mirror of
https://git.dev.opencascade.org/repos/occt.git
synced 2025-04-07 18:30:55 +03:00
Exception in the algorithm Geom2dGcc_Circ2dTanOnRadGeo raised because the number of solutions exceeded the size of reserved array for solutions. A check has been added to forbid adding solutions outside of allocated place. The similar protection has been done in other algorithms of this package.
1078 lines
41 KiB
C++
1078 lines
41 KiB
C++
// Created on: 1991-12-13
|
|
// Created by: Remi GILET
|
|
// Copyright (c) 1991-1999 Matra Datavision
|
|
// Copyright (c) 1999-2014 OPEN CASCADE SAS
|
|
//
|
|
// This file is part of Open CASCADE Technology software library.
|
|
//
|
|
// This library is free software; you can redistribute it and/or modify it under
|
|
// the terms of the GNU Lesser General Public License version 2.1 as published
|
|
// by the Free Software Foundation, with special exception defined in the file
|
|
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
|
|
// distribution for complete text of the license and disclaimer of any warranty.
|
|
//
|
|
// Alternatively, this file may be used under the terms of Open CASCADE
|
|
// commercial license or contractual agreement.
|
|
|
|
//=========================================================================
|
|
// Creation d un cercle tangent a deux elements : Droite. +
|
|
// Cercle. +
|
|
// Point. +
|
|
// Courbes. +
|
|
// centre sur un troisieme : Droite. +
|
|
// Cercle. +
|
|
// Courbes. +
|
|
//=========================================================================
|
|
|
|
#include <Adaptor2d_OffsetCurve.hxx>
|
|
#include <ElCLib.hxx>
|
|
#include <GccAna_Circ2dBisec.hxx>
|
|
#include <GccAna_CircLin2dBisec.hxx>
|
|
#include <GccAna_CircPnt2dBisec.hxx>
|
|
#include <GccAna_Lin2dBisec.hxx>
|
|
#include <GccAna_LinPnt2dBisec.hxx>
|
|
#include <GccAna_Pnt2dBisec.hxx>
|
|
#include <GccEnt_BadQualifier.hxx>
|
|
#include <GccEnt_QualifiedCirc.hxx>
|
|
#include <GccEnt_QualifiedLin.hxx>
|
|
#include <GccInt_BHyper.hxx>
|
|
#include <Geom2dAdaptor_Curve.hxx>
|
|
#include <Geom2dAdaptor_HCurve.hxx>
|
|
#include <Geom2dGcc_Circ2d2TanOnGeo.hxx>
|
|
#include <Geom2dInt_TheIntConicCurveOfGInter.hxx>
|
|
#include <gp_Circ2d.hxx>
|
|
#include <gp_Pnt2d.hxx>
|
|
#include <IntRes2d_IntersectionPoint.hxx>
|
|
#include <Standard_OutOfRange.hxx>
|
|
#include <StdFail_NotDone.hxx>
|
|
|
|
static const Standard_Integer aNbSolMAX = 8;
|
|
|
|
Geom2dGcc_Circ2d2TanOnGeo::
|
|
Geom2dGcc_Circ2d2TanOnGeo (const GccEnt_QualifiedCirc& Qualified1 ,
|
|
const GccEnt_QualifiedCirc& Qualified2 ,
|
|
const Geom2dAdaptor_Curve& OnCurv ,
|
|
const Standard_Real Tolerance ):
|
|
cirsol(1, aNbSolMAX) ,
|
|
qualifier1(1, aNbSolMAX),
|
|
qualifier2(1, aNbSolMAX),
|
|
TheSame1(1, aNbSolMAX) ,
|
|
TheSame2(1, aNbSolMAX) ,
|
|
pnttg1sol(1, aNbSolMAX) ,
|
|
pnttg2sol(1, aNbSolMAX) ,
|
|
pntcen(1, aNbSolMAX) ,
|
|
par1sol(1, aNbSolMAX) ,
|
|
par2sol(1, aNbSolMAX) ,
|
|
pararg1(1, aNbSolMAX) ,
|
|
pararg2(1, aNbSolMAX) ,
|
|
parcen3(1, aNbSolMAX)
|
|
{
|
|
WellDone = Standard_False;
|
|
Standard_Real thefirst = -100000.;
|
|
Standard_Real thelast = 100000.;
|
|
Standard_Real firstparam;
|
|
Standard_Real lastparam;
|
|
Standard_Real Tol = Abs(Tolerance);
|
|
NbrSol = 0;
|
|
TColStd_Array1OfReal Rbid(1,2);
|
|
TColStd_Array1OfReal RBid(1,2);
|
|
TColStd_Array1OfReal Radius(1,2);
|
|
if (!(Qualified1.IsEnclosed() || Qualified1.IsEnclosing() ||
|
|
Qualified1.IsOutside() || Qualified1.IsUnqualified()) ||
|
|
!(Qualified2.IsEnclosed() || Qualified2.IsEnclosing() ||
|
|
Qualified2.IsOutside() || Qualified2.IsUnqualified())) {
|
|
throw GccEnt_BadQualifier();
|
|
return;
|
|
}
|
|
gp_Circ2d C1 = Qualified1.Qualified();
|
|
gp_Circ2d C2 = Qualified2.Qualified();
|
|
Standard_Real R1 = C1.Radius();
|
|
Standard_Real R2 = C2.Radius();
|
|
gp_Dir2d dirx(1.,0.);
|
|
gp_Pnt2d center1(C1.Location());
|
|
gp_Pnt2d center2(C2.Location());
|
|
GccAna_Circ2dBisec Bis(C1,C2);
|
|
if (Bis.IsDone()) {
|
|
Geom2dInt_TheIntConicCurveOfGInter Intp;
|
|
Standard_Integer nbsolution = Bis.NbSolutions();
|
|
Handle(Geom2dAdaptor_HCurve) HCu2 = new Geom2dAdaptor_HCurve(OnCurv);
|
|
Adaptor2d_OffsetCurve Cu2(HCu2,0.);
|
|
firstparam = Max(Cu2.FirstParameter(),thefirst);
|
|
lastparam = Min(Cu2.LastParameter(),thelast);
|
|
IntRes2d_Domain D2(Cu2.Value(firstparam), firstparam, Tol,
|
|
Cu2.Value(lastparam), lastparam, Tol);
|
|
Standard_Real Tol1 = Abs(Tolerance);
|
|
Standard_Real Tol2 = Tol1;
|
|
for (Standard_Integer i = 1 ; i <= nbsolution; i++) {
|
|
Handle(GccInt_Bisec) Sol = Bis.ThisSolution(i);
|
|
GccInt_IType type = Sol->ArcType();
|
|
switch (type) {
|
|
case GccInt_Cir:
|
|
{
|
|
gp_Circ2d Circ(Sol->Circle());
|
|
IntRes2d_Domain D1(ElCLib::Value(0.,Circ), 0.,Tol1,
|
|
ElCLib::Value(2.*M_PI,Circ),2.*M_PI,Tol2);
|
|
D1.SetEquivalentParameters(0.,2.*M_PI);
|
|
Intp.Perform(Circ,D1,Cu2,D2,Tol1,Tol2);
|
|
}
|
|
break;
|
|
case GccInt_Ell:
|
|
{
|
|
gp_Elips2d Elips(Sol->Ellipse());
|
|
IntRes2d_Domain D1(ElCLib::Value(0.,Elips), 0.,Tol1,
|
|
ElCLib::Value(2.*M_PI,Elips),2.*M_PI,Tol2);
|
|
D1.SetEquivalentParameters(0.,2.*M_PI);
|
|
Intp.Perform(Elips,D1,Cu2,D2,Tol1,Tol2);
|
|
}
|
|
break;
|
|
case GccInt_Hpr:
|
|
{
|
|
gp_Hypr2d Hypr(Sol->Hyperbola());
|
|
IntRes2d_Domain D1(ElCLib::Value(-4.,Hypr),-4.,Tol1,
|
|
ElCLib::Value(4.,Hypr),4.,Tol2);
|
|
Intp.Perform(Hypr,D1,Cu2,D2,Tol1,Tol2);
|
|
}
|
|
break;
|
|
case GccInt_Lin:
|
|
{
|
|
gp_Lin2d Line(Sol->Line());
|
|
IntRes2d_Domain D1;
|
|
Intp.Perform(Line,D1,Cu2,D2,Tol1,Tol2);
|
|
}
|
|
break;
|
|
default:
|
|
{
|
|
throw Standard_ConstructionError();
|
|
}
|
|
}
|
|
if (Intp.IsDone()) {
|
|
if ((!Intp.IsEmpty())) {
|
|
for (Standard_Integer j = 1 ; j <= Intp.NbPoints() ; j++) {
|
|
gp_Pnt2d Center(Intp.Point(j).Value());
|
|
Standard_Real dist1 = Center.Distance(C1.Location());
|
|
Standard_Real dist2 = Center.Distance(C2.Location());
|
|
Standard_Integer nbsol = 0;
|
|
Standard_Integer nnsol = 0;
|
|
R1 = C1.Radius();
|
|
R2 = C2.Radius();
|
|
if (Qualified1.IsEnclosed()) {
|
|
if (dist1-R1 < Tol) {
|
|
nbsol = 1;
|
|
Rbid(1) = Abs(R1-dist1);
|
|
}
|
|
}
|
|
else if (Qualified1.IsOutside()) {
|
|
if (R1-dist1 < Tol) {
|
|
nbsol = 1;
|
|
Rbid(1) = Abs(dist1-R1);
|
|
}
|
|
}
|
|
else if (Qualified1.IsEnclosing()) {
|
|
nbsol = 1;
|
|
Rbid(1) = dist1+R1;
|
|
}
|
|
else if (Qualified1.IsUnqualified()) {
|
|
nbsol = 2;
|
|
Rbid(1) = dist1+R1;
|
|
Rbid(1) = Abs(dist1-R1);
|
|
}
|
|
if (Qualified2.IsEnclosed() && nbsol != 0) {
|
|
if (dist2-R2 < Tol) {
|
|
RBid(1) = Abs(R2-dist2);
|
|
}
|
|
}
|
|
else if (Qualified2.IsOutside() && nbsol != 0) {
|
|
if (R2-dist2 < Tol) {
|
|
RBid(1) = Abs(R2-dist2);
|
|
}
|
|
}
|
|
else if (Qualified2.IsEnclosing() && nbsol != 0) {
|
|
RBid(1) = dist2+R2;
|
|
}
|
|
else if (Qualified2.IsUnqualified() && nbsol != 0) {
|
|
RBid(1) = dist2+R2;
|
|
RBid(2) = Abs(R2-dist2);
|
|
}
|
|
for (Standard_Integer isol = 1; isol <= nbsol ; isol++) {
|
|
for (Standard_Integer jsol = 1; jsol <= nbsol ; jsol++) {
|
|
if (Abs(Rbid(isol)-RBid(jsol)) <= Tol) {
|
|
nnsol++;
|
|
Radius(nnsol) = (RBid(jsol)+Rbid(isol))/2.;
|
|
}
|
|
}
|
|
}
|
|
if (nnsol > 0) {
|
|
for (Standard_Integer k = 1 ; k <= nnsol && NbrSol < aNbSolMAX; k++) {
|
|
NbrSol++;
|
|
cirsol(NbrSol) = gp_Circ2d(gp_Ax2d(Center,dirx),Radius(k));
|
|
// ==========================================================
|
|
Standard_Real distcc1 = Center.Distance(center1);
|
|
Standard_Real distcc2 = Center.Distance(center2);
|
|
if (!Qualified1.IsUnqualified()) {
|
|
qualifier1(NbrSol) = Qualified1.Qualifier();
|
|
}
|
|
else if (Abs(distcc1+Radius(i)-R1) < Tol) {
|
|
qualifier1(NbrSol) = GccEnt_enclosed;
|
|
}
|
|
else if (Abs(distcc1-R1-Radius(i)) < Tol) {
|
|
qualifier1(NbrSol) = GccEnt_outside;
|
|
}
|
|
else { qualifier1(NbrSol) = GccEnt_enclosing; }
|
|
if (!Qualified2.IsUnqualified()) {
|
|
qualifier2(NbrSol) = Qualified2.Qualifier();
|
|
}
|
|
else if (Abs(distcc2+Radius(i)-R2) < Tol) {
|
|
qualifier2(NbrSol) = GccEnt_enclosed;
|
|
}
|
|
else if (Abs(distcc2-R2-Radius(i)) < Tol) {
|
|
qualifier2(NbrSol) = GccEnt_outside;
|
|
}
|
|
else { qualifier2(NbrSol) = GccEnt_enclosing; }
|
|
if (dist1 <= Tol && Abs(Radius(k)-C1.Radius()) <= Tol) {
|
|
TheSame1(NbrSol) = 1;
|
|
}
|
|
else {
|
|
TheSame1(NbrSol) = 0;
|
|
gp_Dir2d dc1(C1.Location().XY()-Center.XY());
|
|
pnttg1sol(NbrSol)=gp_Pnt2d(Center.XY()+Radius(k)*dc1.XY());
|
|
par1sol(NbrSol)=ElCLib::Parameter(cirsol(NbrSol),
|
|
pnttg1sol(NbrSol));
|
|
pararg1(NbrSol)=ElCLib::Parameter(C1,pnttg1sol(NbrSol));
|
|
}
|
|
if (dist2 <= Tol && Abs(Radius(k)-C2.Radius()) <= Tol) {
|
|
TheSame2(NbrSol) = 1;
|
|
}
|
|
else {
|
|
TheSame2(NbrSol) = 0;
|
|
gp_Dir2d dc2(C2.Location().XY()-Center.XY());
|
|
pnttg2sol(NbrSol)=gp_Pnt2d(Center.XY()+Radius(k)*dc2.XY());
|
|
par2sol(NbrSol)=ElCLib::Parameter(cirsol(NbrSol),
|
|
pnttg2sol(NbrSol));
|
|
pararg2(NbrSol)=ElCLib::Parameter(C2,pnttg2sol(NbrSol));
|
|
}
|
|
pntcen(NbrSol) = Center;
|
|
parcen3(NbrSol) = Intp.Point(j).ParamOnSecond();
|
|
}
|
|
WellDone = Standard_True;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
//=========================================================================
|
|
// Creation d un cercle tangent a un Cercle C1 et a une Droite L2. +
|
|
// centre sur une courbe OnCurv. +
|
|
// Nous calculons les bissectrices a C1 et L2 qui nous donnent +
|
|
// l ensemble des lieux possibles des centres de tous les cercles +
|
|
// tangents a C1 et L2. +
|
|
// Nous intersectons ces bissectrices avec la courbe OnCurv ce qui nous +
|
|
// donne les points parmis lesquels nous allons choisir les solutions. +
|
|
// Les choix s effectuent a partir des Qualifieurs qualifiant C1 et L2. +
|
|
//=========================================================================
|
|
|
|
Geom2dGcc_Circ2d2TanOnGeo::
|
|
Geom2dGcc_Circ2d2TanOnGeo (const GccEnt_QualifiedCirc& Qualified1 ,
|
|
const GccEnt_QualifiedLin& Qualified2 ,
|
|
const Geom2dAdaptor_Curve& OnCurv ,
|
|
const Standard_Real Tolerance ):
|
|
cirsol(1, aNbSolMAX) ,
|
|
qualifier1(1, aNbSolMAX),
|
|
qualifier2(1, aNbSolMAX),
|
|
TheSame1(1, aNbSolMAX) ,
|
|
TheSame2(1, aNbSolMAX) ,
|
|
pnttg1sol(1, aNbSolMAX) ,
|
|
pnttg2sol(1, aNbSolMAX) ,
|
|
pntcen(1, aNbSolMAX) ,
|
|
par1sol(1, aNbSolMAX) ,
|
|
par2sol(1, aNbSolMAX) ,
|
|
pararg1(1, aNbSolMAX) ,
|
|
pararg2(1, aNbSolMAX) ,
|
|
parcen3(1, aNbSolMAX)
|
|
{
|
|
|
|
WellDone = Standard_False;
|
|
Standard_Real thefirst = -100000.;
|
|
Standard_Real thelast = 100000.;
|
|
Standard_Real firstparam;
|
|
Standard_Real lastparam;
|
|
NbrSol = 0;
|
|
Standard_Real Tol = Abs(Tolerance);
|
|
Standard_Real Radius;
|
|
if (!(Qualified1.IsEnclosed() || Qualified1.IsEnclosing() ||
|
|
Qualified1.IsOutside() || Qualified1.IsUnqualified()) ||
|
|
!(Qualified2.IsEnclosed() ||
|
|
Qualified2.IsOutside() || Qualified2.IsUnqualified())) {
|
|
throw GccEnt_BadQualifier();
|
|
return;
|
|
}
|
|
gp_Dir2d dirx(1.,0.);
|
|
gp_Circ2d C1 = Qualified1.Qualified();
|
|
gp_Lin2d L2 = Qualified2.Qualified();
|
|
Standard_Real R1 = C1.Radius();
|
|
gp_Pnt2d center1(C1.Location());
|
|
gp_Pnt2d origin2(L2.Location());
|
|
gp_Dir2d dir2(L2.Direction());
|
|
gp_Dir2d normL2(-dir2.Y(),dir2.X());
|
|
|
|
GccAna_CircLin2dBisec Bis(C1,L2);
|
|
if (Bis.IsDone()) {
|
|
Standard_Real Tol1 = Abs(Tolerance);
|
|
Standard_Real Tol2 = Tol1;
|
|
Geom2dInt_TheIntConicCurveOfGInter Intp;
|
|
Standard_Integer nbsolution = Bis.NbSolutions();
|
|
Handle(Geom2dAdaptor_HCurve) HCu2 = new Geom2dAdaptor_HCurve(OnCurv);
|
|
Adaptor2d_OffsetCurve C2(HCu2,0.);
|
|
firstparam = Max(C2.FirstParameter(),thefirst);
|
|
lastparam = Min(C2.LastParameter(),thelast);
|
|
IntRes2d_Domain D2(C2.Value(firstparam), firstparam, Tol,
|
|
C2.Value(lastparam), lastparam, Tol);
|
|
for (Standard_Integer i = 1 ; i <= nbsolution; i++) {
|
|
Handle(GccInt_Bisec) Sol = Bis.ThisSolution(i);
|
|
GccInt_IType type = Sol->ArcType();
|
|
switch (type) {
|
|
case GccInt_Lin:
|
|
{
|
|
gp_Lin2d Line(Sol->Line());
|
|
IntRes2d_Domain D1;
|
|
Intp.Perform(Line,D1,C2,D2,Tol1,Tol2);
|
|
}
|
|
break;
|
|
case GccInt_Par:
|
|
{
|
|
gp_Parab2d Parab(Sol->Parabola());
|
|
IntRes2d_Domain D1(ElCLib::Value(-40,Parab),-40,Tol1,
|
|
ElCLib::Value(40,Parab),40,Tol1);
|
|
Intp.Perform(Parab,D1,C2,D2,Tol1,Tol2);
|
|
}
|
|
break;
|
|
default:
|
|
{
|
|
throw Standard_ConstructionError();
|
|
}
|
|
}
|
|
if (Intp.IsDone()) {
|
|
if (!Intp.IsEmpty()) {
|
|
for (Standard_Integer j = 1 ; j <= Intp.NbPoints() && NbrSol < aNbSolMAX; j++) {
|
|
gp_Pnt2d Center(Intp.Point(j).Value());
|
|
Standard_Real dist1 = Center.Distance(center1);
|
|
// Standard_Integer nbsol = 1;
|
|
Standard_Boolean ok = Standard_False;
|
|
if (Qualified1.IsEnclosed()) {
|
|
if (dist1-R1 < Tol) { ok = Standard_True; }
|
|
}
|
|
else if (Qualified1.IsOutside()) {
|
|
if (R1-dist1 < Tol) { ok = Standard_True; }
|
|
}
|
|
else if (Qualified1.IsEnclosing() || Qualified1.IsUnqualified()) {
|
|
ok = Standard_True;
|
|
}
|
|
Radius = L2.Distance(Center);
|
|
if (Qualified2.IsEnclosed() && ok) {
|
|
ok = Standard_False;
|
|
if ((((origin2.X()-Center.X())*(-dir2.Y()))+
|
|
((origin2.Y()-Center.Y())*(dir2.X())))<=0){
|
|
ok = Standard_True;
|
|
}
|
|
}
|
|
else if (Qualified2.IsOutside() && ok) {
|
|
ok = Standard_False;
|
|
if ((((origin2.X()-Center.X())*(-dir2.Y()))+
|
|
((origin2.Y()-Center.Y())*(dir2.X())))>=0){
|
|
ok = Standard_True;
|
|
}
|
|
}
|
|
if (Qualified1.IsEnclosing()&&dist1>Radius) { ok=Standard_False; }
|
|
if (ok) {
|
|
NbrSol++;
|
|
cirsol(NbrSol) = gp_Circ2d(gp_Ax2d(Center,dirx),Radius);
|
|
// =======================================================
|
|
#ifdef OCCT_DEBUG
|
|
gp_Dir2d aDC1(center1.XY()-Center.XY());
|
|
#endif
|
|
gp_Dir2d dc2(origin2.XY()-Center.XY());
|
|
Standard_Real distcc1 = Center.Distance(center1);
|
|
if (!Qualified1.IsUnqualified()) {
|
|
qualifier1(NbrSol) = Qualified1.Qualifier();
|
|
}
|
|
else if (Abs(distcc1+Radius-R1) < Tol) {
|
|
qualifier1(NbrSol) = GccEnt_enclosed;
|
|
}
|
|
else if (Abs(distcc1-R1-Radius) < Tol) {
|
|
qualifier1(NbrSol) = GccEnt_outside;
|
|
}
|
|
else { qualifier1(NbrSol) = GccEnt_enclosing; }
|
|
if (!Qualified2.IsUnqualified()) {
|
|
qualifier2(NbrSol) = Qualified2.Qualifier();
|
|
}
|
|
else if (dc2.Dot(normL2) > 0.0) {
|
|
qualifier2(NbrSol) = GccEnt_outside;
|
|
}
|
|
else { qualifier2(NbrSol) = GccEnt_enclosed; }
|
|
if (dist1 <= Tol && Abs(Radius-C1.Radius()) <= Tol) {
|
|
TheSame1(NbrSol) = 1;
|
|
}
|
|
else {
|
|
TheSame1(NbrSol) = 0;
|
|
gp_Dir2d dc1(center1.XY()-Center.XY());
|
|
pnttg1sol(NbrSol)=gp_Pnt2d(Center.XY()+Radius*dc1.XY());
|
|
par1sol(NbrSol)=ElCLib::Parameter(cirsol(NbrSol),
|
|
pnttg1sol(NbrSol));
|
|
pararg1(NbrSol)=ElCLib::Parameter(C1,pnttg1sol(NbrSol));
|
|
}
|
|
TheSame2(NbrSol) = 0;
|
|
Standard_Real sign = dc2.Dot(gp_Dir2d(-dir2.Y(),dir2.X()));
|
|
dc2 = gp_Dir2d(sign*gp_XY(-dir2.Y(),dir2.X()));
|
|
pnttg2sol(NbrSol) = gp_Pnt2d(Center.XY()+Radius*dc2.XY());
|
|
par2sol(NbrSol)=ElCLib::Parameter(cirsol(NbrSol),
|
|
pnttg2sol(NbrSol));
|
|
pararg2(NbrSol)=ElCLib::Parameter(L2,pnttg2sol(NbrSol));
|
|
pntcen(NbrSol) = Center;
|
|
parcen3(NbrSol) = Intp.Point(j).ParamOnSecond();
|
|
}
|
|
}
|
|
}
|
|
WellDone = Standard_True;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
//=========================================================================
|
|
// Creation d un cercle tant a deux Droites L1 et L2. +
|
|
// centre sur une courbe OnCurv. +
|
|
// Nous calculons les bissectrices a L1 et L2 qui nous donnent +
|
|
// l ensemble des lieux possibles des centres de tous les cercles +
|
|
// tants a L1 et L2. +
|
|
// Nous intersectons ces bissectrices avec la courbe OnCurv ce qui nous +
|
|
// donne les points parmis lesquels nous allons choisir les solutions. +
|
|
// Les choix s effectuent a partir des Qualifieurs qualifiant L1 et L2. +
|
|
//=========================================================================
|
|
|
|
Geom2dGcc_Circ2d2TanOnGeo::
|
|
Geom2dGcc_Circ2d2TanOnGeo (const GccEnt_QualifiedLin& Qualified1 ,
|
|
const GccEnt_QualifiedLin& Qualified2 ,
|
|
const Geom2dAdaptor_Curve& OnCurv ,
|
|
const Standard_Real Tolerance ):
|
|
cirsol(1, aNbSolMAX) ,
|
|
qualifier1(1, aNbSolMAX),
|
|
qualifier2(1, aNbSolMAX),
|
|
TheSame1(1, aNbSolMAX) ,
|
|
TheSame2(1, aNbSolMAX) ,
|
|
pnttg1sol(1, aNbSolMAX) ,
|
|
pnttg2sol(1, aNbSolMAX) ,
|
|
pntcen(1, aNbSolMAX) ,
|
|
par1sol(1, aNbSolMAX) ,
|
|
par2sol(1, aNbSolMAX) ,
|
|
pararg1(1, aNbSolMAX) ,
|
|
pararg2(1, aNbSolMAX) ,
|
|
parcen3(1, aNbSolMAX)
|
|
{
|
|
|
|
WellDone = Standard_False;
|
|
Standard_Real thefirst = -100000.;
|
|
Standard_Real thelast = 100000.;
|
|
Standard_Real firstparam;
|
|
Standard_Real lastparam;
|
|
NbrSol = 0;
|
|
if (!(Qualified1.IsEnclosed() ||
|
|
Qualified1.IsOutside() || Qualified1.IsUnqualified()) ||
|
|
!(Qualified2.IsEnclosed() ||
|
|
Qualified2.IsOutside() || Qualified2.IsUnqualified())) {
|
|
throw GccEnt_BadQualifier();
|
|
return;
|
|
}
|
|
Standard_Real Tol = Abs(Tolerance);
|
|
Standard_Real Radius=0;
|
|
gp_Dir2d dirx(1.,0.);
|
|
gp_Lin2d L1 = Qualified1.Qualified();
|
|
gp_Lin2d L2 = Qualified2.Qualified();
|
|
gp_Dir2d dir1(L1.Direction());
|
|
gp_Dir2d dir2(L2.Direction());
|
|
gp_Dir2d Dnor1(-dir1.Y(),dir1.X());
|
|
gp_Dir2d Dnor2(-dir2.Y(),dir2.X());
|
|
gp_Pnt2d origin1(L1.Location());
|
|
gp_Pnt2d origin2(L2.Location());
|
|
GccAna_Lin2dBisec Bis(L1,L2);
|
|
if (Bis.IsDone()) {
|
|
Standard_Real Tol1 = Abs(Tolerance);
|
|
Standard_Real Tol2 = Tol1;
|
|
Geom2dInt_TheIntConicCurveOfGInter Intp;
|
|
Standard_Integer nbsolution = Bis.NbSolutions();
|
|
Handle(Geom2dAdaptor_HCurve) HCu2 = new Geom2dAdaptor_HCurve(OnCurv);
|
|
Adaptor2d_OffsetCurve C2(HCu2,0.);
|
|
firstparam = Max(C2.FirstParameter(),thefirst);
|
|
lastparam = Min(C2.LastParameter(),thelast);
|
|
IntRes2d_Domain D2(C2.Value(firstparam), firstparam, Tol,
|
|
C2.Value(lastparam), lastparam, Tol);
|
|
IntRes2d_Domain D1;
|
|
for (Standard_Integer i = 1 ; i <= nbsolution; i++) {
|
|
Intp.Perform(Bis.ThisSolution(i),D1,C2,D2,Tol1,Tol2);
|
|
if (Intp.IsDone()) {
|
|
if ((!Intp.IsEmpty())) {
|
|
for (Standard_Integer j = 1 ; j <= Intp.NbPoints() && NbrSol < aNbSolMAX; j++) {
|
|
gp_Pnt2d Center(Intp.Point(j).Value());
|
|
Standard_Real dist1 = L1.Distance(Center);
|
|
Standard_Real dist2 = L2.Distance(Center);
|
|
// Standard_Integer nbsol = 1;
|
|
Standard_Boolean ok = Standard_False;
|
|
if (Qualified1.IsEnclosed()) {
|
|
if ((((origin1.X()-Center.X())*(-dir1.Y()))+
|
|
((origin1.Y()-Center.Y())*(dir1.X())))<=0){
|
|
ok = Standard_True;
|
|
}
|
|
}
|
|
else if (Qualified1.IsOutside()) {
|
|
if ((((origin1.X()-Center.X())*(-dir1.Y()))+
|
|
((origin1.Y()-Center.Y())*(dir1.X())))>=0){
|
|
ok = Standard_True;
|
|
}
|
|
}
|
|
else if (Qualified1.IsUnqualified()) { ok = Standard_True; }
|
|
if (Qualified2.IsEnclosed() && ok) {
|
|
ok = Standard_False;
|
|
if ((((origin2.X()-Center.X())*(-dir2.Y()))+
|
|
((origin2.Y()-Center.Y())*(dir2.X())))<=0){
|
|
ok = Standard_True;
|
|
Radius = (dist1+dist2)/2.;
|
|
}
|
|
}
|
|
else if (Qualified2.IsOutside() && ok) {
|
|
ok = Standard_False;
|
|
if ((((origin2.X()-Center.X())*(-dir2.Y()))+
|
|
((origin2.Y()-Center.Y())*(dir2.X())))>=0){
|
|
ok = Standard_True;
|
|
Radius = (dist1+dist2)/2.;
|
|
}
|
|
}
|
|
else if (Qualified2.IsUnqualified() && ok) {
|
|
Radius = (dist1+dist2)/2.;
|
|
}
|
|
if (ok) {
|
|
NbrSol++;
|
|
cirsol(NbrSol) = gp_Circ2d(gp_Ax2d(Center,dirx),Radius);
|
|
// =======================================================
|
|
gp_Dir2d dc1(origin1.XY()-Center.XY());
|
|
gp_Dir2d dc2(origin2.XY()-Center.XY());
|
|
if (!Qualified1.IsUnqualified()) {
|
|
qualifier1(NbrSol) = Qualified1.Qualifier();
|
|
}
|
|
else if (dc1.Dot(Dnor1) > 0.0) {
|
|
qualifier1(NbrSol) = GccEnt_outside;
|
|
}
|
|
else { qualifier1(NbrSol) = GccEnt_enclosed; }
|
|
if (!Qualified2.IsUnqualified()) {
|
|
qualifier2(NbrSol) = Qualified2.Qualifier();
|
|
}
|
|
else if (dc2.Dot(Dnor2) > 0.0) {
|
|
qualifier2(NbrSol) = GccEnt_outside;
|
|
}
|
|
else { qualifier2(NbrSol) = GccEnt_enclosed; }
|
|
TheSame1(NbrSol) = 0;
|
|
TheSame2(NbrSol) = 0;
|
|
Standard_Real sign = dc1.Dot(Dnor1);
|
|
dc1 = gp_Dir2d(sign*gp_XY(-dir1.Y(),dir1.X()));
|
|
pnttg1sol(NbrSol) = gp_Pnt2d(Center.XY()+Radius*dc1.XY());
|
|
par1sol(NbrSol)=ElCLib::Parameter(cirsol(NbrSol),
|
|
pnttg1sol(NbrSol));
|
|
pararg1(NbrSol)=ElCLib::Parameter(L1,pnttg1sol(NbrSol));
|
|
sign = dc2.Dot(gp_Dir2d(-dir2.Y(),dir2.X()));
|
|
dc2 = gp_Dir2d(sign*gp_XY(-dir2.Y(),dir2.X()));
|
|
pnttg2sol(NbrSol) = gp_Pnt2d(Center.XY()+Radius*dc2.XY());
|
|
par2sol(NbrSol)=ElCLib::Parameter(cirsol(NbrSol),
|
|
pnttg2sol(NbrSol));
|
|
pararg2(NbrSol)=ElCLib::Parameter(L2,pnttg2sol(NbrSol));
|
|
pntcen(NbrSol) = Center;
|
|
parcen3(NbrSol) = Intp.Point(j).ParamOnSecond();
|
|
}
|
|
}
|
|
}
|
|
WellDone = Standard_True;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
//=========================================================================
|
|
// Creation d un cercle tant a un Cercle C1, passant par un point P2 +
|
|
// centre sur une courbe OnCurv. +
|
|
// Nous calculons les bissectrices a C1 et Point2 qui nous donnent +
|
|
// l ensemble des lieux possibles des centres de tous les cercles +
|
|
// tants a C1 et Point2. +
|
|
// Nous intersectons ces bissectrices avec la courbe OnCurv ce qui nous +
|
|
// donne les points parmis lesquels nous allons choisir les solutions. +
|
|
// Les choix s effectuent a partir des Qualifieurs qualifiant C1. +
|
|
//=========================================================================
|
|
|
|
Geom2dGcc_Circ2d2TanOnGeo::
|
|
Geom2dGcc_Circ2d2TanOnGeo (const GccEnt_QualifiedCirc& Qualified1 ,
|
|
const gp_Pnt2d& Point2 ,
|
|
const Geom2dAdaptor_Curve& OnCurv ,
|
|
const Standard_Real Tolerance ):
|
|
cirsol(1, aNbSolMAX) ,
|
|
qualifier1(1, aNbSolMAX),
|
|
qualifier2(1, aNbSolMAX),
|
|
TheSame1(1, aNbSolMAX) ,
|
|
TheSame2(1, aNbSolMAX) ,
|
|
pnttg1sol(1, aNbSolMAX) ,
|
|
pnttg2sol(1, aNbSolMAX) ,
|
|
pntcen(1, aNbSolMAX) ,
|
|
par1sol(1, aNbSolMAX) ,
|
|
par2sol(1, aNbSolMAX) ,
|
|
pararg1(1, aNbSolMAX) ,
|
|
pararg2(1, aNbSolMAX) ,
|
|
parcen3(1, aNbSolMAX)
|
|
{
|
|
|
|
WellDone = Standard_False;
|
|
Standard_Real thefirst = -100000.;
|
|
Standard_Real thelast = 100000.;
|
|
Standard_Real firstparam;
|
|
Standard_Real lastparam;
|
|
NbrSol = 0;
|
|
if (!(Qualified1.IsEnclosed() || Qualified1.IsEnclosing() ||
|
|
Qualified1.IsOutside() || Qualified1.IsUnqualified())) {
|
|
throw GccEnt_BadQualifier();
|
|
return;
|
|
}
|
|
Standard_Real Tol = Abs(Tolerance);
|
|
Standard_Real Radius;
|
|
gp_Dir2d dirx(1.,0.);
|
|
gp_Circ2d C1 = Qualified1.Qualified();
|
|
Standard_Real R1 = C1.Radius();
|
|
gp_Pnt2d center1(C1.Location());
|
|
GccAna_CircPnt2dBisec Bis(C1,Point2);
|
|
if (Bis.IsDone()) {
|
|
Standard_Real Tol1 = Abs(Tolerance);
|
|
Standard_Real Tol2 = Tol1;
|
|
Geom2dInt_TheIntConicCurveOfGInter Intp;
|
|
Standard_Integer nbsolution = Bis.NbSolutions();
|
|
Handle(Geom2dAdaptor_HCurve) HCu2 = new Geom2dAdaptor_HCurve(OnCurv);
|
|
Adaptor2d_OffsetCurve C2(HCu2,0.);
|
|
firstparam = Max(C2.FirstParameter(),thefirst);
|
|
lastparam = Min(C2.LastParameter(),thelast);
|
|
IntRes2d_Domain D2(C2.Value(firstparam), firstparam, Tol,
|
|
C2.Value(lastparam), lastparam, Tol);
|
|
for (Standard_Integer i = 1 ; i <= nbsolution; i++) {
|
|
Handle(GccInt_Bisec) Sol = Bis.ThisSolution(i);
|
|
GccInt_IType type = Sol->ArcType();
|
|
switch (type) {
|
|
case GccInt_Cir:
|
|
{
|
|
gp_Circ2d Circ(Sol->Circle());
|
|
IntRes2d_Domain D1(ElCLib::Value(0.,Circ), 0.,Tol1,
|
|
ElCLib::Value(2.*M_PI,Circ),2.*M_PI,Tol2);
|
|
D1.SetEquivalentParameters(0.,2.*M_PI);
|
|
Intp.Perform(Circ,D1,C2,D2,Tol1,Tol2);
|
|
}
|
|
break;
|
|
case GccInt_Lin:
|
|
{
|
|
gp_Lin2d Line(Sol->Line());
|
|
IntRes2d_Domain D1;
|
|
Intp.Perform(Line,D1,C2,D2,Tol1,Tol2);
|
|
}
|
|
break;
|
|
case GccInt_Ell:
|
|
{
|
|
gp_Elips2d Elips(Sol->Ellipse());
|
|
IntRes2d_Domain D1(ElCLib::Value(0.,Elips), 0.,Tol1,
|
|
ElCLib::Value(2.*M_PI,Elips),2.*M_PI,Tol2);
|
|
D1.SetEquivalentParameters(0.,2.*M_PI);
|
|
Intp.Perform(Elips,D1,C2,D2,Tol1,Tol2);
|
|
}
|
|
break;
|
|
case GccInt_Hpr:
|
|
{
|
|
gp_Hypr2d Hypr(Sol->Hyperbola());
|
|
IntRes2d_Domain D1(ElCLib::Value(-4.,Hypr),-4.,Tol1,
|
|
ElCLib::Value(4.,Hypr),4.,Tol2);
|
|
Intp.Perform(Hypr,D1,C2,D2,Tol1,Tol2);
|
|
}
|
|
break;
|
|
default:
|
|
{
|
|
throw Standard_ConstructionError();
|
|
}
|
|
}
|
|
if (Intp.IsDone()) {
|
|
if ((!Intp.IsEmpty())) {
|
|
for (Standard_Integer j = 1 ; j <= Intp.NbPoints() && NbrSol < aNbSolMAX; j++) {
|
|
gp_Pnt2d Center(Intp.Point(j).Value());
|
|
Radius = Center.Distance(Point2);
|
|
Standard_Real dist1 = center1.Distance(Center);
|
|
// Standard_Integer nbsol = 1;
|
|
Standard_Boolean ok = Standard_False;
|
|
if (Qualified1.IsEnclosed()) {
|
|
if (dist1-R1 <= Tol) { ok = Standard_True; }
|
|
}
|
|
else if (Qualified1.IsOutside()) {
|
|
if (R1-dist1 <= Tol) { ok = Standard_True; }
|
|
}
|
|
else if (Qualified1.IsEnclosing()) { ok = Standard_True; }
|
|
else if (Qualified1.IsUnqualified()) { ok = Standard_True; }
|
|
if (ok) {
|
|
NbrSol++;
|
|
cirsol(NbrSol) = gp_Circ2d(gp_Ax2d(Center,dirx),Radius);
|
|
// =======================================================
|
|
Standard_Real distcc1 = Center.Distance(center1);
|
|
if (!Qualified1.IsUnqualified()) {
|
|
qualifier1(NbrSol) = Qualified1.Qualifier();
|
|
}
|
|
else if (Abs(distcc1+Radius-R1) < Tol) {
|
|
qualifier1(NbrSol) = GccEnt_enclosed;
|
|
}
|
|
else if (Abs(distcc1-R1-Radius) < Tol) {
|
|
qualifier1(NbrSol) = GccEnt_outside;
|
|
}
|
|
else { qualifier1(NbrSol) = GccEnt_enclosing; }
|
|
qualifier2(NbrSol) = GccEnt_noqualifier;
|
|
if (dist1 <= Tol && Abs(Radius-R1) <= Tol) {
|
|
TheSame1(NbrSol) = 1;
|
|
}
|
|
else {
|
|
TheSame1(NbrSol) = 0;
|
|
gp_Dir2d dc1(center1.XY()-Center.XY());
|
|
pnttg1sol(NbrSol)=gp_Pnt2d(Center.XY()+Radius*dc1.XY());
|
|
par1sol(NbrSol) = 0.;
|
|
par1sol(NbrSol)=ElCLib::Parameter(cirsol(NbrSol),
|
|
pnttg1sol(NbrSol));
|
|
pararg1(NbrSol)=ElCLib::Parameter(C1,pnttg1sol(NbrSol));
|
|
}
|
|
TheSame2(NbrSol) = 0;
|
|
pnttg2sol(NbrSol) = Point2;
|
|
pntcen(NbrSol) = Center;
|
|
parcen3(NbrSol) = Intp.Point(j).ParamOnSecond();
|
|
pararg2(NbrSol) = 0.;
|
|
par2sol(NbrSol)=ElCLib::Parameter(cirsol(NbrSol),
|
|
pnttg2sol(NbrSol));
|
|
}
|
|
}
|
|
}
|
|
WellDone = Standard_True;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
//=========================================================================
|
|
// Creation d un cercle tant a une ligne L1, passant par un point P2 +
|
|
// centre sur une courbe OnCurv. +
|
|
// Nous calculons les bissectrices a L1 et Point2 qui nous donnent +
|
|
// l ensemble des lieux possibles des centres de tous les cercles +
|
|
// tants a L1 et passant par Point2. +
|
|
// Nous intersectons ces bissectrices avec la courbe OnCurv ce qui nous +
|
|
// donne les points parmis lesquels nous allons choisir les solutions. +
|
|
// Les choix s effectuent a partir des Qualifieurs qualifiant L1. +
|
|
//=========================================================================
|
|
|
|
Geom2dGcc_Circ2d2TanOnGeo::
|
|
Geom2dGcc_Circ2d2TanOnGeo (const GccEnt_QualifiedLin& Qualified1 ,
|
|
const gp_Pnt2d& Point2 ,
|
|
const Geom2dAdaptor_Curve& OnCurv ,
|
|
const Standard_Real Tolerance ):
|
|
cirsol(1, aNbSolMAX) ,
|
|
qualifier1(1, aNbSolMAX),
|
|
qualifier2(1, aNbSolMAX),
|
|
TheSame1(1, aNbSolMAX) ,
|
|
TheSame2(1, aNbSolMAX) ,
|
|
pnttg1sol(1, aNbSolMAX) ,
|
|
pnttg2sol(1, aNbSolMAX) ,
|
|
pntcen(1, aNbSolMAX) ,
|
|
par1sol(1, aNbSolMAX) ,
|
|
par2sol(1, aNbSolMAX) ,
|
|
pararg1(1, aNbSolMAX) ,
|
|
pararg2(1, aNbSolMAX) ,
|
|
parcen3(1, aNbSolMAX)
|
|
{
|
|
|
|
WellDone = Standard_False;
|
|
Standard_Real thefirst = -100000.;
|
|
Standard_Real thelast = 100000.;
|
|
Standard_Real firstparam;
|
|
Standard_Real lastparam;
|
|
Standard_Real Tol = Abs(Tolerance);
|
|
NbrSol = 0;
|
|
if (!(Qualified1.IsEnclosed() ||
|
|
Qualified1.IsOutside() || Qualified1.IsUnqualified())) {
|
|
throw GccEnt_BadQualifier();
|
|
return;
|
|
}
|
|
gp_Dir2d dirx(1.,0.);
|
|
gp_Lin2d L1 = Qualified1.Qualified();
|
|
gp_Pnt2d origin1(L1.Location());
|
|
gp_Dir2d dir1(L1.Direction());
|
|
gp_Dir2d normal(-dir1.Y(),dir1.X());
|
|
GccAna_LinPnt2dBisec Bis(L1,Point2);
|
|
if (Bis.IsDone()) {
|
|
Standard_Real Tol1 = Abs(Tolerance);
|
|
Standard_Real Tol2 = Tol1;
|
|
Geom2dInt_TheIntConicCurveOfGInter Intp;
|
|
Handle(Geom2dAdaptor_HCurve) HCu2 = new Geom2dAdaptor_HCurve(OnCurv);
|
|
Adaptor2d_OffsetCurve C2(HCu2,0.);
|
|
firstparam = Max(C2.FirstParameter(),thefirst);
|
|
lastparam = Min(C2.LastParameter(),thelast);
|
|
IntRes2d_Domain D2(C2.Value(firstparam), firstparam, Tol,
|
|
C2.Value(lastparam), lastparam, Tol);
|
|
Handle(GccInt_Bisec) Sol = Bis.ThisSolution();
|
|
GccInt_IType type = Sol->ArcType();
|
|
switch (type) {
|
|
case GccInt_Lin:
|
|
{
|
|
gp_Lin2d Line(Sol->Line());
|
|
IntRes2d_Domain D1;
|
|
Intp.Perform(Line,D1,C2,D2,Tol1,Tol2);
|
|
}
|
|
break;
|
|
case GccInt_Par:
|
|
{
|
|
gp_Parab2d Parab(Sol->Parabola());
|
|
IntRes2d_Domain D1(ElCLib::Value(-40,Parab),-40,Tol1,
|
|
ElCLib::Value(40,Parab),40,Tol1);
|
|
Intp.Perform(Parab,D1,C2,D2,Tol1,Tol2);
|
|
}
|
|
break;
|
|
default:
|
|
{
|
|
throw Standard_ConstructionError();
|
|
}
|
|
}
|
|
if (Intp.IsDone()) {
|
|
if ((!Intp.IsEmpty())) {
|
|
for (Standard_Integer j = 1 ; j <= Intp.NbPoints() && NbrSol < aNbSolMAX; j++) {
|
|
gp_Pnt2d Center(Intp.Point(j).Value());
|
|
Standard_Real Radius = L1.Distance(Center);
|
|
// Standard_Integer nbsol = 1;
|
|
Standard_Boolean ok = Standard_False;
|
|
if (Qualified1.IsEnclosed()) {
|
|
if ((((origin1.X()-Center.X())*(-dir1.Y()))+
|
|
((origin1.Y()-Center.Y())*(dir1.X())))<=0){
|
|
ok = Standard_True;
|
|
}
|
|
}
|
|
else if (Qualified1.IsOutside()) {
|
|
if ((((origin1.X()-Center.X())*(-dir1.Y()))+
|
|
((origin1.Y()-Center.Y())*(dir1.X())))>=0){
|
|
ok = Standard_True;
|
|
}
|
|
}
|
|
else if (Qualified1.IsUnqualified()) { ok = Standard_True; }
|
|
if (ok) {
|
|
NbrSol++;
|
|
cirsol(NbrSol) = gp_Circ2d(gp_Ax2d(Center,dirx),Radius);
|
|
// =======================================================
|
|
qualifier2(NbrSol) = GccEnt_noqualifier;
|
|
gp_Dir2d dc2(origin1.XY()-Center.XY());
|
|
if (!Qualified1.IsUnqualified()) {
|
|
qualifier1(NbrSol) = Qualified1.Qualifier();
|
|
}
|
|
else if (dc2.Dot(normal) > 0.0) {
|
|
qualifier1(NbrSol) = GccEnt_outside;
|
|
}
|
|
else { qualifier1(NbrSol) = GccEnt_enclosed; }
|
|
TheSame1(NbrSol) = 0;
|
|
TheSame2(NbrSol) = 0;
|
|
gp_Dir2d dc1(origin1.XY()-Center.XY());
|
|
Standard_Real sign = dc1.Dot(gp_Dir2d(-dir1.Y(),dir1.X()));
|
|
dc1=gp_Dir2d(sign*gp_XY(-dir1.Y(),dir1.X()));
|
|
pnttg1sol(NbrSol) = gp_Pnt2d(Center.XY()+Radius*dc1.XY());
|
|
par1sol(NbrSol)=ElCLib::Parameter(cirsol(NbrSol),
|
|
pnttg1sol(NbrSol));
|
|
pararg1(NbrSol)=ElCLib::Parameter(L1,pnttg1sol(NbrSol));
|
|
pnttg2sol(NbrSol) = Point2;
|
|
par2sol(NbrSol)=ElCLib::Parameter(cirsol(NbrSol),
|
|
pnttg2sol(NbrSol));
|
|
pararg2(NbrSol) = 0.;
|
|
pntcen(NbrSol) = Center;
|
|
parcen3(NbrSol) = Intp.Point(j).ParamOnSecond();
|
|
}
|
|
}
|
|
}
|
|
WellDone = Standard_True;
|
|
}
|
|
}
|
|
}
|
|
|
|
//=========================================================================
|
|
// Creation d un cercle passant par deux point Point1 et Point2 +
|
|
// centre sur une courbe OnCurv. +
|
|
// Nous calculons les bissectrices a Point1 et Point2 qui nous donnent +
|
|
// l ensemble des lieux possibles des centres de tous les cercles +
|
|
// passant par Point1 et Point2. +
|
|
// Nous intersectons ces bissectrices avec la courbe OnCurv ce qui nous +
|
|
// donne les points parmis lesquels nous allons choisir les solutions. +
|
|
//=========================================================================
|
|
|
|
Geom2dGcc_Circ2d2TanOnGeo::
|
|
Geom2dGcc_Circ2d2TanOnGeo (const gp_Pnt2d& Point1 ,
|
|
const gp_Pnt2d& Point2 ,
|
|
const Geom2dAdaptor_Curve& OnCurv ,
|
|
const Standard_Real Tolerance ):
|
|
cirsol(1, aNbSolMAX) ,
|
|
qualifier1(1, aNbSolMAX),
|
|
qualifier2(1, aNbSolMAX),
|
|
TheSame1(1, aNbSolMAX) ,
|
|
TheSame2(1, aNbSolMAX) ,
|
|
pnttg1sol(1, aNbSolMAX) ,
|
|
pnttg2sol(1, aNbSolMAX) ,
|
|
pntcen(1, aNbSolMAX) ,
|
|
par1sol(1, aNbSolMAX) ,
|
|
par2sol(1, aNbSolMAX) ,
|
|
pararg1(1, aNbSolMAX) ,
|
|
pararg2(1, aNbSolMAX) ,
|
|
parcen3(1, aNbSolMAX)
|
|
{
|
|
|
|
WellDone = Standard_False;
|
|
Standard_Real thefirst = -100000.;
|
|
Standard_Real thelast = 100000.;
|
|
Standard_Real firstparam;
|
|
Standard_Real lastparam;
|
|
Standard_Real Tol = Abs(Tolerance);
|
|
NbrSol = 0;
|
|
gp_Dir2d dirx(1.,0.);
|
|
GccAna_Pnt2dBisec Bis(Point1,Point2);
|
|
if (Bis.IsDone()) {
|
|
Standard_Real Tol1 = Abs(Tolerance);
|
|
Standard_Real Tol2 = Tol1;
|
|
Geom2dInt_TheIntConicCurveOfGInter Intp;
|
|
Handle(Geom2dAdaptor_HCurve) HCu2 = new Geom2dAdaptor_HCurve(OnCurv);
|
|
Adaptor2d_OffsetCurve Cu2(HCu2,0.);
|
|
firstparam = Max(Cu2.FirstParameter(),thefirst);
|
|
lastparam = Min(Cu2.LastParameter(),thelast);
|
|
IntRes2d_Domain D2(Cu2.Value(firstparam), firstparam, Tol,
|
|
Cu2.Value(lastparam), lastparam, Tol);
|
|
IntRes2d_Domain D1;
|
|
if (Bis.HasSolution()) {
|
|
Intp.Perform(Bis.ThisSolution(),D1,Cu2,D2,Tol1,Tol2);
|
|
if (Intp.IsDone()) {
|
|
if ((!Intp.IsEmpty())) {
|
|
for (Standard_Integer j = 1 ; j <= Intp.NbPoints() && NbrSol < aNbSolMAX; j++) {
|
|
gp_Pnt2d Center(Intp.Point(j).Value());
|
|
Standard_Real Radius = Point2.Distance(Center);
|
|
NbrSol++;
|
|
cirsol(NbrSol) = gp_Circ2d(gp_Ax2d(Center,dirx),Radius);
|
|
// =======================================================
|
|
qualifier1(NbrSol) = GccEnt_noqualifier;
|
|
qualifier2(NbrSol) = GccEnt_noqualifier;
|
|
TheSame1(NbrSol) = 0;
|
|
TheSame2(NbrSol) = 0;
|
|
pntcen(NbrSol) = Center;
|
|
pnttg1sol(NbrSol) = Point1;
|
|
pnttg2sol(NbrSol) = Point2;
|
|
pararg1(NbrSol) = 0.;
|
|
pararg2(NbrSol) = 0.;
|
|
par1sol(NbrSol)=ElCLib::Parameter(cirsol(NbrSol),
|
|
pnttg1sol(NbrSol));
|
|
par2sol(NbrSol)=ElCLib::Parameter(cirsol(NbrSol),
|
|
pnttg2sol(NbrSol));
|
|
parcen3(NbrSol) = Intp.Point(j).ParamOnSecond();
|
|
}
|
|
}
|
|
WellDone = Standard_True;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
Standard_Boolean Geom2dGcc_Circ2d2TanOnGeo::
|
|
IsDone () const { return WellDone; }
|
|
|
|
Standard_Integer Geom2dGcc_Circ2d2TanOnGeo::
|
|
NbSolutions () const{ return NbrSol; }
|
|
|
|
gp_Circ2d Geom2dGcc_Circ2d2TanOnGeo::
|
|
ThisSolution (const Standard_Integer Index) const
|
|
{
|
|
if (!WellDone) { throw StdFail_NotDone(); }
|
|
if (Index <= 0 ||Index > NbrSol) { throw Standard_OutOfRange(); }
|
|
|
|
return cirsol(Index);
|
|
}
|
|
|
|
void Geom2dGcc_Circ2d2TanOnGeo::
|
|
WhichQualifier(const Standard_Integer Index ,
|
|
GccEnt_Position& Qualif1 ,
|
|
GccEnt_Position& Qualif2 ) const
|
|
{
|
|
if (!WellDone) { throw StdFail_NotDone(); }
|
|
else if (Index <= 0 ||Index > NbrSol) { throw Standard_OutOfRange(); }
|
|
else {
|
|
Qualif1 = qualifier1(Index);
|
|
Qualif2 = qualifier2(Index);
|
|
}
|
|
}
|
|
|
|
void Geom2dGcc_Circ2d2TanOnGeo::
|
|
Tangency1 (const Standard_Integer Index ,
|
|
Standard_Real& ParSol ,
|
|
Standard_Real& ParArg ,
|
|
gp_Pnt2d& PntSol ) const{
|
|
if (!WellDone) { throw StdFail_NotDone(); }
|
|
else if (Index <= 0 ||Index > NbrSol) { throw Standard_OutOfRange(); }
|
|
else {
|
|
if (TheSame1(Index) == 0) {
|
|
ParSol = par1sol(Index);
|
|
ParArg = pararg1(Index);
|
|
PntSol = gp_Pnt2d(pnttg1sol(Index));
|
|
}
|
|
else { throw StdFail_NotDone(); }
|
|
}
|
|
}
|
|
|
|
void Geom2dGcc_Circ2d2TanOnGeo::
|
|
Tangency2 (const Standard_Integer Index ,
|
|
Standard_Real& ParSol ,
|
|
Standard_Real& ParArg ,
|
|
gp_Pnt2d& PntSol ) const{
|
|
if (!WellDone) { throw StdFail_NotDone(); }
|
|
else if (Index <= 0 ||Index > NbrSol) { throw Standard_OutOfRange(); }
|
|
else {
|
|
if (TheSame2(Index) == 0) {
|
|
ParSol = par2sol(Index);
|
|
ParArg = pararg2(Index);
|
|
PntSol = gp_Pnt2d(pnttg2sol(Index));
|
|
}
|
|
else { throw StdFail_NotDone(); }
|
|
}
|
|
}
|
|
|
|
void Geom2dGcc_Circ2d2TanOnGeo::
|
|
CenterOn3 (const Standard_Integer Index ,
|
|
Standard_Real& ParArg ,
|
|
gp_Pnt2d& PntSol ) const{
|
|
if (!WellDone) { throw StdFail_NotDone(); }
|
|
else if (Index <= 0 ||Index > NbrSol) { throw Standard_OutOfRange(); }
|
|
else {
|
|
ParArg = parcen3(Index);
|
|
PntSol = gp_Pnt2d(pntcen(Index));
|
|
}
|
|
}
|
|
|
|
Standard_Boolean Geom2dGcc_Circ2d2TanOnGeo::
|
|
IsTheSame1 (const Standard_Integer Index) const
|
|
{
|
|
if (!WellDone) throw StdFail_NotDone();
|
|
if (Index <= 0 ||Index > NbrSol) throw Standard_OutOfRange();
|
|
|
|
if (TheSame1(Index) == 0)
|
|
return Standard_False;
|
|
|
|
return Standard_True;
|
|
}
|
|
|
|
|
|
Standard_Boolean Geom2dGcc_Circ2d2TanOnGeo::
|
|
IsTheSame2 (const Standard_Integer Index) const
|
|
{
|
|
if (!WellDone) throw StdFail_NotDone();
|
|
if (Index <= 0 ||Index > NbrSol) throw Standard_OutOfRange();
|
|
|
|
if (TheSame2(Index) == 0)
|
|
return Standard_False;
|
|
|
|
return Standard_True;
|
|
}
|