions
//! 1. and 2. above are satisfied : no check whatsoever
//! is made in this method
//! theStatus will return 0 if OK else it will return the pivot index
//! of the matrix that was inverted to compute the multiplied
//! BSpline : the method used is interpolation at Schoenenberg
//! points of a(t)*F(t)
Standard_EXPORT static void FunctionMultiply(const BSplCLib_EvaluatorFunction& Function,
const Standard_Integer BSplineDegree,
const TColStd_Array1OfReal& BSplineFlatKnots,
const Standard_Integer PolesDimension,
Standard_Real& Poles,
const TColStd_Array1OfReal& FlatKnots,
const Standard_Integer NewDegree,
Standard_Real& NewPoles,
Standard_Integer& theStatus);
//! this will multiply a given Vectorial BSpline F(t)
//! defined by its BSplineDegree and BSplineFlatKnotsl,
//! its Poles array which are coded as an array of Real
//! of the form [1..NumPoles][1..PolesDimension] by a
//! function a(t) which is assumed to satisfy the
//! following : 1. a(t) * F(t) is a polynomial BSpline
//! that can be expressed exactly as a BSpline of degree
//! NewDegree on the knots FlatKnots 2. the range of a(t)
//! is the same as the range of F(t)
//! Warning: it is
//! the caller's responsibility to insure that conditions
//! 1. and 2. above are satisfied : no check whatsoever
//! is made in this method
//! theStatus will return 0 if OK else it will return the pivot index
//! of the matrix that was inverted to compute the multiplied
//! BSpline : the method used is interpolation at Schoenenberg
//! points of a(t)*F(t)
Standard_EXPORT static void FunctionMultiply(const BSplCLib_EvaluatorFunction& Function,
const Standard_Integer BSplineDegree,
const TColStd_Array1OfReal& BSplineFlatKnots,
const TColStd_Array1OfReal& Poles,
const TColStd_Array1OfReal& FlatKnots,
const Standard_Integer NewDegree,
TColStd_Array1OfReal& NewPoles,
Standard_Integer& theStatus);
//! this will multiply a given Vectorial BSpline F(t)
//! defined by its BSplineDegree and BSplineFlatKnotsl,
//! its Poles array which are coded as an array of Real
//! of the form [1..NumPoles][1..PolesDimension] by a
//! function a(t) which is assumed to satisfy the
//! following : 1. a(t) * F(t) is a polynomial BSpline
//! that can be expressed exactly as a BSpline of degree
//! NewDegree on the knots FlatKnots 2. the range of a(t)
//! is the same as the range of F(t)
//! Warning: it is
//! the caller's responsibility to insure that conditions
//! 1. and 2. above are satisfied : no check whatsoever
//! is made in this method
//! theStatus will return 0 if OK else it will return the pivot index
//! of the matrix that was inverted to compute the multiplied
//! BSpline : the method used is interpolation at Schoenenberg
//! points of a(t)*F(t)
Standard_EXPORT static void FunctionMultiply(const BSplCLib_EvaluatorFunction& Function,
const Standard_Integer BSplineDegree,
const TColStd_Array1OfReal& BSplineFlatKnots,
const TColgp_Array1OfPnt2d& Poles,
const TColStd_Array1OfReal& FlatKnots,
const Standard_Integer NewDegree,
TColgp_Array1OfPnt2d& NewPoles,
Standard_Integer& theStatus);
//! this will multiply a given Vectorial BSpline F(t)
//! defined by its BSplineDegree and BSplineFlatKnotsl,
//! its Poles array which are coded as an array of Real
//! of the form [1..NumPoles][1..PolesDimension] by a
//! function a(t) which is assumed to satisfy the
//! following : 1. a(t) * F(t) is a polynomial BSpline
//! that can be expressed exactly as a BSpline of degree
//! NewDegree on the knots FlatKnots 2. the range of a(t)
//! is the same as the range of F(t)
//! Warning: it is
//! the caller's responsibility to insure that conditions
//! 1. and 2. above are satisfied : no check whatsoever
//! is made in this method
//! theStatus will return 0 if OK else it will return the pivot index
//! of the matrix that was inverted to compute the multiplied
//! BSpline : the method used is interpolation at Schoenenberg
//! points of a(t)*F(t)
Standard_EXPORT static void FunctionMultiply(const BSplCLib_EvaluatorFunction& Function,
const Standard_Integer BSplineDegree,
const TColStd_Array1OfReal& BSplineFlatKnots,
const TColgp_Array1OfPnt& Poles,
const TColStd_Array1OfReal& FlatKnots,
const Standard_Integer NewDegree,
TColgp_Array1OfPnt& NewPoles,
Standard_Integer& theStatus);
//! Perform the De Boor algorithm to evaluate a point at
//! parameter <U>, with <Degree> and <Dimension>.
//!
//! Poles is an array of Reals of size
//!
//! <Dimension> * <Degree>+1
//!
//! Containing the poles. At the end <Poles> contains
//! the current point. Poles Contain all the poles of
//! the BsplineCurve, Knots also Contains all the knots
//! of the BsplineCurve. ExtrapMode has two slots [0] =
//! Degree used to extrapolate before the first knot [1]
//! = Degre used to extrapolate after the last knot has
//! to be between 1 and Degree
Standard_EXPORT static void Eval(const Standard_Real U,
const Standard_Boolean PeriodicFlag,
const Standard_Integer DerivativeRequest,
Standard_Integer& ExtrapMode,
const Standard_Integer Degree,
const TColStd_Array1OfReal& FlatKnots,
const Standard_Integer ArrayDimension,
Standard_Real& Poles,
Standard_Real& Result);
//! Perform the De Boor algorithm to evaluate a point at
//! parameter <U>, with <Degree> and <Dimension>.
//! Evaluates by multiplying the Poles by the Weights and
//! gives the homogeneous result in PolesResult that is
//! the results of the evaluation of the numerator once it
//! has been multiplied by the weights and in
//! WeightsResult one has the result of the evaluation of
//! the denominator
//!
//! Warning: <PolesResult> and <WeightsResult> must be dimensionned
//! properly.
Standard_EXPORT static void Eval(const Standard_Real U,
const Standard_Boolean PeriodicFlag,
const Standard_Integer DerivativeRequest,
Standard_Integer& ExtrapMode,
const Standard_Integer Degree,
const TColStd_Array1OfReal& FlatKnots,
const Standard_Integer ArrayDimension,
Standard_Real& Poles,
Standard_Real& Weights,
Standard_Real& PolesResult,
Standard_Real& WeightsResult);
//! Perform the evaluation of the Bspline Basis
//! and then multiplies by the weights
//! this just evaluates the current point
Standard_EXPORT static void Eval(const Standard_Real U,
const Standard_Boolean PeriodicFlag,
const Standard_Boolean HomogeneousFlag,
Standard_Integer& ExtrapMode,
const Standard_Integer Degree,
const TColStd_Array1OfReal& FlatKnots,
const TColgp_Array1OfPnt& Poles,
const TColStd_Array1OfReal& Weights,
gp_Pnt& Point,
Standard_Real& Weight);
//! Perform the evaluation of the Bspline Basis
//! and then multiplies by the weights
//! this just evaluates the current point
Standard_EXPORT static void Eval(const Standard_Real U,
const Standard_Boolean PeriodicFlag,
const Standard_Boolean HomogeneousFlag,
Standard_Integer& ExtrapMode,
const Standard_Integer Degree,
const TColStd_Array1OfReal& FlatKnots,
const TColgp_Array1OfPnt2d& Poles,
const TColStd_Array1OfReal& Weights,
gp_Pnt2d& Point,
Standard_Real& Weight);
//! Extend a BSpline nD using the tangency map
//! <C1Coefficient> is the coefficient of reparametrisation
//! <Continuity> must be equal to 1, 2 or 3.
//! <Degree> must be greater or equal than <Continuity> + 1.
//!
//! Warning: <KnotsResult> and <PolesResult> must be dimensionned
//! properly.
Standard_EXPORT static void TangExtendToConstraint(const TColStd_Array1OfReal& FlatKnots,
const Standard_Real C1Coefficient,
const Standard_Integer NumPoles,
Standard_Real& Poles,
const Standard_Integer Dimension,
const Standard_Integer Degree,
const TColStd_Array1OfReal& ConstraintPoint,
const Standard_Integer Continuity,
const Standard_Boolean After,
Standard_Integer& NbPolesResult,
Standard_Integer& NbKnotsRsult,
Standard_Real& KnotsResult,
Standard_Real& PolesResult);
//! Perform the evaluation of the of the cache
//! the parameter must be normalized between
//! the 0 and 1 for the span.
//! The Cache must be valid when calling this
//! routine. Geom Package will insure that.
//! and then multiplies by the weights
//! this just evaluates the current point
//! the CacheParameter is where the Cache was
//! constructed the SpanLength is to normalize
//! the polynomial in the cache to avoid bad conditioning
//! effects
Standard_EXPORT static void CacheD0(const Standard_Real U,
const Standard_Integer Degree,
const Standard_Real CacheParameter,
const Standard_Real SpanLenght,
const TColgp_Array1OfPnt& Poles,
const TColStd_Array1OfReal* Weights,
gp_Pnt& Point);
//! Perform the evaluation of the Bspline Basis
//! and then multiplies by the weights
//! this just evaluates the current point
//! the parameter must be normalized between
//! the 0 and 1 for the span.
//! The Cache must be valid when calling this
//! routine. Geom Package will insure that.
//! and then multiplies by the weights
//! ththe CacheParameter is where the Cache was
//! constructed the SpanLength is to normalize
//! the polynomial in the cache to avoid bad conditioning
//! effectsis just evaluates the current point
Standard_EXPORT static void CacheD0(const Standard_Real U,
const Standard_Integer Degree,
const Standard_Real CacheParameter,
const Standard_Real SpanLenght,
const TColgp_Array1OfPnt2d& Poles,
const TColStd_Array1OfReal* Weights,
gp_Pnt2d& Point);
//! Calls CacheD0 for Bezier Curves Arrays computed with
//! the method PolesCoefficients.
//! Warning: To be used for Beziercurves ONLY!!!
static void CoefsD0(const Standard_Real U,
const TColgp_Array1OfPnt& Poles,
const TColStd_Array1OfReal* Weights,
gp_Pnt& Point);
//! Calls CacheD0 for Bezier Curves Arrays computed with
//! the method PolesCoefficients.
//! Warning: To be used for Beziercurves ONLY!!!
static void CoefsD0(const Standard_Real U,
const TColgp_Array1OfPnt2d& Poles,
const TColStd_Array1OfReal* Weights,
gp_Pnt2d& Point);
//! Perform the evaluation of the of the cache
//! the parameter must be normalized between
//! the 0 and 1 for the span.
//! The Cache must be valid when calling this
//! routine. Geom Package will insure that.
//! and then multiplies by the weights
//! this just evaluates the current point
//! the CacheParameter is where the Cache was
//! constructed the SpanLength is to normalize
//! the polynomial in the cache to avoid bad conditioning
//! effects
Standard_EXPORT static void CacheD1(const Standard_Real U,
const Standard_Integer Degree,
const Standard_Real CacheParameter,
const Standard_Real SpanLenght,
const TColgp_Array1OfPnt& Poles,
const TColStd_Array1OfReal* Weights,
gp_Pnt& Point,
gp_Vec& Vec);
//! Perform the evaluation of the Bspline Basis
//! and then multiplies by the weights
//! this just evaluates the current point
//! the parameter must be normalized between
//! the 0 and 1 for the span.
//! The Cache must be valid when calling this
//! routine. Geom Package will insure that.
//! and then multiplies by the weights
//! ththe CacheParameter is where the Cache was
//! constructed the SpanLength is to normalize
//! the polynomial in the cache to avoid bad conditioning
//! effectsis just evaluates the current point
Standard_EXPORT static void CacheD1(const Standard_Real U,
const Standard_Integer Degree,
const Standard_Real CacheParameter,
const Standard_Real SpanLenght,
const TColgp_Array1OfPnt2d& Poles,
const TColStd_Array1OfReal* Weights,
gp_Pnt2d& Point,
gp_Vec2d& Vec);
//! Calls CacheD1 for Bezier Curves Arrays computed with
//! the method PolesCoefficients.
//! Warning: To be used for Beziercurves ONLY!!!
static void CoefsD1(const Standard_Real U,
const TColgp_Array1OfPnt& Poles,
const TColStd_Array1OfReal* Weights,
gp_Pnt& Point,
gp_Vec& Vec);
//! Calls CacheD1 for Bezier Curves Arrays computed with
//! the method PolesCoefficients.
//! Warning: To be used for Beziercurves ONLY!!!
static void CoefsD1(const Standard_Real U,
const TColgp_Array1OfPnt2d& Poles,
const TColStd_Array1OfReal* Weights,
gp_Pnt2d& Point,
gp_Vec2d& Vec);
//! Perform the evaluation of the of the cache
//! the parameter must be normalized between
//! the 0 and 1 for the span.
//! The Cache must be valid when calling this
//! routine. Geom Package will insure that.
//! and then multiplies by the weights
//! this just evaluates the current point
//! the CacheParameter is where the Cache was
//! constructed the SpanLength is to normalize
//! the polynomial in the cache to avoid bad conditioning
//! effects
Standard_EXPORT static void CacheD2(const Standard_Real U,
const Standard_Integer Degree,
const Standard_Real CacheParameter,
const Standard_Real SpanLenght,
const TColgp_Array1OfPnt& Poles,
const TColStd_Array1OfReal* Weights,
gp_Pnt& Point,
gp_Vec& Vec1,
gp_Vec& Vec2);
//! Perform the evaluation of the Bspline Basis
//! and then multiplies by the weights
//! this just evaluates the current point
//! the parameter must be normalized between
//! the 0 and 1 for the span.
//! The Cache must be valid when calling this
//! routine. Geom Package will insure that.
//! and then multiplies by the weights
//! ththe CacheParameter is where the Cache was
//! constructed the SpanLength is to normalize
//! the polynomial in the cache to avoid bad conditioning
//! effectsis just evaluates the current point
Standard_EXPORT static void CacheD2(const Standard_Real U,
const Standard_Integer Degree,
const Standard_Real CacheParameter,
const Standard_Real SpanLenght,
const TColgp_Array1OfPnt2d& Poles,
const TColStd_Array1OfReal* Weights,
gp_Pnt2d& Point,
gp_Vec2d& Vec1,
gp_Vec2d& Vec2);
//! Calls CacheD1 for Bezier Curves Arrays computed with
//! the method PolesCoefficients.
//! Warning: To be used for Beziercurves ONLY!!!
static void CoefsD2(const Standard_Real U,
const TColgp_Array1OfPnt& Poles,
const TColStd_Array1OfReal* Weights,
gp_Pnt& Point,
gp_Vec& Vec1,
gp_Vec& Vec2);
//! Calls CacheD1 for Bezier Curves Arrays computed with
//! the method PolesCoefficients.
//! Warning: To be used for Beziercurves ONLY!!!
static void CoefsD2(const Standard_Real U,
const TColgp_Array1OfPnt2d& Poles,
const TColStd_Array1OfReal* Weights,
gp_Pnt2d& Point,
gp_Vec2d& Vec1,
gp_Vec2d& Vec2);
//! Perform the evaluation of the of the cache
//! the parameter must be normalized between
//! the 0 and 1 for the span.
//! The Cache must be valid when calling this
//! routine. Geom Package will insure that.
//! and then multiplies by the weights
//! this just evaluates the current point
//! the CacheParameter is where the Cache was
//! constructed the SpanLength is to normalize
//! the polynomial in the cache to avoid bad conditioning
//! effects
Standard_EXPORT static void CacheD3(const Standard_Real U,
const Standard_Integer Degree,
const Standard_Real CacheParameter,
const Standard_Real SpanLenght,
const TColgp_Array1OfPnt& Poles,
const TColStd_Array1OfReal* Weights,
gp_Pnt& Point,
gp_Vec& Vec1,
gp_Vec& Vec2,
gp_Vec& Vec3);
//! Perform the evaluation of the Bspline Basis
//! and then multiplies by the weights
//! this just evaluates the current point
//! the parameter must be normalized between
//! the 0 and 1 for the span.
//! The Cache must be valid when calling this
//! routine. Geom Package will insure that.
//! and then multiplies by the weights
//! ththe CacheParameter is where the Cache was
//! constructed the SpanLength is to normalize
//! the polynomial in the cache to avoid bad conditioning
//! effectsis just evaluates the current point
Standard_EXPORT static void CacheD3(const Standard_Real U,
const Standard_Integer Degree,
const Standard_Real CacheParameter,
const Standard_Real SpanLenght,
const TColgp_Array1OfPnt2d& Poles,
const TColStd_Array1OfReal* Weights,
gp_Pnt2d& Point,
gp_Vec2d& Vec1,
gp_Vec2d& Vec2,
gp_Vec2d& Vec3);
//! Calls CacheD1 for Bezier Curves Arrays computed with
//! the method PolesCoefficients.
//! Warning: To be used for Beziercurves ONLY!!!
static void CoefsD3(const Standard_Real U,
const TColgp_Array1OfPnt& Poles,
const TColStd_Array1OfReal* Weights,
gp_Pnt& Point,
gp_Vec& Vec1,
gp_Vec& Vec2,
gp_Vec& Vec3);
//! Calls CacheD1 for Bezier Curves Arrays computed with
//! the method PolesCoefficients.
//! Warning: To be used for Beziercurves ONLY!!!
static void CoefsD3(const Standard_Real U,
const TColgp_Array1OfPnt2d& Poles,
const TColStd_Array1OfReal* Weights,
gp_Pnt2d& Point,
gp_Vec2d& Vec1,
gp_Vec2d& Vec2,
gp_Vec2d& Vec3);
//! Perform the evaluation of the Taylor expansion
//! of the Bspline normalized between 0 and 1.
//! If rational computes the homogeneous Taylor expansion
//! for the numerator and stores it in CachePoles
Standard_EXPORT static void BuildCache(const Standard_Real U,
const Standard_Real InverseOfSpanDomain,
const Standard_Boolean PeriodicFlag,
const Standard_Integer Degree,
const TColStd_Array1OfReal& FlatKnots,
const TColgp_Array1OfPnt& Poles,
const TColStd_Array1OfReal* Weights,
TColgp_Array1OfPnt& CachePoles,
TColStd_Array1OfReal* CacheWeights);
//! Perform the evaluation of the Taylor expansion
//! of the Bspline normalized between 0 and 1.
//! If rational computes the homogeneous Taylor expansion
//! for the numerator and stores it in CachePoles
Standard_EXPORT static void BuildCache(const Standard_Real U,
const Standard_Real InverseOfSpanDomain,
const Standard_Boolean PeriodicFlag,
const Standard_Integer Degree,
const TColStd_Array1OfReal& FlatKnots,
const TColgp_Array1OfPnt2d& Poles,
const TColStd_Array1OfReal* Weights,
TColgp_Array1OfPnt2d& CachePoles,
TColStd_Array1OfReal* CacheWeights);
//! Perform the evaluation of the Taylor expansion
//! of the Bspline normalized between 0 and 1.
//! Structure of result optimized for BSplCLib_Cache.
Standard_EXPORT static void BuildCache(const Standard_Real theParameter,
const Standard_Real theSpanDomain,
const Standard_Boolean thePeriodicFlag,
const Standard_Integer theDegree,
const Standard_Integer theSpanIndex,
const TColStd_Array1OfReal& theFlatKnots,
const TColgp_Array1OfPnt& thePoles,
const TColStd_Array1OfReal* theWeights,
TColStd_Array2OfReal& theCacheArray);
//! Perform the evaluation of the Taylor expansion
//! of the Bspline normalized between 0 and 1.
//! Structure of result optimized for BSplCLib_Cache.
Standard_EXPORT static void BuildCache(const Standard_Real theParameter,
const Standard_Real theSpanDomain,
const Standard_Boolean thePeriodicFlag,
const Standard_Integer theDegree,
const Standard_Integer theSpanIndex,
const TColStd_Array1OfReal& theFlatKnots,
const TColgp_Array1OfPnt2d& thePoles,
const TColStd_Array1OfReal* theWeights,
TColStd_Array2OfReal& theCacheArray);
static void PolesCoefficients(const TColgp_Array1OfPnt2d& Poles,
TColgp_Array1OfPnt2d& CachePoles);
Standard_EXPORT static void PolesCoefficients(const TColgp_Array1OfPnt2d& Poles,
const TColStd_Array1OfReal* Weights,
TColgp_Array1OfPnt2d& CachePoles,
TColStd_Array1OfReal* CacheWeights);
static void PolesCoefficients(const TColgp_Array1OfPnt& Poles, TColgp_Array1OfPnt& CachePoles);
//! Encapsulation of BuildCache to perform the
//! evaluation of the Taylor expansion for beziercurves
//! at parameter 0.
//! Warning: To be used for Beziercurves ONLY!!!
Standard_EXPORT static void PolesCoefficients(const TColgp_Array1OfPnt& Poles,
const TColStd_Array1OfReal* Weights,
TColgp_Array1OfPnt& CachePoles,
TColStd_Array1OfReal* CacheWeights);
//! Returns pointer to statically allocated array representing
//! flat knots for bezier curve of the specified degree.
//! Raises OutOfRange if Degree > MaxDegree()
Standard_EXPORT static const Standard_Real& FlatBezierKnots(const Standard_Integer Degree);
//! builds the Schoenberg points from the flat knot
//! used to interpolate a BSpline since the
//! BSpline matrix is invertible.
Standard_EXPORT static void BuildSchoenbergPoints(const Standard_Integer Degree,
const TColStd_Array1OfReal& FlatKnots,
TColStd_Array1OfReal& Parameters);
//! Performs the interpolation of the data given in
//! the Poles array according to the requests in
//! ContactOrderArray that is : if
//! ContactOrderArray(i) has value d it means that
//! Poles(i) contains the dth derivative of the
//! function to be interpolated. The length L of the
//! following arrays must be the same :
//! Parameters, ContactOrderArray, Poles,
//! The length of FlatKnots is Degree + L + 1
//! Warning:
//! the method used to do that interpolation is
//! gauss elimination WITHOUT pivoting. Thus if the
//! diagonal is not dominant there is no guarantee
//! that the algorithm will work. Nevertheless for
//! Cubic interpolation or interpolation at Scheonberg
//! points the method will work
//! The InversionProblem will report 0 if there was no
//! problem else it will give the index of the faulty
//! pivot
Standard_EXPORT static void Interpolate(const Standard_Integer Degree,
const TColStd_Array1OfReal& FlatKnots,
const TColStd_Array1OfReal& Parameters,
const TColStd_Array1OfInteger& ContactOrderArray,
TColgp_Array1OfPnt& Poles,
Standard_Integer& InversionProblem);
//! Performs the interpolation of the data given in
//! the Poles array according to the requests in
//! ContactOrderArray that is : if
//! ContactOrderArray(i) has value d it means that
//! Poles(i) contains the dth derivative of the
//! function to be interpolated. The length L of the
//! following arrays must be the same :
//! Parameters, ContactOrderArray, Poles,
//! The length of FlatKnots is Degree + L + 1
//! Warning:
//! the method used to do that interpolation is
//! gauss elimination WITHOUT pivoting. Thus if the
//! diagonal is not dominant there is no guarantee
//! that the algorithm will work. Nevertheless for
//! Cubic interpolation at knots or interpolation at Scheonberg
//! points the method will work.
//! The InversionProblem w
//! ll report 0 if there was no
//! problem else it will give the index of the faulty
//! pivot
Standard_EXPORT static void Interpolate(const Standard_Integer Degree,
const TColStd_Array1OfReal& FlatKnots,
const TColStd_Array1OfReal& Parameters,
const TColStd_Array1OfInteger& ContactOrderArray,
TColgp_Array1OfPnt2d& Poles,
Standard_Integer& InversionProblem);
//! Performs the interpolation of the data given in
//! the Poles array according to the requests in
//! ContactOrderArray that is : if
//! ContactOrderArray(i) has value d it means that
//! Poles(i) contains the dth derivative of the
//! function to be interpolated. The length L of the
//! following arrays must be the same :
//! Parameters, ContactOrderArray, Poles,
//! The length of FlatKnots is Degree + L + 1
//! Warning:
//! the method used to do that interpolation is
//! gauss elimination WITHOUT pivoting. Thus if the
//! diagonal is not dominant there is no guarantee
//! that the algorithm will work. Nevertheless for
//! Cubic interpolation at knots or interpolation at Scheonberg
//! points the method will work.
//! The InversionProblem will report 0 if there was no
//! problem else it will give the index of the faulty
//! pivot
Standard_EXPORT static void Interpolate(const Standard_Integer Degree,
const TColStd_Array1OfReal& FlatKnots,
const TColStd_Array1OfReal& Parameters,
const TColStd_Array1OfInteger& ContactOrderArray,
TColgp_Array1OfPnt& Poles,
TColStd_Array1OfReal& Weights,
Standard_Integer& InversionProblem);
//! Performs the interpolation of the data given in
//! the Poles array according to the requests in
//! ContactOrderArray that is : if
//! ContactOrderArray(i) has value d it means that
//! Poles(i) contains the dth derivative of the
//! function to be interpolated. The length L of the
//! following arrays must be the same :
//! Parameters, ContactOrderArray, Poles,
//! The length of FlatKnots is Degree + L + 1
//! Warning:
//! the method used to do that interpolation is
//! gauss elimination WITHOUT pivoting. Thus if the
//! diagonal is not dominant there is no guarantee
//! that the algorithm will work. Nevertheless for
//! Cubic interpolation at knots or interpolation at Scheonberg
//! points the method will work.
//! The InversionProblem w
//! ll report 0 if there was no
//! problem else it will give the i
Standard_EXPORT static void Interpolate(const Standard_Integer Degree,
const TColStd_Array1OfReal& FlatKnots,
const TColStd_Array1OfReal& Parameters,
const TColStd_Array1OfInteger& ContactOrderArray,
TColgp_Array1OfPnt2d& Poles,
TColStd_Array1OfReal& Weights,
Standard_Integer& InversionProblem);
//! Performs the interpolation of the data given in
//! the Poles array according to the requests in
//! ContactOrderArray that is : if
//! ContactOrderArray(i) has value d it means that
//! Poles(i) contains the dth derivative of the
//! function to be interpolated. The length L of the
//! following arrays must be the same :
//! Parameters, ContactOrderArray
//! The length of FlatKnots is Degree + L + 1
//! The PolesArray is an seen as an
//! Array[1..N][1..ArrayDimension] with N = tge length
//! of the parameters array
//! Warning:
//! the method used to do that interpolation is
//! gauss elimination WITHOUT pivoting. Thus if the
//! diagonal is not dominant there is no guarantee
//! that the algorithm will work. Nevertheless for
//! Cubic interpolation or interpolation at Scheonberg
//! points the method will work
//! The InversionProblem will report 0 if there was no
//! problem else it will give the index of the faulty
//! pivot
Standard_EXPORT static void Interpolate(const Standard_Integer Degree,
const TColStd_Array1OfReal& FlatKnots,
const TColStd_Array1OfReal& Parameters,
const TColStd_Array1OfInteger& ContactOrderArray,
const Standard_Integer ArrayDimension,
Standard_Real& Poles,
Standard_Integer& InversionProblem);
Standard_EXPORT static void Interpolate(const Standard_Integer Degree,
const TColStd_Array1OfReal& FlatKnots,
const TColStd_Array1OfReal& Parameters,
const TColStd_Array1OfInteger& ContactOrderArray,
const Standard_Integer ArrayDimension,
Standard_Real& Poles,
Standard_Real& Weights,
Standard_Integer& InversionProblem);
//! Find the new poles which allows an old point (with a
//! given u as parameter) to reach a new position
//! Index1 and Index2 indicate the range of poles we can move
//! (1, NbPoles-1) or (2, NbPoles) -> no constraint for one side
//! don't enter (1,NbPoles) -> error: rigid move
//! (2, NbPoles-1) -> the ends are enforced
//! (3, NbPoles-2) -> the ends and the tangency are enforced
//! if Problem in BSplineBasis calculation, no change for the curve
//! and FirstIndex, LastIndex = 0
Standard_EXPORT static void MovePoint(const Standard_Real U,
const gp_Vec2d& Displ,
const Standard_Integer Index1,
const Standard_Integer Index2,
const Standard_Integer Degree,
const TColgp_Array1OfPnt2d& Poles,
const TColStd_Array1OfReal* Weights,
const TColStd_Array1OfReal& FlatKnots,
Standard_Integer& FirstIndex,
Standard_Integer& LastIndex,
TColgp_Array1OfPnt2d& NewPoles);
//! Find the new poles which allows an old point (with a
//! given u as parameter) to reach a new position
//! Index1 and Index2 indicate the range of poles we can move
//! (1, NbPoles-1) or (2, NbPoles) -> no constraint for one side
//! don't enter (1,NbPoles) -> error: rigid move
//! (2, NbPoles-1) -> the ends are enforced
//! (3, NbPoles-2) -> the ends and the tangency are enforced
//! if Problem in BSplineBasis calculation, no change for the curve
//! and FirstIndex, LastIndex = 0
Standard_EXPORT static void MovePoint(const Standard_Real U,
const gp_Vec& Displ,
const Standard_Integer Index1,
const Standard_Integer Index2,
const Standard_Integer Degree,
const TColgp_Array1OfPnt& Poles,
const TColStd_Array1OfReal* Weights,
const TColStd_Array1OfReal& FlatKnots,
Standard_Integer& FirstIndex,
Standard_Integer& LastIndex,
TColgp_Array1OfPnt& NewPoles);
//! This is the dimension free version of the utility
//! U is the parameter must be within the first FlatKnots and the
//! last FlatKnots Delta is the amount the curve has to be moved
//! DeltaDerivative is the amount the derivative has to be moved.
//! Delta and DeltaDerivative must be array of dimension
//! ArrayDimension Degree is the degree of the BSpline and the
//! FlatKnots are the knots of the BSpline Starting Condition if =
//! -1 means the starting point of the curve can move
//! = 0 means the
//! starting point of the curve cannot move but tangent starting
//! point of the curve cannot move
//! = 1 means the starting point and tangents cannot move
//! = 2 means the starting point tangent and curvature cannot move
//! = ...
//! Same holds for EndingCondition
//! Poles are the poles of the curve
//! Weights are the weights of the curve if not NULL
//! NewPoles are the poles of the deformed curve
//! ErrorStatus will be 0 if no error happened
//! 1 if there are not enough knots/poles
//! the imposed conditions
//! The way to solve this problem is to add knots to the BSpline
//! If StartCondition = 1 and EndCondition = 1 then you need at least
//! 4 + 2 = 6 poles so for example to have a C1 cubic you will need
//! have at least 2 internal knots.
Standard_EXPORT static void MovePointAndTangent(const Standard_Real U,
const Standard_Integer ArrayDimension,
Standard_Real& Delta,
Standard_Real& DeltaDerivative,
const Standard_Real Tolerance,
const Standard_Integer Degree,
const Standard_Integer StartingCondition,
const Standard_Integer EndingCondition,
Standard_Real& Poles,
const TColStd_Array1OfReal* Weights,
const TColStd_Array1OfReal& FlatKnots,
Standard_Real& NewPoles,
Standard_Integer& ErrorStatus);
//! This is the dimension free version of the utility
//! U is the parameter must be within the first FlatKnots and the
//! last FlatKnots Delta is the amount the curve has to be moved
//! DeltaDerivative is the amount the derivative has to be moved.
//! Delta and DeltaDerivative must be array of dimension
//! ArrayDimension Degree is the degree of the BSpline and the
//! FlatKnots are the knots of the BSpline Starting Condition if =
//! -1 means the starting point of the curve can move
//! = 0 means the
//! starting point of the curve cannot move but tangent starting
//! point of the curve cannot move
//! = 1 means the starting point and tangents cannot move
//! = 2 means the starting point tangent and curvature cannot move
//! = ...
//! Same holds for EndingCondition
//! Poles are the poles of the curve
//! Weights are the weights of the curve if not NULL
//! NewPoles are the poles of the deformed curve
//! ErrorStatus will be 0 if no error happened
//! 1 if there are not enough knots/poles
//! the imposed conditions
//! The way to solve this problem is to add knots to the BSpline
//! If StartCondition = 1 and EndCondition = 1 then you need at least
//! 4 + 2 = 6 poles so for example to have a C1 cubic you will need
//! have at least 2 internal knots.
Standard_EXPORT static void MovePointAndTangent(const Standard_Real U,
const gp_Vec& Delta,
const gp_Vec& DeltaDerivative,
const Standard_Real Tolerance,
const Standard_Integer Degree,
const Standard_Integer StartingCondition,
const Standard_Integer EndingCondition,
const TColgp_Array1OfPnt& Poles,
const TColStd_Array1OfReal* Weights,
const TColStd_Array1OfReal& FlatKnots,
TColgp_Array1OfPnt& NewPoles,
Standard_Integer& ErrorStatus);
//! This is the dimension free version of the utility
//! U is the parameter must be within the first FlatKnots and the
//! last FlatKnots Delta is the amount the curve has to be moved
//! DeltaDerivative is the amount the derivative has to be moved.
//! Delta and DeltaDerivative must be array of dimension
//! ArrayDimension Degree is the degree of the BSpline and the
//! FlatKnots are the knots of the BSpline Starting Condition if =
//! -1 means the starting point of the curve can move
//! = 0 means the
//! starting point of the curve cannot move but tangent starting
//! point of the curve cannot move
//! = 1 means the starting point and tangents cannot move
//! = 2 means the starting point tangent and curvature cannot move
//! = ...
//! Same holds for EndingCondition
//! Poles are the poles of the curve
//! Weights are the weights of the curve if not NULL
//! NewPoles are the poles of the deformed curve
//! ErrorStatus will be 0 if no error happened
//! 1 if there are not enough knots/poles
//! the imposed conditions
//! The way to solve this problem is to add knots to the BSpline
//! If StartCondition = 1 and EndCondition = 1 then you need at least
//! 4 + 2 = 6 poles so for example to have a C1 cubic you will need
//! have at least 2 internal knots.
Standard_EXPORT static void MovePointAndTangent(const Standard_Real U,
const gp_Vec2d& Delta,
const gp_Vec2d& DeltaDerivative,
const Standard_Real Tolerance,
const Standard_Integer Degree,
const Standard_Integer StartingCondition,
const Standard_Integer EndingCondition,
const TColgp_Array1OfPnt2d& Poles,
const TColStd_Array1OfReal* Weights,
const TColStd_Array1OfReal& FlatKnots,
TColgp_Array1OfPnt2d& NewPoles,
Standard_Integer& ErrorStatus);
//! given a tolerance in 3D space returns a
//! tolerance in U parameter space such that
//! all u1 and u0 in the domain of the curve f(u)
//! | u1 - u0 | < UTolerance and
//! we have |f (u1) - f (u0)| < Tolerance3D
Standard_EXPORT static void Resolution(Standard_Real& PolesArray,
const Standard_Integer ArrayDimension,
const Standard_Integer NumPoles,
const TColStd_Array1OfReal* Weights,
const TColStd_Array1OfReal& FlatKnots,
const Standard_Integer Degree,
const Standard_Real Tolerance3D,
Standard_Real& UTolerance);
//! given a tolerance in 3D space returns a
//! tolerance in U parameter space such that
//! all u1 and u0 in the domain of the curve f(u)
//! | u1 - u0 | < UTolerance and
//! we have |f (u1) - f (u0)| < Tolerance3D
Standard_EXPORT static void Resolution(const TColgp_Array1OfPnt& Poles,
const TColStd_Array1OfReal* Weights,
const Standard_Integer NumPoles,
const TColStd_Array1OfReal& FlatKnots,
const Standard_Integer Degree,
const Standard_Real Tolerance3D,
Standard_Real& UTolerance);
//! given a tolerance in 3D space returns a
//! tolerance in U parameter space such that
//! all u1 and u0 in the domain of the curve f(u)
//! | u1 - u0 | < UTolerance and
//! we have |f (u1) - f (u0)| < Tolerance3D
Standard_EXPORT static void Resolution(const TColgp_Array1OfPnt2d& Poles,
const TColStd_Array1OfReal* Weights,
const Standard_Integer NumPoles,
const TColStd_Array1OfReal& FlatKnots,
const Standard_Integer Degree,
const Standard_Real Tolerance3D,
Standard_Real& UTolerance);
//! Splits the given range to BSpline intervals of given continuity
//! @param[in] theKnots the knots of BSpline
//! @param[in] theMults the knots' multiplicities
//! @param[in] theDegree the degree of BSpline
//! @param[in] isPeriodic the periodicity of BSpline
//! @param[in] theContinuity the target interval's continuity
//! @param[in] theFirst the begin of the target range
//! @param[in] theLast the end of the target range
//! @param[in] theTolerance the tolerance
//! @param[in,out] theIntervals the array to store intervals if isn't nullptr
//! @return the number of intervals
Standard_EXPORT static Standard_Integer Intervals(const TColStd_Array1OfReal& theKnots,
const TColStd_Array1OfInteger& theMults,
Standard_Integer theDegree,
Standard_Boolean isPeriodic,
Standard_Integer theContinuity,
Standard_Real theFirst,
Standard_Real theLast,
Standard_Real theTolerance,
TColStd_Array1OfReal* theIntervals);
protected:
private:
Standard_EXPORT static void LocateParameter(const TColStd_Array1OfReal& Knots,
const Standard_Real U,
const Standard_Boolean Periodic,
const Standard_Integer K1,
const Standard_Integer K2,
Standard_Integer& Index,
Standard_Real& NewU,
const Standard_Real Uf,
const Standard_Real Ue);
};
#include <BSplCLib.lxx>
#endif // _BSplCLib_HeaderFile