1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-06-20 11:54:07 +03:00
occt/src/Approx/Approx_SweepFunction.cdl
abv d5f74e42d6 0024624: Lost word in license statement in source files
License statement text corrected; compiler warnings caused by Bison 2.41 disabled for MSVC; a few other compiler warnings on 54-bit Windows eliminated by appropriate type cast
Wrong license statements corrected in several files.
Copyright and license statements added in XSD and GLSL files.
Copyright year updated in some files.
Obsolete documentation files removed from DrawResources.
2014-02-20 16:15:17 +04:00

204 lines
7.2 KiB
Plaintext

-- Created on: 1997-06-25
-- Created by: Philippe MANGIN
-- Copyright (c) 1997-1999 Matra Datavision
-- Copyright (c) 1999-2014 OPEN CASCADE SAS
--
-- This file is part of Open CASCADE Technology software library.
--
-- This library is free software; you can redistribute it and/or modify it under
-- the terms of the GNU Lesser General Public License version 2.1 as published
-- by the Free Software Foundation, with special exception defined in the file
-- OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
-- distribution for complete text of the license and disclaimer of any warranty.
--
-- Alternatively, this file may be used under the terms of Open CASCADE
-- commercial license or contractual agreement.
deferred class SweepFunction from Approx inherits TShared from MMgt
---Purpose: defined the function used by SweepApproximation to
-- perform sweeping application.
uses
Shape from GeomAbs,
Pnt from gp,
Array1OfPnt from TColgp,
Array1OfPnt2d from TColgp,
Array1OfVec from TColgp,
Array1OfVec2d from TColgp,
Array1OfInteger from TColStd,
Array1OfReal from TColStd
raises NotImplemented ,
OutOfRange from Standard
is
--
--========== To compute Sections and derivatives Sections
--
D0(me : mutable;
Param: Real;
First, Last : Real;
Poles : out Array1OfPnt from TColgp;
Poles2d : out Array1OfPnt2d from TColgp;
Weigths : out Array1OfReal from TColStd)
---Purpose: compute the section for v = param
returns Boolean is deferred;
D1(me : mutable;
Param: Real;
First, Last : Real;
Poles : out Array1OfPnt from TColgp;
DPoles : out Array1OfVec from TColgp;
Poles2d : out Array1OfPnt2d from TColgp;
DPoles2d : out Array1OfVec2d from TColgp;
Weigths : out Array1OfReal from TColStd;
DWeigths : out Array1OfReal from TColStd)
---Purpose: compute the first derivative in v direction of the
-- section for v = param
-- Warning : It used only for C1 or C2 aproximation
returns Boolean
raises NotImplemented
is virtual;
D2(me : mutable;
Param: Real;
First, Last : Real;
Poles : out Array1OfPnt from TColgp;
DPoles : out Array1OfVec from TColgp;
D2Poles : out Array1OfVec from TColgp;
Poles2d : out Array1OfPnt2d from TColgp;
DPoles2d : out Array1OfVec2d from TColgp;
D2Poles2d : out Array1OfVec2d from TColgp;
Weigths : out Array1OfReal from TColStd;
DWeigths : out Array1OfReal from TColStd;
D2Weigths : out Array1OfReal from TColStd)
---Purpose: compute the second derivative in v direction of the
-- section for v = param
-- Warning : It used only for C2 aproximation
returns Boolean
raises NotImplemented
is virtual;
--
-- =================== General Information On The Function ===================
--
Nb2dCurves(me)
---Purpose: get the number of 2d curves to approximate.
returns Integer is deferred;
SectionShape(me; NbPoles : out Integer from Standard;
NbKnots : out Integer from Standard;
Degree : out Integer from Standard)
---Purpose: get the format of an section
is deferred;
Knots(me; TKnots: out Array1OfReal from TColStd)
---Purpose: get the Knots of the section
is deferred;
Mults(me; TMults: out Array1OfInteger from TColStd)
---Purpose: get the Multplicities of the section
is deferred;
IsRational(me)
---Purpose: Returns if the sections are rationnal or not
returns Boolean is deferred;
--
-- =================== Management of continuity ===================
--
NbIntervals(me; S : Shape from GeomAbs)
---Purpose: Returns the number of intervals for continuity
-- <S>.
-- May be one if Continuity(me) >= <S>
returns Integer is deferred;
Intervals(me; T : in out Array1OfReal from TColStd;
S : Shape from GeomAbs)
---Purpose: Stores in <T> the parameters bounding the intervals
-- of continuity <S>.
--
-- The array must provide enough room to accomodate
-- for the parameters. i.e. T.Length() > NbIntervals()
raises
OutOfRange from Standard
is deferred;
SetInterval(me: mutable; First, Last: Real from Standard)
---Purpose: Sets the bounds of the parametric interval on
-- the fonction
-- This determines the derivatives in these values if the
-- function is not Cn.
is deferred;
-- ===================== To help computation of Tolerance ======
-- Evaluation of error, in 2d space, or on rational function, is
-- difficult. The following methods can help the approximation to
-- make good evaluation and use good tolerances.
--
-- It is not necessary for the following informations to be very
-- precise. A fast evaluation is sufficient.
Resolution(me;
Index : Integer from Standard;
Tol : Real from Standard;
TolU, TolV : out Real from Standard)
---Purpose: Returns the resolutions in the sub-space 2d <Index>
-- This information is usfull to find an good tolerance in
-- 2d approximation.
---Warning: Used only if Nb2dCurve > 0
raises NotImplemented
is virtual;
GetTolerance(me;
BoundTol, SurfTol, AngleTol : Real;
Tol3d : out Array1OfReal)
---Purpose: Returns the tolerance to reach in approximation
-- to satisfy.
-- BoundTol error at the Boundary
-- AngleTol tangent error at the Boundary (in radian)
-- SurfTol error inside the surface.
is deferred;
SetTolerance(me : mutable; Tol3d, Tol2d : Real)
---Purpose: Is usefull, if (me) have to run numerical
-- algorithm to perform D0, D1 or D2
is deferred;
BarycentreOfSurf(me)
---Purpose: Get the barycentre of Surface.
-- An very poor estimation is sufficent.
-- This information is usefull to perform well
-- conditioned rational approximation.
-- Warning: Used only if <me> IsRational
returns Pnt from gp
raises NotImplemented
is virtual;
MaximalSection(me) returns Real
---Purpose: Returns the length of the greater section. This
-- information is usefull to G1's control.
-- Warning: With an little value, approximation can be slower.
raises NotImplemented
is virtual;
GetMinimalWeight(me; Weigths : out Array1OfReal from TColStd)
---Purpose: Compute the minimal value of weight for each poles
-- in all sections.
-- This information is usefull to control error
-- in rational approximation.
-- Warning: Used only if <me> IsRational
raises NotImplemented
is virtual;
end SweepFunction;