mirror of
https://git.dev.opencascade.org/repos/occt.git
synced 2025-07-25 12:55:50 +03:00
License statement text corrected; compiler warnings caused by Bison 2.41 disabled for MSVC; a few other compiler warnings on 54-bit Windows eliminated by appropriate type cast Wrong license statements corrected in several files. Copyright and license statements added in XSD and GLSL files. Copyright year updated in some files. Obsolete documentation files removed from DrawResources.
211 lines
6.5 KiB
C++
211 lines
6.5 KiB
C++
// Copyright (c) 1995-1999 Matra Datavision
|
|
// Copyright (c) 1999-2014 OPEN CASCADE SAS
|
|
//
|
|
// This file is part of Open CASCADE Technology software library.
|
|
//
|
|
// This library is free software; you can redistribute it and/or modify it under
|
|
// the terms of the GNU Lesser General Public License version 2.1 as published
|
|
// by the Free Software Foundation, with special exception defined in the file
|
|
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
|
|
// distribution for complete text of the license and disclaimer of any warranty.
|
|
//
|
|
// Alternatively, this file may be used under the terms of Open CASCADE
|
|
// commercial license or contractual agreement.
|
|
|
|
#include <GccAna_Circ2d3Tan.jxx>
|
|
|
|
#include <ElCLib.hxx>
|
|
#include <IntAna2d_AnaIntersection.hxx>
|
|
#include <IntAna2d_IntPoint.hxx>
|
|
#include <gp_Lin2d.hxx>
|
|
#include <gp_Circ2d.hxx>
|
|
#include <gp_Dir2d.hxx>
|
|
#include <TColStd_Array1OfReal.hxx>
|
|
#include <GccAna_CircPnt2dBisec.hxx>
|
|
#include <GccAna_Pnt2dBisec.hxx>
|
|
#include <GccInt_IType.hxx>
|
|
#include <GccInt_BCirc.hxx>
|
|
#include <GccInt_BLine.hxx>
|
|
#include <GccInt_BElips.hxx>
|
|
#include <GccInt_BHyper.hxx>
|
|
#include <IntAna2d_Conic.hxx>
|
|
#include <GccEnt_BadQualifier.hxx>
|
|
#include <Precision.hxx>
|
|
|
|
//=======================================================================
|
|
// Creation of a circle tangent to a circle and two points. +
|
|
//=======================================================================
|
|
|
|
GccAna_Circ2d3Tan::
|
|
GccAna_Circ2d3Tan (const GccEnt_QualifiedCirc& Qualified1 ,
|
|
const gp_Pnt2d& Point2 ,
|
|
const gp_Pnt2d& Point3 ,
|
|
const Standard_Real Tolerance ):
|
|
|
|
cirsol(1,2) ,
|
|
qualifier1(1,2) ,
|
|
qualifier2(1,2) ,
|
|
qualifier3(1,2) ,
|
|
TheSame1(1,2) ,
|
|
TheSame2(1,2) ,
|
|
TheSame3(1,2) ,
|
|
pnttg1sol(1,2) ,
|
|
pnttg2sol(1,2) ,
|
|
pnttg3sol(1,2) ,
|
|
par1sol(1,2) ,
|
|
par2sol(1,2) ,
|
|
par3sol(1,2) ,
|
|
pararg1(1,2) ,
|
|
pararg2(1,2) ,
|
|
pararg3(1,2)
|
|
{
|
|
|
|
gp_Dir2d dirx(1.0,0.0);
|
|
Standard_Real Tol = Abs(Tolerance);
|
|
WellDone = Standard_False;
|
|
NbrSol = 0;
|
|
if (!(Qualified1.IsEnclosed() || Qualified1.IsEnclosing() ||
|
|
Qualified1.IsOutside() || Qualified1.IsUnqualified())) {
|
|
GccEnt_BadQualifier::Raise();
|
|
return;
|
|
}
|
|
|
|
//=========================================================================
|
|
// Processing. +
|
|
//=========================================================================
|
|
|
|
gp_Circ2d C1 = Qualified1.Qualified();
|
|
Standard_Real R1 = C1.Radius();
|
|
gp_Pnt2d center1(C1.Location());
|
|
TColStd_Array1OfReal Radius(1,2);
|
|
|
|
if (Point2.IsEqual(Point3,Precision::Confusion())) {
|
|
WellDone = Standard_False;
|
|
return ;
|
|
}
|
|
|
|
GccAna_Pnt2dBisec Bis1(Point2,Point3);
|
|
GccAna_CircPnt2dBisec Bis2(C1,Point2);
|
|
|
|
if (Bis1.IsDone() && Bis2.IsDone()) {
|
|
Standard_Integer nbsolution2 = Bis2.NbSolutions();
|
|
for (Standard_Integer i = 1 ; i <= nbsolution2; i++) {
|
|
Handle(GccInt_Bisec) Sol2 = Bis2.ThisSolution(i);
|
|
GccInt_IType typ2 = Sol2->ArcType();
|
|
gp_Lin2d Sol1(Bis1.ThisSolution());
|
|
IntAna2d_AnaIntersection Intp;
|
|
if (typ2 == GccInt_Cir) {
|
|
Intp.Perform(Sol1,Sol2->Circle());
|
|
}
|
|
else if (typ2 == GccInt_Lin) {
|
|
Intp.Perform(Sol1,Sol2->Line());
|
|
}
|
|
else if (typ2 == GccInt_Hpr) {
|
|
Intp.Perform(Sol1,IntAna2d_Conic(Sol2->Hyperbola()));
|
|
}
|
|
else if (typ2 == GccInt_Ell) {
|
|
Intp.Perform(Sol1,IntAna2d_Conic(Sol2->Ellipse()));
|
|
}
|
|
|
|
if (Intp.IsDone()) {
|
|
if (!Intp.IsEmpty()) {
|
|
for (Standard_Integer j = 1 ; j <= Intp.NbPoints() ; j++) {
|
|
gp_Pnt2d Center(Intp.Point(j).Value());
|
|
Standard_Real dist1 = Center.Distance(center1);
|
|
Standard_Real dist2 = Center.Distance(Point2);
|
|
Standard_Real dist3 = Center.Distance(Point3);
|
|
Standard_Integer nbsol1 = 0;
|
|
// Standard_Integer nbsol2 = 0;
|
|
Standard_Integer nbsol3 = 0;
|
|
Standard_Boolean ok = Standard_False;
|
|
if (Qualified1.IsEnclosed()) {
|
|
if (dist1-R1 < Tolerance) {
|
|
Radius(1) = Abs(R1-dist1);
|
|
nbsol1 = 1;
|
|
ok = Standard_True;
|
|
}
|
|
}
|
|
else if (Qualified1.IsOutside()) {
|
|
if (R1-dist1 < Tolerance) {
|
|
Radius(1) = Abs(R1-dist1);
|
|
nbsol1 = 1;
|
|
ok = Standard_True;
|
|
}
|
|
}
|
|
else if (Qualified1.IsEnclosing()) {
|
|
ok = Standard_True;
|
|
nbsol1 = 1;
|
|
Radius(1) = R1+dist1;
|
|
}
|
|
else if (Qualified1.IsUnqualified()) {
|
|
ok = Standard_True;
|
|
nbsol1 = 2;
|
|
Radius(1) = Abs(R1-dist1);
|
|
Radius(2) = R1+dist1;
|
|
}
|
|
if (ok) {
|
|
ok = Standard_False;
|
|
for (Standard_Integer ii = 1 ; ii <= nbsol1 ; ii++) {
|
|
//pop if (Abs(dist2-Radius(ii))<=Tol && Abs(dist2-Radius(ii))<=Tol){
|
|
if (Abs(dist2-Radius(ii))<=Tol && Abs(dist3-Radius(ii))<=Tol){
|
|
nbsol3 = ii;
|
|
ok = Standard_True;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (ok) {
|
|
// for (Standard_Integer k = 1 ; k <= nbsol3 ; k++) {
|
|
if (NbrSol>=2) break;
|
|
NbrSol++;
|
|
// cirsol(NbrSol) = gp_Circ2d(gp_Ax2d(Center,dirx),Radius(k));
|
|
cirsol(NbrSol) = gp_Circ2d(gp_Ax2d(Center,dirx),Radius(nbsol3));
|
|
// ==========================================================
|
|
Standard_Real distcc1 = Center.Distance(center1);
|
|
if (!Qualified1.IsUnqualified()) {
|
|
qualifier1(NbrSol) = Qualified1.Qualifier();
|
|
}
|
|
else if (Abs(distcc1+Radius(nbsol3)-R1) < Tol) {
|
|
qualifier1(NbrSol) = GccEnt_enclosed;
|
|
}
|
|
else if (Abs(distcc1-R1-Radius(nbsol3)) < Tol) {
|
|
qualifier1(NbrSol) = GccEnt_outside;
|
|
}
|
|
else { qualifier1(NbrSol) = GccEnt_enclosing; }
|
|
qualifier2(NbrSol) = GccEnt_noqualifier;
|
|
qualifier3(NbrSol) = GccEnt_noqualifier;
|
|
if (Center.Distance(center1) <= Tolerance &&
|
|
Abs(Radius(nbsol3)-R1) <= Tolerance) {
|
|
TheSame1(NbrSol) = 1;
|
|
}
|
|
else {
|
|
TheSame1(NbrSol) = 0;
|
|
gp_Dir2d dc(center1.XY()-Center.XY());
|
|
pnttg1sol(NbrSol)=gp_Pnt2d(Center.XY()+Radius(nbsol3)*dc.XY());
|
|
par1sol(NbrSol)=ElCLib::Parameter(cirsol(NbrSol),
|
|
pnttg1sol(NbrSol));
|
|
pararg1(NbrSol)=ElCLib::Parameter(C1,pnttg1sol(NbrSol));
|
|
}
|
|
|
|
TheSame2(NbrSol) = 0;
|
|
pnttg2sol(NbrSol) = Point2;
|
|
par2sol(NbrSol)=ElCLib::Parameter(cirsol(NbrSol),
|
|
pnttg2sol(NbrSol));
|
|
pararg2(NbrSol)=0.;
|
|
TheSame3(NbrSol) = 0;
|
|
pnttg3sol(NbrSol) = Point3;
|
|
par3sol(NbrSol)=ElCLib::Parameter(cirsol(NbrSol),
|
|
pnttg3sol(NbrSol));
|
|
pararg3(NbrSol) = 0.;
|
|
//}
|
|
}
|
|
}
|
|
}
|
|
WellDone = Standard_True;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|