mirror of
https://git.dev.opencascade.org/repos/occt.git
synced 2025-04-16 10:08:36 +03:00
Added initial values approximation to improve performance. Local optimization start coefficient fixed. Test case for issue CR25058
124 lines
4.6 KiB
C++
124 lines
4.6 KiB
C++
// Created on: 2014-01-20
|
|
// Created by: Alexaner Malyshev
|
|
// Copyright (c) 2014-2014 OPEN CASCADE SAS
|
|
//
|
|
// This file is part of Open CASCADE Technology software library.
|
|
//
|
|
// This library is free software; you can redistribute it and/or modify it under
|
|
// the terms of the GNU Lesser General Public License version 2.1 as published
|
|
// by the Free Software Foundation, with special exception defined in the file
|
|
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
|
|
// distribution for complete text of the license and disclaimer of any warranty.
|
|
//
|
|
// Alternatively, this file may be used under the terms of Open CASCADE
|
|
// commercial license or contractual agreement.
|
|
|
|
#ifndef _math_GlobOptMin_HeaderFile
|
|
#define _math_GlobOptMin_HeaderFile
|
|
|
|
#include <math_MultipleVarFunction.hxx>
|
|
#include <NCollection_Sequence.hxx>
|
|
#include <Standard_Type.hxx>
|
|
|
|
//! This class represents Evtushenko's algorithm of global optimization based on nonuniform mesh.<br>
|
|
//! Article: Yu. Evtushenko. Numerical methods for finding global extreme (case of a non-uniform mesh). <br>
|
|
//! U.S.S.R. Comput. Maths. Math. Phys., Vol. 11, N 6, pp. 38-54.
|
|
|
|
class math_GlobOptMin
|
|
{
|
|
public:
|
|
|
|
Standard_EXPORT math_GlobOptMin(math_MultipleVarFunction* theFunc,
|
|
const math_Vector& theA,
|
|
const math_Vector& theB,
|
|
const Standard_Real theC = 9,
|
|
const Standard_Real theDiscretizationTol = 1.0e-2,
|
|
const Standard_Real theSameTol = 1.0e-7);
|
|
|
|
Standard_EXPORT void SetGlobalParams(math_MultipleVarFunction* theFunc,
|
|
const math_Vector& theA,
|
|
const math_Vector& theB,
|
|
const Standard_Real theC = 9,
|
|
const Standard_Real theDiscretizationTol = 1.0e-2,
|
|
const Standard_Real theSameTol = 1.0e-7);
|
|
|
|
Standard_EXPORT void SetLocalParams(const math_Vector& theLocalA,
|
|
const math_Vector& theLocalB);
|
|
|
|
Standard_EXPORT void SetTol(const Standard_Real theDiscretizationTol,
|
|
const Standard_Real theSameTol);
|
|
|
|
Standard_EXPORT void GetTol(Standard_Real& theDiscretizationTol,
|
|
Standard_Real& theSameTol);
|
|
|
|
Standard_EXPORT ~math_GlobOptMin();
|
|
|
|
Standard_EXPORT void Perform();
|
|
|
|
//! Get best functional value.
|
|
Standard_EXPORT Standard_Real GetF();
|
|
|
|
//! Return count of global extremas.
|
|
Standard_EXPORT Standard_Integer NbExtrema();
|
|
|
|
//! Return solution i, 1 <= i <= NbExtrema.
|
|
Standard_EXPORT void Points(const Standard_Integer theIndex, math_Vector& theSol);
|
|
|
|
Standard_Boolean isDone();
|
|
|
|
private:
|
|
|
|
math_GlobOptMin & operator = (const math_GlobOptMin & theOther);
|
|
|
|
Standard_Boolean computeLocalExtremum(const math_Vector& thePnt, Standard_Real& theVal, math_Vector& theOutPnt);
|
|
|
|
void computeGlobalExtremum(Standard_Integer theIndex);
|
|
|
|
//! Computes starting value / approximation:
|
|
// myF - initial best value.
|
|
// myY - initial best point.
|
|
// myC - approximation of Lipschitz constant.
|
|
// to imporve convergence speed.
|
|
void computeInitialValues();
|
|
|
|
//! Check that myA <= pnt <= myB
|
|
Standard_Boolean isInside(const math_Vector& thePnt);
|
|
|
|
Standard_Boolean isStored(const math_Vector &thePnt);
|
|
|
|
// Input.
|
|
math_MultipleVarFunction* myFunc;
|
|
Standard_Integer myN;
|
|
math_Vector myA; // Left border on current C2 interval.
|
|
math_Vector myB; // Right border on current C2 interval.
|
|
math_Vector myGlobA; // Global left border.
|
|
math_Vector myGlobB; // Global right border.
|
|
Standard_Real myTol; // Discretization tolerance, default 1.0e-2.
|
|
Standard_Real mySameTol; // points with ||p1 - p2|| < mySameTol is equal,
|
|
// function values |val1 - val2| * 0.01 < mySameTol is equal,
|
|
// default value is 1.0e-7.
|
|
Standard_Real myC; //Lipschitz constant, default 9
|
|
|
|
// Output.
|
|
Standard_Boolean myDone;
|
|
NCollection_Sequence<Standard_Real> myY;// Current solutions.
|
|
Standard_Integer mySolCount; // Count of solutions.
|
|
|
|
// Algorithm data.
|
|
Standard_Real myZ;
|
|
Standard_Real myE1; // Border coeff.
|
|
Standard_Real myE2; // Minimum step size.
|
|
Standard_Real myE3; // Local extrema starting parameter.
|
|
|
|
math_Vector myX; // Current modified solution.
|
|
math_Vector myTmp; // Current modified solution.
|
|
math_Vector myV; // Steps array.
|
|
math_Vector myMaxV; // Max Steps array.
|
|
|
|
Standard_Real myF; // Current value of Global optimum.
|
|
};
|
|
|
|
const Handle(Standard_Type)& TYPE(math_GlobOptMin);
|
|
|
|
#endif
|