mirror of
https://git.dev.opencascade.org/repos/occt.git
synced 2025-04-10 18:51:21 +03:00
165 lines
5.5 KiB
C++
165 lines
5.5 KiB
C++
// Copyright (c) 1995-1999 Matra Datavision
|
|
// Copyright (c) 1999-2014 OPEN CASCADE SAS
|
|
//
|
|
// This file is part of Open CASCADE Technology software library.
|
|
//
|
|
// This library is free software; you can redistribute it and/or modify it under
|
|
// the terms of the GNU Lesser General Public License version 2.1 as published
|
|
// by the Free Software Foundation, with special exception defined in the file
|
|
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
|
|
// distribution for complete text of the license and disclaimer of any warranty.
|
|
//
|
|
// Alternatively, this file may be used under the terms of Open CASCADE
|
|
// commercial license or contractual agreement.
|
|
|
|
|
|
#include <ElCLib.hxx>
|
|
#include <GccAna_Circ2d3Tan.hxx>
|
|
#include <GccAna_LinPnt2dBisec.hxx>
|
|
#include <GccAna_Pnt2dBisec.hxx>
|
|
#include <GccEnt_BadQualifier.hxx>
|
|
#include <GccEnt_QualifiedLin.hxx>
|
|
#include <GccInt_Bisec.hxx>
|
|
#include <GccInt_IType.hxx>
|
|
#include <gp_Circ2d.hxx>
|
|
#include <gp_Dir2d.hxx>
|
|
#include <gp_Lin2d.hxx>
|
|
#include <gp_Pnt2d.hxx>
|
|
#include <IntAna2d_AnaIntersection.hxx>
|
|
#include <IntAna2d_Conic.hxx>
|
|
#include <IntAna2d_IntPoint.hxx>
|
|
#include <Precision.hxx>
|
|
|
|
//=========================================================================
|
|
// Creation of a circle tangent to a straight line and two points. +
|
|
//=========================================================================
|
|
GccAna_Circ2d3Tan::
|
|
GccAna_Circ2d3Tan (const GccEnt_QualifiedLin& Qualified1,
|
|
const gp_Pnt2d& Point2 ,
|
|
const gp_Pnt2d& Point3 ,
|
|
const Standard_Real Tolerance ):
|
|
|
|
cirsol(1,2) ,
|
|
qualifier1(1,2) ,
|
|
qualifier2(1,2) ,
|
|
qualifier3(1,2) ,
|
|
TheSame1(1,2) ,
|
|
TheSame2(1,2) ,
|
|
TheSame3(1,2) ,
|
|
pnttg1sol(1,2) ,
|
|
pnttg2sol(1,2) ,
|
|
pnttg3sol(1,2) ,
|
|
par1sol(1,2) ,
|
|
par2sol(1,2) ,
|
|
par3sol(1,2) ,
|
|
pararg1(1,2) ,
|
|
pararg2(1,2) ,
|
|
pararg3(1,2)
|
|
{
|
|
|
|
WellDone = Standard_False;
|
|
Standard_Real Tol = Abs(Tolerance);
|
|
gp_Dir2d dirx(1.0,0.0);
|
|
NbrSol = 0;
|
|
if (!(Qualified1.IsEnclosed() ||
|
|
Qualified1.IsOutside() || Qualified1.IsUnqualified())) {
|
|
throw GccEnt_BadQualifier();
|
|
return;
|
|
}
|
|
|
|
//=========================================================================
|
|
// Processing. +
|
|
//=========================================================================
|
|
|
|
gp_Lin2d L1 = Qualified1.Qualified();
|
|
gp_Pnt2d origin1(L1.Location());
|
|
gp_Dir2d dir1(L1.Direction());
|
|
gp_Dir2d normL1(-dir1.Y(),dir1.X());
|
|
|
|
if (Point2.IsEqual(Point3,Precision::Confusion())) {
|
|
WellDone = Standard_False;
|
|
return ;
|
|
}
|
|
|
|
GccAna_Pnt2dBisec Bis1(Point2,Point3);
|
|
GccAna_LinPnt2dBisec Bis2(L1,Point2);
|
|
if (Bis1.IsDone() && Bis2.IsDone()) {
|
|
const gp_Lin2d linint1(Bis1.ThisSolution());
|
|
Handle(GccInt_Bisec) Sol2 = Bis2.ThisSolution();
|
|
GccInt_IType typ2 = Sol2->ArcType();
|
|
IntAna2d_AnaIntersection Intp;
|
|
if (typ2 == GccInt_Lin) {
|
|
gp_Lin2d linint2(Sol2->Line());
|
|
Intp.Perform (linint1,linint2);
|
|
}
|
|
else if (typ2 == GccInt_Par) {
|
|
Intp.Perform (linint1,IntAna2d_Conic(Sol2->Parabola()));
|
|
}
|
|
if (Intp.IsDone()) {
|
|
if ((!Intp.IsEmpty())&&(!Intp.ParallelElements())&&
|
|
(!Intp.IdenticalElements())) {
|
|
for (Standard_Integer j = 1 ; j <= Intp.NbPoints() ; j++) {
|
|
gp_Pnt2d Center(Intp.Point(j).Value());
|
|
Standard_Real dist1 = L1.Distance(Center);
|
|
Standard_Real dist2 = Center.Distance(Point2);
|
|
|
|
Standard_Real Radius=0;
|
|
Standard_Integer nbsol3 = 0;
|
|
Standard_Boolean ok = Standard_False;
|
|
Standard_Real difference = (((origin1.X()-Center.X())*(-dir1.Y())) + ((origin1.Y()-Center.Y())*(dir1.X())));
|
|
if ((Qualified1.IsEnclosed() && difference <= 0) ||
|
|
(Qualified1.IsOutside() && difference >= 0) ||
|
|
(Qualified1.IsUnqualified()))
|
|
{
|
|
ok = Standard_True;
|
|
Radius = dist1;
|
|
}
|
|
if (ok) {
|
|
if (Abs(dist2-Radius)<=Tol) {
|
|
nbsol3 = 1;
|
|
}
|
|
else { ok = Standard_False; }
|
|
}
|
|
if (ok) {
|
|
for (Standard_Integer k = 1 ; k <= nbsol3 ; k++) {
|
|
NbrSol++;
|
|
cirsol(NbrSol) = gp_Circ2d(gp_Ax2d(Center,dirx),Radius);
|
|
// =======================================================
|
|
gp_Dir2d dc1(origin1.XY()-Center.XY());
|
|
if (!Qualified1.IsUnqualified()) {
|
|
qualifier1(NbrSol) = Qualified1.Qualifier();
|
|
}
|
|
else if (dc1.Dot(normL1) > 0.0) {
|
|
qualifier1(NbrSol) = GccEnt_outside;
|
|
}
|
|
else { qualifier1(NbrSol) = GccEnt_enclosed; }
|
|
qualifier2(NbrSol) = GccEnt_noqualifier;
|
|
qualifier3(NbrSol) = GccEnt_noqualifier;
|
|
TheSame1(NbrSol) = 0;
|
|
gp_Dir2d dc(origin1.XY()-Center.XY());
|
|
Standard_Real sign = dc.Dot(gp_Dir2d(-dir1.Y(),dir1.X()));
|
|
dc = gp_Dir2d(sign*gp_XY(-dir1.Y(),dir1.X()));
|
|
pnttg1sol(NbrSol) = gp_Pnt2d(Center.XY()+Radius*dc.XY());
|
|
par1sol(NbrSol)=ElCLib::Parameter(cirsol(NbrSol),
|
|
pnttg1sol(NbrSol));
|
|
pararg1(NbrSol)=ElCLib::Parameter(L1,pnttg1sol(NbrSol));
|
|
TheSame2(NbrSol) = 0;
|
|
pnttg2sol(NbrSol) = Point2;
|
|
par2sol(NbrSol)=ElCLib::Parameter(cirsol(NbrSol),
|
|
pnttg2sol(NbrSol));
|
|
pararg2(NbrSol) = 0.;
|
|
TheSame3(NbrSol) = 0;
|
|
pnttg3sol(NbrSol) = Point3;
|
|
par3sol(NbrSol)=ElCLib::Parameter(cirsol(NbrSol),
|
|
pnttg3sol(NbrSol));
|
|
pararg3(NbrSol) = 0.;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
WellDone = Standard_True;
|
|
}
|
|
}
|
|
}
|
|
|