1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-05-01 10:26:12 +03:00
occt/src/IntSurf/IntSurf.cxx
abv d5f74e42d6 0024624: Lost word in license statement in source files
License statement text corrected; compiler warnings caused by Bison 2.41 disabled for MSVC; a few other compiler warnings on 54-bit Windows eliminated by appropriate type cast
Wrong license statements corrected in several files.
Copyright and license statements added in XSD and GLSL files.
Copyright year updated in some files.
Obsolete documentation files removed from DrawResources.
2014-02-20 16:15:17 +04:00

107 lines
3.2 KiB
C++

// Copyright (c) 1995-1999 Matra Datavision
// Copyright (c) 1999-2014 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
#include <IntSurf.ixx>
#include <Precision.hxx>
#include <gp.hxx>
#include <gp_Dir.hxx>
#include <gp_Vec.hxx>
#include <IntSurf_Transition.hxx>
//--------------------------------------------------------------
//-- IntSurf::MakeTransition(Vtgint,Vtgrst,Normale,Transline,Transarc);
//--
//-- tgFirst = Tangente Ligne Intersection
//-- tgSecond = Tangenet Restriction
//-- Normale = Normale a la surface
void IntSurf::MakeTransition (const gp_Vec& TgFirst,
const gp_Vec& TgSecond,
const gp_Dir& Normale,
IntSurf_Transition& TFirst,
IntSurf_Transition& TSecond)
{
// Effectuer le produit mixte normale, tangente 1, tangente 2
// pour avoir le type de la transition.
gp_Vec pvect(TgSecond.Crossed(TgFirst));
Standard_Real NTgSecond = TgSecond.Magnitude();
Standard_Real NTgFirst = TgFirst.Magnitude();
Standard_Real NTgSecondNTgFirstAngular = NTgSecond*NTgFirst*Precision::Angular();
if(NTgFirst <= Precision::Confusion()) {
TFirst.SetValue(Standard_True,IntSurf_Undecided);
TSecond.SetValue(Standard_True,IntSurf_Undecided);
}
else if ( (NTgSecond <= Precision::Confusion())
|| (pvect.Magnitude()<= NTgSecondNTgFirstAngular)) {
TFirst.SetValue(Standard_True,IntSurf_Unknown,TgFirst.Dot(TgSecond)<0.0);
TSecond.SetValue(Standard_True,IntSurf_Unknown,TgFirst.Dot(TgSecond)<0.0);
}
else {
Standard_Real yu = pvect.Dot(Normale);
yu/=NTgSecond*NTgFirst;
if (yu>0.0001) {
TFirst.SetValue(Standard_False,IntSurf_In);
TSecond.SetValue(Standard_False,IntSurf_Out);
}
else if(yu<-0.0001) {
TFirst.SetValue(Standard_False,IntSurf_Out);
TSecond.SetValue(Standard_False,IntSurf_In);
}
else {
#if 0
//-- MODIF XAB
gp_Vec V1(TgSecond.X() / NTgSecond,TgSecond.Y() / NTgSecond, TgSecond.Z() / NTgSecond);
gp_Vec V2(TgFirst.X() / NTgFirst,TgFirst.Y() / NTgFirst, TgFirst.Z() / NTgFirst);
pvect = V1.Crossed(V2);
yu = pvect.Dot(Normale);
if (yu>0.0000001) {
TFirst.SetValue(Standard_False,IntSurf_In);
TSecond.SetValue(Standard_False,IntSurf_Out);
}
else if(yu<-0.0000001) {
TFirst.SetValue(Standard_False,IntSurf_Out);
TSecond.SetValue(Standard_False,IntSurf_In);
}
else {
TFirst.SetValue(Standard_True,IntSurf_Undecided);
TSecond.SetValue(Standard_True,IntSurf_Undecided);
}
#else
TFirst.SetValue(Standard_True,IntSurf_Undecided);
TSecond.SetValue(Standard_True,IntSurf_Undecided);
#endif
}
}
}