1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-04-04 18:06:22 +03:00
occt/src/IntPatch/IntPatch_ImpPrmIntersection.cxx
kgv 73dee81133 0032460: Coding Rules - eliminate CLang warning -Wunused-but-set-variable
Code has been adjusted to suppress -Wunused-but-set-variable warnings.

DRAWEXE.wasm, compiler flags have been moved to linker flags
to eliminiate -Wunused-command-line-argument warnings.
2021-06-24 23:47:45 +03:00

3287 lines
105 KiB
C++

// Created on: 1992-05-07
// Created by: Jacques GOUSSARD
// Copyright (c) 1992-1999 Matra Datavision
// Copyright (c) 1999-2014 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
#include <IntPatch_ImpPrmIntersection.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor3d_TopolTool.hxx>
#include <ElCLib.hxx>
#include <ElSLib.hxx>
#include <IntPatch_ArcFunction.hxx>
#include <IntPatch_PointLine.hxx>
#include <IntPatch_RLine.hxx>
#include <IntPatch_RstInt.hxx>
#include <IntPatch_SpecialPoints.hxx>
#include <IntPatch_TheIWLineOfTheIWalking.hxx>
#include <IntPatch_TheIWalking.hxx>
#include <IntPatch_TheSurfFunction.hxx>
#include <IntPatch_WLine.hxx>
#include <IntSurf.hxx>
#include <IntSurf_Quadric.hxx>
#include <IntSurf_QuadricTool.hxx>
#include <IntSurf_SequenceOfPathPoint.hxx>
#include <TColStd_Array1OfInteger.hxx>
#include <TopAbs_Orientation.hxx>
#include <TopTrans_CurveTransition.hxx>
#include <math_Matrix.hxx>
#include <math_Vector.hxx>
#ifndef OCCT_DEBUG
#define No_Standard_RangeError
#define No_Standard_OutOfRange
#endif
static Standard_Boolean DecomposeResult(const Handle(IntPatch_PointLine)& theLine,
const Standard_Boolean IsReversed,
const IntSurf_Quadric& theQuad,
const Handle(Adaptor3d_TopolTool)& thePDomain,
const Handle(Adaptor3d_Surface)& theQSurf,
const Handle(Adaptor3d_Surface)& theOtherSurf,
const Standard_Real theArcTol,
const Standard_Real theTolTang,
IntPatch_SequenceOfLine& theLines);
static
void ComputeTangency (const IntPatch_TheSOnBounds& solrst,
IntSurf_SequenceOfPathPoint& seqpdep,
const Handle(Adaptor3d_TopolTool)& Domain,
IntPatch_TheSurfFunction& Func,
const Handle(Adaptor3d_Surface)& PSurf,
TColStd_Array1OfInteger& Destination);
static
void Recadre(const Standard_Boolean ,
GeomAbs_SurfaceType typeS1,
GeomAbs_SurfaceType typeS2,
IntPatch_Point& pt,
const Handle(IntPatch_TheIWLineOfTheIWalking)& iwline,
Standard_Integer Param,
Standard_Real U1,
Standard_Real V1,
Standard_Real U2,
Standard_Real V2);
static
Standard_Boolean IsCoincide(IntPatch_TheSurfFunction& theFunc,
const Handle(IntPatch_PointLine)& theLine,
const Handle(Adaptor2d_Curve2d)& theArc,
const Standard_Boolean isTheSurface1Using,
const Standard_Real theToler3D,
const Standard_Real theToler2D,
const Standard_Real thePeriod);
//=======================================================================
//function : IsSeamOrPole
//purpose :
//=======================================================================
static IntPatch_SpecPntType IsSeamOrPole(const Handle(Adaptor3d_Surface)& theQSurf,
const Handle(IntSurf_LineOn2S)& theLine,
const Standard_Boolean IsReversed,
const Standard_Integer theRefIndex,
const Standard_Real theTol3D,
const Standard_Real theDeltaMax)
{
if((theRefIndex < 1) || (theRefIndex >= theLine->NbPoints()))
return IntPatch_SPntNone;
//Parameters on Quadric and on parametric for reference point
Standard_Real aUQRef, aVQRef, aUPRef, aVPRef;
Standard_Real aUQNext, aVQNext, aUPNext, aVPNext;
const gp_Pnt &aP3d = theLine->Value(theRefIndex + 1).Value();
if(IsReversed)
{
theLine->Value(theRefIndex).Parameters (aUPRef, aVPRef, aUQRef, aVQRef);
theLine->Value(theRefIndex+1).Parameters(aUPNext, aVPNext, aUQNext, aVQNext);
}
else
{
theLine->Value(theRefIndex).Parameters (aUQRef, aVQRef, aUPRef, aVPRef);
theLine->Value(theRefIndex+1).Parameters(aUQNext, aVQNext, aUPNext, aVPNext);
}
const GeomAbs_SurfaceType aType = theQSurf->GetType();
if ((aType == GeomAbs_Cone) &&
(theQSurf->Cone().Apex().SquareDistance(aP3d) < theTol3D*theTol3D))
{
return IntPatch_SPntPoleSeamU;
}
else if (aType == GeomAbs_Sphere)
{
const Standard_Real aSqTol = theTol3D*theTol3D;
gp_Pnt aP(ElSLib::Value(0.0, M_PI_2, theQSurf->Sphere()));
if (aP.SquareDistance(aP3d) < aSqTol)
{
return IntPatch_SPntPoleSeamU;
}
aP = ElSLib::Value(0.0, -M_PI_2, theQSurf->Sphere());
if (aP.SquareDistance(aP3d) < aSqTol)
{
return IntPatch_SPntPoleSeamU;
}
}
const Standard_Real aDeltaU = Abs(aUQRef - aUQNext);
if((aType != GeomAbs_Torus) && (aDeltaU < theDeltaMax))
return IntPatch_SPntNone;
switch(aType)
{
case GeomAbs_Cylinder:
return IntPatch_SPntSeamU;
case GeomAbs_Torus:
{
const Standard_Real aDeltaV = Abs(aVQRef - aVQNext);
if((aDeltaU >= theDeltaMax) && (aDeltaV >= theDeltaMax))
return IntPatch_SPntSeamUV;
if(aDeltaU >= theDeltaMax)
return IntPatch_SPntSeamU;
if(aDeltaV >= theDeltaMax)
return IntPatch_SPntSeamV;
}
break;
case GeomAbs_Sphere:
case GeomAbs_Cone:
return IntPatch_SPntPoleSeamU;
default:
break;
}
return IntPatch_SPntNone;
}
//=======================================================================
//function : IntPatch_ImpPrmIntersection
//purpose :
//=======================================================================
IntPatch_ImpPrmIntersection::IntPatch_ImpPrmIntersection ()
: done(Standard_False),
empt(Standard_False),
myIsStartPnt(Standard_False),
myUStart(0.0),
myVStart(0.0)
{ }
//=======================================================================
//function : IntPatch_ImpPrmIntersection
//purpose :
//=======================================================================
IntPatch_ImpPrmIntersection::IntPatch_ImpPrmIntersection
(const Handle(Adaptor3d_Surface)& Surf1,
const Handle(Adaptor3d_TopolTool)& D1,
const Handle(Adaptor3d_Surface)& Surf2,
const Handle(Adaptor3d_TopolTool)& D2,
const Standard_Real TolArc,
const Standard_Real TolTang,
const Standard_Real Fleche,
const Standard_Real Pas)
: done(Standard_False),
empt(Standard_False),
myIsStartPnt(Standard_False),
myUStart(0.0),
myVStart(0.0)
{
Perform(Surf1,D1,Surf2,D2,TolArc,TolTang,Fleche,Pas);
}
//=======================================================================
//function : SetStartPoint
//purpose :
//=======================================================================
void IntPatch_ImpPrmIntersection::SetStartPoint(const Standard_Real U,
const Standard_Real V)
{
myIsStartPnt = Standard_True;
myUStart = U; myVStart = V;
}
//=======================================================================
//function : ComputeTangency
//purpose :
//=======================================================================
void ComputeTangency (const IntPatch_TheSOnBounds& solrst,
IntSurf_SequenceOfPathPoint& seqpdep,
const Handle(Adaptor3d_TopolTool)& Domain,
IntPatch_TheSurfFunction& Func,
const Handle(Adaptor3d_Surface)& PSurf,
TColStd_Array1OfInteger& Destination)
{
Standard_Integer i,k, NbPoints, seqlength;
Standard_Real theparam,test;
Standard_Boolean fairpt, ispassing;
TopAbs_Orientation arcorien,vtxorien;
Handle(Adaptor2d_Curve2d) thearc;
Handle(Adaptor3d_HVertex) vtx,vtxbis;
//Standard_Boolean ispassing;
IntPatch_ThePathPointOfTheSOnBounds PStart;
IntSurf_PathPoint PPoint;
gp_Vec vectg;
gp_Dir2d dirtg;
gp_Pnt ptbid;
gp_Vec d1u,d1v,v1,v2;
gp_Pnt2d p2d;
gp_Vec2d d2d;
//
double aX[2], aF[1], aD[1][2];
math_Vector X(aX, 1, 2);
math_Vector F(aF, 1, 1);
math_Matrix D(aD, 1, 1, 1, 2);
//
seqlength = 0;
NbPoints = solrst.NbPoints();
for (i=1; i<= NbPoints; i++) {
if (Destination(i) == 0) {
PStart = solrst.Point(i);
thearc = PStart.Arc();
theparam = PStart.Parameter();
arcorien = Domain->Orientation(thearc);
ispassing = (arcorien == TopAbs_INTERNAL ||
arcorien == TopAbs_EXTERNAL);
thearc->D0(theparam,p2d);
X(1) = p2d.X();
X(2) = p2d.Y();
PPoint.SetValue(PStart.Value(),X(1),X(2));
Func.Values(X,F,D);
if (Func.IsTangent()) {
PPoint.SetTangency(Standard_True);
Destination(i) = seqlength+1;
if (!PStart.IsNew()) {
vtx = PStart.Vertex();
for (k=i+1; k<=NbPoints; k++) {
if (Destination(k) ==0) {
PStart = solrst.Point(k);
if (!PStart.IsNew()) {
vtxbis = PStart.Vertex();
if (Domain->Identical(vtx,vtxbis)) {
thearc = PStart.Arc();
theparam = PStart.Parameter();
arcorien = Domain->Orientation(thearc);
ispassing = ispassing && (arcorien == TopAbs_INTERNAL ||
arcorien == TopAbs_EXTERNAL);
thearc->D0(theparam,p2d);
PPoint.AddUV(p2d.X(),p2d.Y());
Destination(k) = seqlength+1;
}
}
}
}
}
PPoint.SetPassing(ispassing);
seqpdep.Append(PPoint);
seqlength++;
}
else { // on a un point de depart potentiel
vectg = Func.Direction3d();
dirtg = Func.Direction2d();
PSurf->D1(X(1),X(2),ptbid,d1u,d1v);
thearc->D1(theparam,p2d,d2d);
v2.SetLinearForm(d2d.X(),d1u,d2d.Y(),d1v);
v1 = d1u.Crossed(d1v);
test = vectg.Dot(v1.Crossed(v2));
if (PStart.IsNew()) {
if ((test < 0. && arcorien == TopAbs_FORWARD) ||
(test > 0. && arcorien == TopAbs_REVERSED)) {
vectg.Reverse();
dirtg.Reverse();
}
PPoint.SetDirections(vectg,dirtg);
PPoint.SetPassing(ispassing);
Destination(i) = seqlength+1;
seqpdep.Append(PPoint);
seqlength++;
}
else { // traiter la transition complexe
gp_Dir bidnorm(1.,1.,1.);
Standard_Real tole = 1.e-8;
TopAbs_Orientation LocTrans;
TopTrans_CurveTransition comptrans;
comptrans.Reset(vectg,bidnorm,0.);
if (arcorien == TopAbs_FORWARD ||
arcorien == TopAbs_REVERSED) {
// pour essai
vtx = PStart.Vertex();
vtxorien = Domain->Orientation(vtx);
if (Abs(test) <= tole) {
LocTrans = TopAbs_EXTERNAL; // et pourquoi pas INTERNAL
}
else {
if (((test > 0.)&& arcorien == TopAbs_FORWARD) ||
((test < 0.)&& arcorien == TopAbs_REVERSED)){
LocTrans = TopAbs_FORWARD;
}
else {
LocTrans = TopAbs_REVERSED;
}
if (arcorien == TopAbs_REVERSED) {v2.Reverse();}
}
comptrans.Compare(tole,v2,bidnorm,0.,LocTrans,vtxorien);
}
Destination(i) = seqlength+1;
for (k= i+1; k<=NbPoints; k++) {
if (Destination(k) == 0) {
PStart = solrst.Point(k);
if (!PStart.IsNew()) {
vtxbis = PStart.Vertex();
if (Domain->Identical(vtx,vtxbis)) {
thearc = PStart.Arc();
theparam = PStart.Parameter();
arcorien = Domain->Orientation(thearc);
PPoint.AddUV(X(1),X(2));
thearc->D1(theparam,p2d,d2d);
PPoint.AddUV(p2d.X(),p2d.Y());
if (arcorien == TopAbs_FORWARD ||
arcorien == TopAbs_REVERSED) {
ispassing = Standard_False;
v2.SetLinearForm(d2d.X(),d1u,d2d.Y(),d1v);
test = vectg.Dot(v1.Crossed(v2));
vtxorien = Domain->Orientation(PStart.Vertex());
if (Abs(test) <= tole) {
LocTrans = TopAbs_EXTERNAL; // et pourquoi pas INTERNAL
}
else {
if (((test > 0.)&& arcorien == TopAbs_FORWARD) ||
((test < 0.)&& arcorien == TopAbs_REVERSED)){
LocTrans = TopAbs_FORWARD;
}
else {
LocTrans = TopAbs_REVERSED;
}
if (arcorien == TopAbs_REVERSED) {v2.Reverse();}
}
comptrans.Compare(tole,v2,bidnorm,0.,LocTrans,vtxorien);
}
Destination(k) = seqlength+1;
}
}
}
}
fairpt = Standard_True;
if (!ispassing) {
TopAbs_State Before = comptrans.StateBefore();
TopAbs_State After = comptrans.StateAfter();
if ((Before == TopAbs_UNKNOWN)||(After == TopAbs_UNKNOWN)) {
fairpt = Standard_False;
}
else if (Before == TopAbs_IN) {
if (After == TopAbs_IN) {
ispassing = Standard_True;
}
else {
vectg.Reverse();
dirtg.Reverse();
}
}
else {
if (After !=TopAbs_IN) {
fairpt = Standard_False;
}
}
}
if (fairpt) {
PPoint.SetDirections(vectg,dirtg);
PPoint.SetPassing(ispassing);
seqpdep.Append(PPoint);
seqlength++;
}
else { // il faut remettre en "ordre" si on ne garde pas le point.
for (k=i; k <=NbPoints ; k++) {
if (Destination(k)==seqlength + 1) {
Destination(k) = -Destination(k);
}
}
}
}
}
}
}
}
//=======================================================================
//function : Recadre
//purpose :
//=======================================================================
void Recadre(const Standard_Boolean ,
GeomAbs_SurfaceType typeS1,
GeomAbs_SurfaceType typeS2,
IntPatch_Point& pt,
const Handle(IntPatch_TheIWLineOfTheIWalking)& iwline,
Standard_Integer Param,
Standard_Real U1,
Standard_Real V1,
Standard_Real U2,
Standard_Real V2)
{
Standard_Real U1p,V1p,U2p,V2p;
iwline->Line()->Value(Param).Parameters(U1p,V1p,U2p,V2p);
switch(typeS1)
{
case GeomAbs_Torus:
while(V1<(V1p-1.5*M_PI)) V1+=M_PI+M_PI;
while(V1>(V1p+1.5*M_PI)) V1-=M_PI+M_PI;
Standard_FALLTHROUGH
case GeomAbs_Cylinder:
case GeomAbs_Cone:
case GeomAbs_Sphere:
while(U1<(U1p-1.5*M_PI)) U1+=M_PI+M_PI;
while(U1>(U1p+1.5*M_PI)) U1-=M_PI+M_PI;
default:
break;
}
switch(typeS2)
{
case GeomAbs_Torus:
while(V2<(V2p-1.5*M_PI)) V2+=M_PI+M_PI;
while(V2>(V2p+1.5*M_PI)) V2-=M_PI+M_PI;
Standard_FALLTHROUGH
case GeomAbs_Cylinder:
case GeomAbs_Cone:
case GeomAbs_Sphere:
while(U2<(U2p-1.5*M_PI)) U2+=M_PI+M_PI;
while(U2>(U2p+1.5*M_PI)) U2-=M_PI+M_PI;
default:
break;
}
pt.SetParameters(U1,V1,U2,V2);
}
//=======================================================================
//function : Perform
//purpose :
//=======================================================================
void IntPatch_ImpPrmIntersection::Perform (const Handle(Adaptor3d_Surface)& Surf1,
const Handle(Adaptor3d_TopolTool)& D1,
const Handle(Adaptor3d_Surface)& Surf2,
const Handle(Adaptor3d_TopolTool)& D2,
const Standard_Real TolArc,
const Standard_Real TolTang,
const Standard_Real Fleche,
const Standard_Real Pas)
{
Standard_Boolean reversed, procf, procl, dofirst, dolast;
Standard_Integer indfirst = 0, indlast = 0, ind2, NbSegm;
Standard_Integer NbPointIns, NbPointRst, Nblines, Nbpts, NbPointDep;
Standard_Real U1,V1,U2,V2,paramf,paraml,currentparam;
IntPatch_TheSegmentOfTheSOnBounds thesegm;
IntSurf_PathPoint PPoint;
Handle(IntPatch_RLine) rline;
Handle(IntPatch_WLine) wline;
IntPatch_ThePathPointOfTheSOnBounds PStart,PStartf,PStartl;
IntPatch_Point ptdeb,ptfin,ptbis;
IntPatch_IType typ;
IntSurf_Transition TLine,TArc;
IntSurf_TypeTrans trans1,trans2;
gp_Pnt valpt,ptbid;
gp_Vec tgline,tgrst,norm1,norm2,d1u,d1v;
gp_Dir DirNormale;
gp_Vec VecNormale;
gp_Pnt2d p2d;
gp_Vec2d d2d;
Handle(Adaptor2d_Curve2d) currentarc;
GeomAbs_SurfaceType typeS1, typeS2;
IntSurf_Quadric Quad;
IntPatch_TheSurfFunction Func;
IntPatch_ArcFunction AFunc;
//
typeS1 = Surf1->GetType();
typeS2 = Surf2->GetType();
paramf =0.;
paraml =0.;
trans1 = IntSurf_Undecided;
trans2 = IntSurf_Undecided;
//
done = Standard_False;
empt = Standard_True;
slin.Clear();
spnt.Clear();
//
reversed = Standard_False;
switch (typeS1)
{
case GeomAbs_Plane:
Quad.SetValue(Surf1->Plane());
break;
case GeomAbs_Cylinder:
Quad.SetValue(Surf1->Cylinder());
break;
case GeomAbs_Sphere:
Quad.SetValue(Surf1->Sphere());
break;
case GeomAbs_Cone:
Quad.SetValue(Surf1->Cone());
break;
default:
{
reversed = Standard_True;
switch (typeS2)
{
case GeomAbs_Plane:
Quad.SetValue(Surf2->Plane());
break;
case GeomAbs_Cylinder:
Quad.SetValue(Surf2->Cylinder());
break;
case GeomAbs_Sphere:
Quad.SetValue(Surf2->Sphere());
break;
case GeomAbs_Cone:
Quad.SetValue(Surf2->Cone());
break;
default:
{
throw Standard_ConstructionError();
break;
}
}
}
break;
}
//
Standard_Real aLocalPas = Pas;
GeomAbs_SurfaceType aSType = reversed ? Surf1->GetType() : Surf2->GetType();
if (aSType == GeomAbs_BezierSurface || aSType == GeomAbs_BSplineSurface)
{
Standard_Real aMinRes = Precision::Infinite();
GeomAbs_Shape aCont = GeomAbs_C0;
Standard_Integer aMaxDeg = 0;
const Standard_Real aLimRes = 1.e-10;
if (reversed)
{
aMinRes = Min(Surf1->UResolution(Precision::Confusion()),
Surf1->VResolution(Precision::Confusion()));
aCont = (GeomAbs_Shape)Min(Surf1->UContinuity(), Surf1->VContinuity());
aMaxDeg = Max(Surf1->UDegree(), Surf1->VDegree());
}
else
{
aMinRes = Min(Surf2->UResolution(Precision::Confusion()),
Surf2->VResolution(Precision::Confusion()));
aCont = (GeomAbs_Shape)Min(Surf2->UContinuity(), Surf2->VContinuity());
aMaxDeg = Max(Surf2->UDegree(), Surf2->VDegree());
}
if (aMinRes < aLimRes && aCont > GeomAbs_C0 && aMaxDeg > 3)
{
aLocalPas = Min(Pas, 0.0001);
}
}
Func.SetImplicitSurface(Quad);
Func.Set(IntSurf_QuadricTool::Tolerance(Quad));
AFunc.SetQuadric(Quad);
//
if (!reversed) {
Func.Set(Surf2);
AFunc.Set(Surf2);
}
else {
Func.Set(Surf1);
AFunc.Set(Surf1);
}
//
if (!reversed) {
solrst.Perform(AFunc,D2,TolArc,TolTang);
}
else {
solrst.Perform(AFunc,D1,TolArc,TolTang);
}
if (!solrst.IsDone()) {
return;
}
//
IntSurf_SequenceOfPathPoint seqpdep;
IntSurf_SequenceOfInteriorPoint seqpins;
//
NbPointRst = solrst.NbPoints();
TColStd_Array1OfInteger Destination(1,NbPointRst+1); Destination.Init(0);
if (NbPointRst) {
if (!reversed) {
ComputeTangency(solrst,seqpdep,D2,Func,Surf2,Destination);
}
else {
ComputeTangency(solrst,seqpdep,D1,Func,Surf1,Destination);
}
}
//
Standard_Boolean SearchIns = Standard_True;
if(Quad.TypeQuadric() == GeomAbs_Plane && solrst.NbSegments() > 0)
{
//For such kind of cases it is possible that whole surface is on one side of plane,
//plane only touches surface and does not cross it,
//so no inner points exist.
SearchIns = Standard_False;
Handle(Adaptor3d_TopolTool) T;
if(reversed)
{
T = D1;
}
else
{
T = D2;
}
Standard_Integer aNbSamples = 0;
aNbSamples = T->NbSamples();
gp_Pnt2d s2d;
gp_Pnt s3d;
Standard_Real aValf[1], aUVap[2];
math_Vector Valf(aValf,1,1), UVap(aUVap,1,2);
T->SamplePoint(1,s2d, s3d);
UVap(1)=s2d.X();
UVap(2)=s2d.Y();
Func.Value(UVap,Valf);
Standard_Real rvalf = Sign(1.,Valf(1));
for(Standard_Integer i = 2; i <= aNbSamples; ++i)
{
T->SamplePoint(i,s2d, s3d);
UVap(1)=s2d.X();
UVap(2)=s2d.Y();
Func.Value(UVap,Valf);
if(rvalf * Valf(1) < 0.)
{
SearchIns = Standard_True;
break;
}
}
}
// Recherche des points interieurs
NbPointIns = 0;
if(SearchIns) {
if (!reversed) {
if (myIsStartPnt)
solins.Perform(Func,Surf2,myUStart,myVStart);
else
solins.Perform(Func,Surf2,D2,TolTang);
}
else {
if (myIsStartPnt)
solins.Perform(Func,Surf1,myUStart,myVStart);
else
solins.Perform(Func,Surf1,D1,TolTang);
}
NbPointIns = solins.NbPoints();
for (Standard_Integer i=1; i <= NbPointIns; i++) {
seqpins.Append(solins.Value(i));
}
}
//
NbPointDep=seqpdep.Length();
//
if (NbPointDep || NbPointIns) {
IntPatch_TheIWalking iwalk(TolTang, Fleche, aLocalPas);
iwalk.Perform(seqpdep, seqpins, Func, reversed ? Surf1 : Surf2, reversed);
if(!iwalk.IsDone()) {
return;
}
Standard_Real Vmin, Vmax, TolV = 1.e-14;
if (!reversed) { //Surf1 is quadric
Vmin = Surf1->FirstVParameter();
Vmax = Surf1->LastVParameter();
}
else { //Surf2 is quadric
Vmin = Surf2->FirstVParameter();
Vmax = Surf2->LastVParameter();
}
//
Nblines = iwalk.NbLines();
for (Standard_Integer j=1; j<=Nblines; j++) {
const Handle(IntPatch_TheIWLineOfTheIWalking)& iwline = iwalk.Value(j);
const Handle(IntSurf_LineOn2S)& thelin = iwline->Line();
Nbpts = thelin->NbPoints();
if(Nbpts>=2) {
Standard_Integer k = 0;
tgline = iwline->TangentVector(k);
if(k>=1 && k<=Nbpts) { } else { k=Nbpts>>1; }
valpt = thelin->Value(k).Value();
if (!reversed) {
thelin->Value(k).ParametersOnS2(U2,V2);
norm1 = Quad.Normale(valpt);
Surf2->D1(U2,V2,ptbid,d1u,d1v);
norm2 = d1u.Crossed(d1v);
}
else {
thelin->Value(k).ParametersOnS1(U2,V2);
norm2 = Quad.Normale(valpt);
Surf1->D1(U2,V2,ptbid,d1u,d1v);
norm1 = d1u.Crossed(d1v);
}
if (tgline.DotCross(norm2,norm1) > 0.) {
trans1 = IntSurf_Out;
trans2 = IntSurf_In;
}
else {
trans1 = IntSurf_In;
trans2 = IntSurf_Out;
}
//
Standard_Real AnU1,AnU2,AnV2;
GeomAbs_SurfaceType typQuad = Quad.TypeQuadric();
Standard_Boolean arecadr=Standard_False;
valpt = thelin->Value(1).Value();
Quad.Parameters(valpt,AnU1,V1);
if((V1 < Vmin) && (Vmin-V1 < TolV)) V1 = Vmin;
if((V1 > Vmax) && (V1-Vmax < TolV)) V1 = Vmax;
if(reversed) {
thelin->SetUV(1,Standard_False,AnU1,V1); //-- on va lire u2,v2
thelin->Value(1).ParametersOnS1(AnU2,AnV2);
}
else {
thelin->SetUV(1,Standard_True,AnU1,V1); //-- on va lire u1,v1
thelin->Value(1).ParametersOnS2(AnU2,AnV2);
}
if(typQuad==GeomAbs_Cylinder ||
typQuad==GeomAbs_Cone ||
typQuad==GeomAbs_Sphere) {
arecadr=Standard_True;
}
//
for (k=2; k<=Nbpts; ++k) {
valpt = thelin->Value(k).Value();
Quad.Parameters(valpt,U1,V1);
//
if((V1 < Vmin) && (Vmin-V1 < TolV)) {
V1 = Vmin;
}
if((V1 > Vmax) && (V1-Vmax < TolV)) {
V1 = Vmax;
}
//
if(arecadr) {
//modified by NIZNHY-PKV Fri Mar 28 15:06:01 2008f
Standard_Real aCf, aTwoPI;
//
aCf=0.;
aTwoPI=M_PI+M_PI;
if ((U1-AnU1) > 1.5*M_PI) {
while ((U1-AnU1) > (1.5*M_PI+aCf*aTwoPI)) {
aCf=aCf+1.;
}
U1=U1-aCf*aTwoPI;
}
//
else {
while ((U1-AnU1) < (-1.5*M_PI-aCf*aTwoPI)) {
aCf=aCf+1.;
}
U1=U1+aCf*aTwoPI;
}
// was:
//if ((U1-AnU1) > 1.5*M_PI) {
// U1-=M_PI+M_PI;
//}
//else if ((U1-AnU1) < -1.5*M_PI) {
// U1+=M_PI+M_PI;
//}
//modified by NIZNHY-PKV Fri Mar 28 15:06:11 2008t
}
//
if(reversed) {
thelin->SetUV(k,Standard_False,U1,V1);
thelin->Value(k).ParametersOnS1(U2,V2);
switch(typeS1) {
case GeomAbs_Cylinder:
case GeomAbs_Cone:
case GeomAbs_Sphere:
case GeomAbs_Torus:
while(U2<(AnU2-1.5*M_PI)) U2+=M_PI+M_PI;
while(U2>(AnU2+1.5*M_PI)) U2-=M_PI+M_PI;
break;
default:
break;
}
if(typeS2==GeomAbs_Torus) {
while(V2<(AnV2-1.5*M_PI)) V2+=M_PI+M_PI;
while(V2>(AnV2+1.5*M_PI)) V2-=M_PI+M_PI;
}
thelin->SetUV(k,Standard_True,U2,V2);
}
else {
thelin->SetUV(k,Standard_True,U1,V1);
thelin->Value(k).ParametersOnS2(U2,V2);
switch(typeS2) {
case GeomAbs_Cylinder:
case GeomAbs_Cone:
case GeomAbs_Sphere:
case GeomAbs_Torus:
while(U2<(AnU2-1.5*M_PI)) U2+=M_PI+M_PI;
while(U2>(AnU2+1.5*M_PI)) U2-=M_PI+M_PI;
break;
default:
break;
}
if(typeS2==GeomAbs_Torus) {
while(V2<(AnV2-1.5*M_PI)) V2+=M_PI+M_PI;
while(V2>(AnV2+1.5*M_PI)) V2-=M_PI+M_PI;
}
thelin->SetUV(k,Standard_False,U2,V2);
}
AnU1=U1;
AnU2=U2;
AnV2=V2;
}
// <-A
wline = new IntPatch_WLine(thelin,Standard_False,trans1,trans2);
wline->SetCreatingWayInfo(IntPatch_WLine::IntPatch_WLImpPrm);
#ifdef INTPATCH_IMPPRMINTERSECTION_DEBUG
wline->Dump(0);
#endif
if ( iwline->HasFirstPoint()
&& iwline->IsTangentAtBegining() == Standard_False)
{
indfirst = iwline->FirstPointIndex();
PPoint = seqpdep(indfirst);
tgline = PPoint.Direction3d();
Standard_Integer themult = PPoint.Multiplicity();
for (Standard_Integer i=NbPointRst; i>=1; i--) {
if (Destination(i) == indfirst) {
if (!reversed) { //-- typeS1 = Pln || Cyl || Sph || Cone
Quad.Parameters(PPoint.Value(),U1,V1);
if((V1 < Vmin) && (Vmin-V1 < TolV)) V1 = Vmin;
if((V1 > Vmax) && (V1-Vmax < TolV)) V1 = Vmax;
PPoint.Parameters(themult,U2,V2);
Surf2->D1(U2,V2,ptbid,d1u,d1v); //-- @@@@
}
else { //-- typeS1 != Pln && Cyl && Sph && Cone
Quad.Parameters(PPoint.Value(),U2,V2);
if((V2 < Vmin) && (Vmin-V2 < TolV)) V2 = Vmin;
if((V2 > Vmax) && (V2-Vmax < TolV)) V2 = Vmax;
PPoint.Parameters(themult,U1,V1);
Surf1->D1(U1,V1,ptbid,d1u,d1v); //-- @@@@
}
VecNormale = d1u.Crossed(d1v);
//-- Modif du 27 Septembre 94 (Recadrage des pts U,V)
ptdeb.SetValue(PPoint.Value(),TolArc,Standard_False);
ptdeb.SetParameters(U1,V1,U2,V2);
ptdeb.SetParameter(1.);
Recadre(reversed,typeS1,typeS2,ptdeb,iwline,1,U1,V1,U2,V2);
currentarc = solrst.Point(i).Arc();
currentparam = solrst.Point(i).Parameter();
currentarc->D1(currentparam,p2d,d2d);
tgrst.SetLinearForm(d2d.X(),d1u,d2d.Y(),d1v);
Standard_Real squaremagnitudeVecNormale = VecNormale.SquareMagnitude();
if(squaremagnitudeVecNormale > 1e-13) {
DirNormale=VecNormale;
IntSurf::MakeTransition(tgline,tgrst,DirNormale,TLine,TArc);
}
else {
TLine.SetValue(Standard_True,IntSurf_Undecided);
TArc.SetValue(Standard_True,IntSurf_Undecided);
}
ptdeb.SetArc(reversed,currentarc,currentparam,TLine,TArc);
if (!solrst.Point(i).IsNew()) {
ptdeb.SetVertex(reversed,solrst.Point(i).Vertex());
}
wline->AddVertex(ptdeb);
if (themult == 0) {
wline->SetFirstPoint(wline->NbVertex());
}
themult--;
}
}
}
else if (iwline->IsTangentAtBegining())
{
gp_Pnt psol = thelin->Value(1).Value();
thelin->Value(1).ParametersOnS1(U1,V1);
thelin->Value(1).ParametersOnS2(U2,V2);
ptdeb.SetValue(psol,TolArc,Standard_True);
ptdeb.SetParameters(U1,V1,U2,V2);
ptdeb.SetParameter(1.);
wline->AddVertex(ptdeb);
wline->SetFirstPoint(wline->NbVertex());
}
else
{
gp_Pnt psol = thelin->Value(1).Value();
thelin->Value(1).ParametersOnS1(U1,V1);
thelin->Value(1).ParametersOnS2(U2,V2);
ptdeb.SetValue(psol,TolArc,Standard_False);
ptdeb.SetParameters(U1,V1,U2,V2);
ptdeb.SetParameter(1.);
wline->AddVertex(ptdeb);
wline->SetFirstPoint(wline->NbVertex());
}
if ( iwline->HasLastPoint()
&& iwline->IsTangentAtEnd() == Standard_False)
{
indlast = iwline->LastPointIndex();
PPoint = seqpdep(indlast);
tgline = PPoint.Direction3d().Reversed();
Standard_Integer themult = PPoint.Multiplicity();
for (Standard_Integer i=NbPointRst; i >=1; i--) {
if (Destination(i) == indlast) {
if (!reversed) {
Quad.Parameters(PPoint.Value(),U1,V1);
if((V1 < Vmin) && (Vmin-V1 < TolV)) V1 = Vmin;
if((V1 > Vmax) && (V1-Vmax < TolV)) V1 = Vmax;
PPoint.Parameters(themult,U2,V2);
Surf2->D1(U2,V2,ptbid,d1u,d1v); //-- @@@@
VecNormale = d1u.Crossed(d1v); //-- @@@@
}
else {
Quad.Parameters(PPoint.Value(),U2,V2);
if((V2 < Vmin) && (Vmin-V2 < TolV)) V2 = Vmin;
if((V2 > Vmax) && (V2-Vmax < TolV)) V2 = Vmax;
PPoint.Parameters(themult,U1,V1);
Surf1->D1(U1,V1,ptbid,d1u,d1v); //-- @@@@
VecNormale = d1u.Crossed(d1v); //-- @@@@
}
ptfin.SetValue(PPoint.Value(),TolArc,Standard_False);
ptfin.SetParameters(U1,V1,U2,V2);
ptfin.SetParameter(Nbpts);
Recadre(reversed,typeS1,typeS2,ptfin,iwline,Nbpts-1,U1,V1,U2,V2);
currentarc = solrst.Point(i).Arc();
currentparam = solrst.Point(i).Parameter();
currentarc->D1(currentparam,p2d,d2d);
tgrst.SetLinearForm(d2d.X(),d1u,d2d.Y(),d1v);
Standard_Real squaremagnitudeVecNormale = VecNormale.SquareMagnitude();
if(squaremagnitudeVecNormale > 1e-13) {
DirNormale=VecNormale;
IntSurf::MakeTransition(tgline,tgrst,DirNormale,TLine,TArc);
}
else {
TLine.SetValue(Standard_True,IntSurf_Undecided);
TArc.SetValue(Standard_True,IntSurf_Undecided);
}
ptfin.SetArc(reversed,currentarc,currentparam,TLine,TArc);
if (!solrst.Point(i).IsNew()) {
ptfin.SetVertex(reversed,solrst.Point(i).Vertex());
}
wline->AddVertex(ptfin);
if (themult == 0) {
wline->SetLastPoint(wline->NbVertex());
}
themult--;
}
}
}
else if (iwline->IsTangentAtEnd())
{
gp_Pnt psol = thelin->Value(Nbpts).Value();
thelin->Value(Nbpts).ParametersOnS1(U1,V1);
thelin->Value(Nbpts).ParametersOnS2(U2,V2);
ptfin.SetValue(psol,TolArc,Standard_True);
ptfin.SetParameters(U1,V1,U2,V2);
ptfin.SetParameter(Nbpts);
wline->AddVertex(ptfin);
wline->SetLastPoint(wline->NbVertex());
}
else
{
gp_Pnt psol = thelin->Value(Nbpts).Value();
thelin->Value(Nbpts).ParametersOnS1(U1,V1);
thelin->Value(Nbpts).ParametersOnS2(U2,V2);
ptfin.SetValue(psol,TolArc,Standard_False);
ptfin.SetParameters(U1,V1,U2,V2);
ptfin.SetParameter(Nbpts);
wline->AddVertex(ptfin);
wline->SetLastPoint(wline->NbVertex());
}
//
// Il faut traiter les points de passage.
slin.Append(wline);
}// if(Nbpts>=2) {
}// for (j=1; j<=Nblines; j++) {
// ON GERE LES RACCORDS ENTRE LIGNES. ELLE NE PEUVENT SE RACCORDER
// QUE SUR DES POINTS DE TANGENCE
Nblines = slin.Length();
for (Standard_Integer j=1; j<=Nblines-1; j++) {
dofirst = dolast = Standard_False;
const Handle(IntPatch_Line)& slinj = slin(j);
Handle(IntPatch_WLine) wlin1 (Handle(IntPatch_WLine)::DownCast (slinj));
if (wlin1->HasFirstPoint()) {
ptdeb = wlin1->FirstPoint(indfirst);
if (ptdeb.IsTangencyPoint()) {
dofirst = Standard_True;
}
}
if (wlin1->HasLastPoint()) {
ptfin = wlin1->LastPoint(indlast);
if (ptfin.IsTangencyPoint()) {
dolast = Standard_True;
}
}
if (dofirst || dolast) {
for (Standard_Integer k=j+1; k<=Nblines;k++) {
const Handle(IntPatch_Line)& slink = slin(k);
Handle(IntPatch_WLine) wlin2 (Handle(IntPatch_WLine)::DownCast (slink));
if (wlin2->HasFirstPoint()) {
ptbis = wlin2->FirstPoint(ind2);
if (ptbis.IsTangencyPoint()) {
if (dofirst ) {
if (ptdeb.Value().Distance(ptbis.Value()) <= TolArc) {
ptdeb.SetMultiple(Standard_True);
if (!ptbis.IsMultiple()) {
ptbis.SetMultiple(Standard_True);
wlin2->Replace(ind2,ptbis);
}
}
}
if (dolast ) {
if (ptfin.Value().Distance(ptbis.Value()) <= TolArc) {
ptfin.SetMultiple(Standard_True);
if (!ptbis.IsMultiple()) {
ptbis.SetMultiple(Standard_True);
wlin2->Replace(ind2,ptbis);
}
}
}
}
}
if (wlin2->HasLastPoint()) {
ptbis = wlin2->LastPoint(ind2);
if (ptbis.IsTangencyPoint()) {
if (dofirst ) {
if (ptdeb.Value().Distance(ptbis.Value()) <= TolArc) {
ptdeb.SetMultiple(Standard_True);
if (!ptbis.IsMultiple()) {
ptbis.SetMultiple(Standard_True);
wlin2->Replace(ind2,ptbis);
}
}
}
if (dolast ) {
if (ptfin.Value().Distance(ptbis.Value()) <= TolArc) {
ptfin.SetMultiple(Standard_True);
if (!ptbis.IsMultiple()) {
ptbis.SetMultiple(Standard_True);
wlin2->Replace(ind2,ptbis);
}
}
}
}
}
}
if(dofirst)
wlin1->Replace(indfirst,ptdeb);
if(dolast)
wlin1->Replace(indlast,ptfin);
}
}
}// if (seqpdep.Length() != 0 || seqpins.Length() != 0) {
//
// Treatment the segments
NbSegm = solrst.NbSegments();
if (NbSegm) {
for(Standard_Integer i=1; i<=NbSegm; i++) {
thesegm = solrst.Segment(i);
//Check if segment is degenerated
if(thesegm.HasFirstPoint() && thesegm.HasLastPoint())
{
Standard_Real tol2 = Precision::Confusion();
tol2 *= tol2;
const gp_Pnt& aPf = thesegm.FirstPoint().Value();
const gp_Pnt& aPl = thesegm.LastPoint().Value();
if(aPf.SquareDistance(aPl) <= tol2)
{
//segment can be degenerated - check inner point
paramf = thesegm.FirstPoint().Parameter();
paraml = thesegm.LastPoint().Parameter();
gp_Pnt2d _p2d =
thesegm.Curve()->Value(.57735 * paramf + 0.42265 * paraml);
gp_Pnt aPm;
if(reversed)
{
Surf1->D0(_p2d.X(), _p2d.Y(), aPm);
}
else
{
Surf2->D0(_p2d.X(), _p2d.Y(), aPm);
}
if(aPm.SquareDistance(aPf) <= tol2)
{
//Degenerated
continue;
}
}
}
//----------------------------------------------------------------------
// on cree une ligne d intersection contenant uniquement le segment.
// VOIR POUR LA TRANSITION DE LA LIGNE
// On ajoute aussi un polygone pour le traitement des intersections
// entre ligne et restrictions de la surface implicite (PutVertexOnLine)
//----------------------------------------------------------------------
//-- Calcul de la transition sur la rline (12 fev 97)
//-- reversed a le sens de OnFirst
//--
dofirst = dolast = Standard_False;
procf = Standard_False;
procl = Standard_False;
IntSurf_Transition TLineUnk,TArcUnk;
IntPatch_Point _thepointAtBeg;
IntPatch_Point _thepointAtEnd;
Standard_Boolean TransitionOK=Standard_False;
if(thesegm.HasFirstPoint()) {
Standard_Real _u1,_v1,_u2,_v2;
dofirst = Standard_True;
PStartf = thesegm.FirstPoint();
paramf = PStartf.Parameter();
gp_Pnt2d _p2d = thesegm.Curve()->Value(paramf);
Handle(Adaptor3d_HVertex) _vtx;
if(PStartf.IsNew()==Standard_False)
_vtx= PStartf.Vertex();
const gp_Pnt& _Pp = PStartf.Value();
_thepointAtBeg.SetValue(_Pp,PStartf.Tolerance(),Standard_False);
if (!reversed) { //-- typeS1 = Pln || Cyl || Sph || Cone
Quad.Parameters(_Pp,_u1,_v1);
_u2=_p2d.X(); _v2=_p2d.Y();
}
else { //-- typeS1 != Pln && Cyl && Sph && Cone
Quad.Parameters(_Pp,_u2,_v2);
_u1=_p2d.X(); _v1=_p2d.Y();
}
_thepointAtBeg.SetParameters(_u1,_v1,_u2,_v2);
_thepointAtBeg.SetParameter(paramf);
if(PStartf.IsNew()==Standard_False)
_thepointAtBeg.SetVertex(reversed,_vtx);
_thepointAtBeg.SetArc(reversed,thesegm.Curve(),paramf,TLineUnk,TArcUnk);
gp_Vec d1u1,d1v1,d1u2,d1v2; gp_Vec2d _d2d;
Surf1->D1(_u1,_v1,ptbid,d1u1,d1v1);
norm1 = d1u1.Crossed(d1v1);
Surf2->D1(_u2,_v2,ptbid,d1u2,d1v2);
norm2 = d1u2.Crossed(d1v2);
thesegm.Curve()->D1(paramf,_p2d,_d2d);
if(reversed) {
tgline.SetLinearForm(_d2d.X(),d1u1,_d2d.Y(),d1v1);
}
else {
tgline.SetLinearForm(_d2d.X(),d1u2,_d2d.Y(),d1v2);
}
_u1=tgline.DotCross(norm2,norm1);
TransitionOK=Standard_True;
if (_u1 > 0.00000001) {
trans1 = IntSurf_Out;
trans2 = IntSurf_In;
}
else if(_u1 < -0.00000001) {
trans1 = IntSurf_In;
trans2 = IntSurf_Out;
}
else {
TransitionOK=Standard_False;
}
}
if(thesegm.HasLastPoint()) {
Standard_Real _u1,_v1,_u2,_v2;
dolast = Standard_True;
PStartl = thesegm.LastPoint();
paraml = PStartl.Parameter();
gp_Pnt2d _p2d = thesegm.Curve()->Value(paraml);
Handle(Adaptor3d_HVertex) _vtx;
if(PStartl.IsNew()==Standard_False)
_vtx = PStartl.Vertex();
const gp_Pnt& _Pp = PStartl.Value();
IntPatch_Point _thepoint;
_thepointAtEnd.SetValue(_Pp,PStartl.Tolerance(),Standard_False);
if (!reversed) { //-- typeS1 = Pln || Cyl || Sph || Cone
Quad.Parameters(_Pp,_u1,_v1);
_u2=_p2d.X(); _v2=_p2d.Y();
}
else { //-- typeS1 != Pln && Cyl && Sph && Cone
Quad.Parameters(_Pp,_u2,_v2);
_u1=_p2d.X(); _v1=_p2d.Y();
}
_thepointAtEnd.SetParameters(_u1,_v1,_u2,_v2);
_thepointAtEnd.SetParameter(paraml);
if(PStartl.IsNew()==Standard_False)
_thepointAtEnd.SetVertex(reversed,_vtx);
_thepointAtEnd.SetArc(reversed,thesegm.Curve(),paraml,TLineUnk,TArcUnk);
gp_Vec d1u1,d1v1,d1u2,d1v2; gp_Vec2d _d2d;
Surf1->D1(_u1,_v1,ptbid,d1u1,d1v1);
norm1 = d1u1.Crossed(d1v1);
Surf2->D1(_u2,_v2,ptbid,d1u2,d1v2);
norm2 = d1u2.Crossed(d1v2);
thesegm.Curve()->D1(paraml,_p2d,_d2d);
if(reversed) {
tgline.SetLinearForm(_d2d.X(),d1u1,_d2d.Y(),d1v1);
}
else {
tgline.SetLinearForm(_d2d.X(),d1u2,_d2d.Y(),d1v2);
}
_u1=tgline.DotCross(norm2,norm1);
TransitionOK=Standard_True;
if (_u1 > 0.00000001) {
trans1 = IntSurf_Out;
trans2 = IntSurf_In;
}
else if(_u1 < -0.00000001) {
trans1 = IntSurf_In;
trans2 = IntSurf_Out;
}
else {
TransitionOK=Standard_False;
}
}
if(TransitionOK==Standard_False) {
//-- rline = new IntPatch_RLine (thesegm.Curve(),reversed,Standard_False);
rline = new IntPatch_RLine (Standard_False);
if(reversed) {
rline->SetArcOnS1(thesegm.Curve());
}
else {
rline->SetArcOnS2(thesegm.Curve());
}
}
else {
//-- rline = new IntPatch_RLine (thesegm.Curve(),reversed,Standard_False,trans1,trans2);
rline = new IntPatch_RLine (Standard_False,trans1,trans2);
if(reversed) {
rline->SetArcOnS1(thesegm.Curve());
}
else {
rline->SetArcOnS2(thesegm.Curve());
}
}
//------------------------------
//-- Ajout des points
//--
if (thesegm.HasFirstPoint()) {
rline->AddVertex(_thepointAtBeg);
rline->SetFirstPoint(rline->NbVertex());
}
if (thesegm.HasLastPoint()) {
rline->AddVertex(_thepointAtEnd);
rline->SetLastPoint(rline->NbVertex());
}
// Polygone sur restriction solution
if (dofirst && dolast) {
Standard_Real prm;
gp_Pnt ptpoly;
IntSurf_PntOn2S p2s;
Handle(IntSurf_LineOn2S) Thelin = new IntSurf_LineOn2S ();
Handle(Adaptor2d_Curve2d) arcsegm = thesegm.Curve();
Standard_Integer nbsample = 100;
if (!reversed) {
for (Standard_Integer j=1; j<=nbsample; j++) {
prm = paramf + (j-1)*(paraml-paramf)/(nbsample-1);
arcsegm->D0(prm,p2d);
Surf2->D0(p2d.X(),p2d.Y(),ptpoly);
Quad.Parameters(ptpoly,U1,V1);
p2s.SetValue(ptpoly,U1,V1,p2d.X(),p2d.Y());
Thelin->Add(p2s);
}
}
else {
for (Standard_Integer j=1; j<=nbsample; j++) {
prm = paramf + (j-1)*(paraml-paramf)/(nbsample-1);
arcsegm->D0(prm,p2d);
Surf1->D0(p2d.X(),p2d.Y(),ptpoly);
Quad.Parameters(ptpoly,U2,V2);
p2s.SetValue(ptpoly,p2d.X(),p2d.Y(),U2,V2);
Thelin->Add(p2s);
}
}
rline->Add(Thelin);
}
if (dofirst || dolast) {
Nblines = slin.Length();
for (Standard_Integer j=1; j<=Nblines; j++) {
const Handle(IntPatch_Line)& slinj = slin(j);
typ = slinj->ArcType();
if (typ == IntPatch_Walking) {
Nbpts = Handle(IntPatch_WLine)::DownCast (slinj)->NbVertex();
}
else {
Nbpts = Handle(IntPatch_RLine)::DownCast (slinj)->NbVertex();
}
for (Standard_Integer k=1; k<=Nbpts;k++) {
if (typ == IntPatch_Walking) {
ptdeb = Handle(IntPatch_WLine)::DownCast (slinj)->Vertex(k);
}
else {
ptdeb = Handle(IntPatch_RLine)::DownCast (slinj)->Vertex(k);
}
if (dofirst) {
if (ptdeb.Value().Distance(PStartf.Value()) <=TolArc) {
ptdeb.SetMultiple(Standard_True);
if (typ == IntPatch_Walking) {
Handle(IntPatch_WLine)::DownCast (slinj)->Replace(k,ptdeb);
}
else {
Handle(IntPatch_RLine)::DownCast (slinj)->Replace(k,ptdeb);
}
ptdeb.SetParameter(paramf);
rline->AddVertex(ptdeb);
if (!procf){
procf=Standard_True;
rline->SetFirstPoint(rline->NbVertex());
}
}
}
if (dolast) {
if(dofirst) { //-- on recharge le ptdeb
if (typ == IntPatch_Walking) {
ptdeb = Handle(IntPatch_WLine)::DownCast (slinj)->Vertex(k);
}
else {
ptdeb = Handle(IntPatch_RLine)::DownCast (slinj)->Vertex(k);
}
}
if (ptdeb.Value().Distance(PStartl.Value()) <=TolArc) {
ptdeb.SetMultiple(Standard_True);
if (typ == IntPatch_Walking) {
Handle(IntPatch_WLine)::DownCast (slinj)->Replace(k,ptdeb);
}
else {
Handle(IntPatch_RLine)::DownCast (slinj)->Replace(k,ptdeb);
}
ptdeb.SetParameter(paraml);
rline->AddVertex(ptdeb);
if (!procl){
procl=Standard_True;
rline->SetLastPoint(rline->NbVertex());
}
}
}
}
}
}
slin.Append(rline);
}
}// if (NbSegm)
//
// on traite les restrictions de la surface implicite
for (Standard_Integer i=1, aNbLin = slin.Length(); i<=aNbLin; i++)
{
Handle(IntPatch_PointLine) aL = Handle(IntPatch_PointLine)::DownCast(slin(i));
if (!reversed)
IntPatch_RstInt::PutVertexOnLine(aL,Surf1,D1,Surf2,Standard_True,TolTang);
else
IntPatch_RstInt::PutVertexOnLine(aL,Surf2,D2,Surf1,Standard_False,TolTang);
if (aL->NbPnts() <= 2)
{
Standard_Boolean aCond = aL->NbPnts() < 2;
if (!aCond)
aCond = (aL->Point(1).IsSame(aL->Point(2), Precision::Confusion()));
if (aCond)
{
slin.Remove(i);
i--;
aNbLin--;
continue;
}
}
if(aL->ArcType() == IntPatch_Walking)
{
const Handle(IntPatch_WLine) aWL = Handle(IntPatch_WLine)::DownCast(aL);
slin.Append(aWL);
slin.Remove(i);
i--;
aNbLin--;
}
}
// Now slin is filled as follows: lower indices correspond to Restriction line,
// after (higher indices) - only Walking-line.
const Standard_Real aTol3d = Max(Func.Tolerance(), TolTang);
const Handle(Adaptor3d_Surface)& aQSurf = (reversed) ? Surf2 : Surf1;
const Handle(Adaptor3d_Surface)& anOtherSurf = (reversed) ? Surf1 : Surf2;
for (Standard_Integer i = 1; i <= slin.Length(); i++)
{
const Handle(IntPatch_PointLine)& aL1 = Handle(IntPatch_PointLine)::DownCast(slin(i));
const Handle(IntPatch_RLine)& aRL1 = Handle(IntPatch_RLine)::DownCast(aL1);
if(aRL1.IsNull())
{
//Walking-Walking cases are not supported
break;
}
const Handle(Adaptor2d_Curve2d)& anArc = aRL1->IsArcOnS1() ?
aRL1->ArcOnS1() :
aRL1->ArcOnS2();
if(anArc->GetType() != GeomAbs_Line)
{
//Restriction line must be isoline.
//Other cases are not supported by
//existing algorithms.
break;
}
Standard_Boolean isFirstDeleted = Standard_False;
for(Standard_Integer j = i + 1; j <= slin.Length(); j++)
{
Handle(IntPatch_PointLine) aL2 = Handle(IntPatch_PointLine)::DownCast(slin(j));
Handle(IntPatch_RLine) aRL2 = Handle(IntPatch_RLine)::DownCast(aL2);
//Here aL1 (i-th line) is Restriction-line and aL2 (j-th line) is
//Restriction or Walking
if(!aRL2.IsNull())
{
const Handle(Adaptor2d_Curve2d)& anArc2 = aRL2->IsArcOnS1() ?
aRL2->ArcOnS1() :
aRL2->ArcOnS2();
if(anArc2->GetType() != GeomAbs_Line)
{
//Restriction line must be isoline.
//Other cases are not supported by
//existing algorithms.
continue;
}
}
//aDir can be equal to one of following four values only
//(because Reastriction line is boundary of rectangular surface):
//either {0, 1} or {0, -1} or {1, 0} or {-1, 0}.
const gp_Dir2d aDir = anArc->Line().Direction();
Standard_Real aTol2d = anOtherSurf->UResolution(aTol3d),
aPeriod = anOtherSurf->IsVPeriodic() ? anOtherSurf->VPeriod() : 0.0;
if(Abs(aDir.X()) < 0.5)
{//Restriction directs along V-direction
aTol2d = anOtherSurf->VResolution(aTol3d);
aPeriod = anOtherSurf->IsUPeriodic() ? anOtherSurf->UPeriod() : 0.0;
}
const Standard_Boolean isCoincide = IsCoincide(Func, aL2, anArc, aRL1->IsArcOnS1(),
aTol3d, aTol2d, aPeriod);
if(isCoincide)
{
if(aRL2.IsNull())
{//Delete Walking-line
slin.Remove(j);
j--;
}
else
{//Restriction-Restriction
const Handle(Adaptor2d_Curve2d)& anArc2 = aRL2->IsArcOnS1() ?
aRL2->ArcOnS1() :
aRL2->ArcOnS2();
const Standard_Real aRange2 = anArc2->LastParameter() -
anArc2->FirstParameter();
const Standard_Real aRange1 = anArc->LastParameter() -
anArc->FirstParameter();
if(aRange2 > aRange1)
{
isFirstDeleted = Standard_True;
break;
}
else
{//Delete j-th line
slin.Remove(j);
j--;
}
}
}
} //for(Standard_Integer j = i + 1; j <= slin.Length(); j++)
if(isFirstDeleted)
{//Delete i-th line
slin.Remove(i--);
}
}//for (Standard_Integer i = 1; i <= slin.Length(); i++)
empt = (slin.Length() == 0 && spnt.Length() == 0);
done = Standard_True;
if(slin.Length() == 0)
return;
Standard_Boolean isDecomposeRequired = (Quad.TypeQuadric() == GeomAbs_Cone) ||
(Quad.TypeQuadric() == GeomAbs_Sphere) ||
(Quad.TypeQuadric() == GeomAbs_Cylinder) ||
(Quad.TypeQuadric() == GeomAbs_Torus);
if(!isDecomposeRequired)
return;
// post processing for cones and spheres
const Handle(Adaptor3d_TopolTool)& PDomain = (reversed) ? D1 : D2;
IntPatch_SequenceOfLine dslin;
Standard_Boolean isDecompose = Standard_False;
for(Standard_Integer i = 1; i <= slin.Length(); i++ )
{
if(DecomposeResult( Handle(IntPatch_PointLine)::DownCast(slin(i)),
reversed, Quad, PDomain, aQSurf,
anOtherSurf, TolArc, aTol3d, dslin))
{
isDecompose = Standard_True;
}
}
if(!isDecompose)
return;
slin.Clear();
for(Standard_Integer i = 1; i <= dslin.Length(); i++ )
slin.Append(dslin(i));
}
// correct U parameter of the start point of line on Quadric
// (change 0->2PI or vs, if necessary)
static Standard_Real AdjustUFirst(Standard_Real U1,Standard_Real U2)
{
Standard_Real u = U1;
// case: no adjustment
if( U1 > 0. && U1 < (2.*M_PI) )
return u;
// case: near '0'
if( U1 == 0. || fabs(U1) <= 1.e-9 ) {
if( U2 > 0. && U2 < (2.*M_PI) )
u = ( U2 < ((2.*M_PI)-U2) ) ? 0. : (2.*M_PI);
else {
Standard_Real uu = U2;
if( U2 > (2.*M_PI) )
while( uu > (2.*M_PI) )
uu -= (2.*M_PI);
else
while( uu < 0.)
uu += (2.*M_PI);
u = ( uu < ((2.*M_PI)-uu) ) ? 0. : (2.*M_PI);
}
}
// case: near '2PI'
else if( U1 == (2.*M_PI) || fabs((2.*M_PI)-fabs(U1)) <= 1.e-9 ) {
if( U2 > 0. && U2 < (2.*M_PI) )
u = ( U2 < ((2.*M_PI)-U2) ) ? 0. : (2.*M_PI);
else {
Standard_Real uu = U2;
if( U2 > (2.*M_PI) )
while( uu > (2.*M_PI) )
uu -= (2.*M_PI);
else
while( uu < 0.)
uu += (2.*M_PI);
u = ( uu < ((2.*M_PI)-uu) ) ? 0. : (2.*M_PI);
}
}
// case: '<0. || >2PI'
else {
if(U1 < 0.)
while(u < 0.)
u += 2.*M_PI;
if(U1 > (2.*M_PI))
while(u > (2.*M_PI))
u -= (2.*M_PI);
}
return u;
}
// collect vertices, reject equals
static Handle(IntSurf_LineOn2S) GetVertices(const Handle(IntPatch_PointLine)& thePLine,
const Standard_Real TOL3D,
const Standard_Real TOL2D)
{
// Standard_Real TOL3D = 1.e-12, TOL2D = 1.e-8;
Handle(IntSurf_LineOn2S) vertices = new IntSurf_LineOn2S();
Standard_Real U1 = 0., U2 = 0., V1 = 0., V2 = 0.;
Standard_Integer i = 0, k = 0;
Standard_Integer NbVrt = thePLine->NbVertex();
TColStd_Array1OfInteger anVrts(1,NbVrt);
anVrts.Init(0);
// check equal vertices
for(i = 1; i <= NbVrt; i++) {
if( anVrts(i) == -1 ) continue;
const IntPatch_Point& Pi = thePLine->Vertex(i);
for(k = (i+1); k <= NbVrt; k++) {
if( anVrts(k) == -1 ) continue;
const IntPatch_Point& Pk = thePLine->Vertex(k);
if(Pi.Value().Distance(Pk.Value()) <= TOL3D) {
// suggest the points are equal;
// test 2d parameters on surface
Standard_Boolean sameU1 = Standard_False;
Standard_Boolean sameV1 = Standard_False;
Standard_Boolean sameU2 = Standard_False;
Standard_Boolean sameV2 = Standard_False;
Pi.ParametersOnS1(U1,V1);
Pk.ParametersOnS1(U2,V2);
if(fabs(U1-U2) <= TOL2D) sameU1 = Standard_True;
if(fabs(V1-V2) <= TOL2D) sameV1 = Standard_True;
Pi.ParametersOnS2(U1,V1);
Pk.ParametersOnS2(U2,V2);
if(fabs(U1-U2) <= TOL2D) sameU2 = Standard_True;
if(fabs(V1-V2) <= TOL2D) sameV2 = Standard_True;
if((sameU1 && sameV1) && (sameU2 && sameV2))
anVrts(k) = -1;
}
}
}
// copy further processed vertices
for(i = 1; i <= NbVrt; i++) {
if( anVrts(i) == -1 ) continue;
vertices->Add(thePLine->Vertex(i).PntOn2S());
}
return vertices;
}
static void SearchVertices(const Handle(IntSurf_LineOn2S)& Line,
const Handle(IntSurf_LineOn2S)& Vertices,
TColStd_Array1OfInteger& PTypes)
{
Standard_Integer nbp = Line->NbPoints(), nbv = Vertices->NbPoints();
Standard_Integer ip = 0, iv = 0;
for(ip = 1; ip <= nbp; ip++) {
const IntSurf_PntOn2S& aP = Line->Value(ip);
Standard_Integer type = 0;
for(iv = 1; iv <= nbv; iv++) {
const IntSurf_PntOn2S& aV = Vertices->Value(iv);
if(aP.IsSame(aV, Precision::Confusion(), Precision::PConfusion())) {
type = iv;
break;
}
}
PTypes(ip) = type;
}
}
static inline Standard_Boolean IsSeamParameter(const Standard_Real U,
const Standard_Real TOL2D)
{
return (fabs(U) <= TOL2D || fabs(2.*M_PI - U) <= TOL2D);
}
static inline Standard_Real AdjustU(const Standard_Real U)
{
Standard_Real u = U, DBLPI = 2.*M_PI;
if(u < 0. || u > DBLPI) {
if(u < 0.)
while(u < 0.)
u += DBLPI;
else
while(u > DBLPI)
u -= DBLPI;
}
return u;
}
static inline void Correct2DBounds(const Standard_Real UF,
const Standard_Real UL,
const Standard_Real VF,
const Standard_Real VL,
const Standard_Real TOL2D,
Standard_Real& U,
Standard_Real& V)
{
Standard_Real Eps = 1.e-16;
Standard_Real dUF = fabs(U - UF);
Standard_Real dUL = fabs(U - UL);
Standard_Real dVF = fabs(V - VF);
Standard_Real dVL = fabs(V - VL);
if(dUF <= TOL2D && dUF > Eps) U = UF;
if(dUL <= TOL2D && dUL > Eps) U = UL;
if(dVF <= TOL2D && dVF > Eps) V = VF;
if(dVL <= TOL2D && dVL > Eps) V = VL;
}
static void AdjustLine(Handle(IntSurf_LineOn2S)& Line,
const Standard_Boolean IsReversed,
const Handle(Adaptor3d_Surface)& QSurf,
const Standard_Real TOL2D)
{
Standard_Real VF = QSurf->FirstVParameter();
Standard_Real VL = QSurf->LastVParameter();
Standard_Real UF = QSurf->FirstUParameter();
Standard_Real UL = QSurf->LastUParameter();
Standard_Integer nbp = Line->NbPoints(), ip = 0;
Standard_Real U = 0., V = 0.;
for(ip = 1; ip <= nbp; ip++) {
if(IsReversed) {
Line->Value(ip).ParametersOnS2(U,V);
U = AdjustU(U);
Correct2DBounds(UF,UL,VF,VL,TOL2D,U,V);
Line->SetUV(ip,Standard_False,U,V);
}
else {
Line->Value(ip).ParametersOnS1(U,V);
U = AdjustU(U);
Correct2DBounds(UF,UL,VF,VL,TOL2D,U,V);
Line->SetUV(ip,Standard_True,U,V);
}
}
}
static Standard_Boolean InsertSeamVertices(Handle(IntSurf_LineOn2S)& Line,
const Standard_Boolean IsReversed,
Handle(IntSurf_LineOn2S)& Vertices,
const TColStd_Array1OfInteger& PTypes,
const Standard_Real TOL2D)
{
Standard_Boolean result = Standard_False;
Standard_Integer ip = 0, nbp = Line->NbPoints();
Standard_Real U = 0., V = 0.;
for(ip = 1; ip <= nbp; ip++) {
Standard_Integer ipt = PTypes(ip);
if(ipt != 0) {
const IntSurf_PntOn2S& aP = Line->Value(ip);
if(IsReversed)
aP.ParametersOnS2(U,V); // S2 - quadric
else
aP.ParametersOnS1(U,V); // S1 - quadric
U = AdjustU(U);
if(IsSeamParameter(U,TOL2D)) {
if(ip == 1 || ip == nbp) {
Standard_Real U1 = 0., V1 = 0.;
Standard_Integer ipp = (ip == 1) ? (ip+1) : (ip-1);
if(IsReversed)
Line->Value(ipp).ParametersOnS2(U1,V1); // S2 - quadric
else
Line->Value(ipp).ParametersOnS1(U1,V1); // S1 - quadric
Standard_Real u = AdjustUFirst(U,U1);
if(fabs(u-U) >= 1.5*M_PI) {
Standard_Real U2 = 0., V2 = 0.;
if(IsReversed) {
Line->Value(ip).ParametersOnS1(U2,V2); // prm
Line->SetUV(ip,Standard_False,u,V);
Line->SetUV(ip,Standard_True,U2,V2);
}
else {
Line->Value(ip).ParametersOnS2(U2,V2); // prm
Line->SetUV(ip,Standard_True,u,V);
Line->SetUV(ip,Standard_False,U2,V2);
}
}
}
else {
Standard_Integer ipp = ip - 1;
Standard_Integer ipn = ip + 1;
Standard_Real U1 = 0., V1 = 0., U2 = 0., V2 = 0.;
if(IsReversed) {
Line->Value(ipp).ParametersOnS2(U1,V1); // quad
Line->Value(ipn).ParametersOnS2(U2,V2); // quad
}
else {
Line->Value(ipp).ParametersOnS1(U1,V1); // quad
Line->Value(ipn).ParametersOnS1(U2,V2); // quad
}
U1 = AdjustU(U1);
U2 = AdjustU(U2);
Standard_Boolean pnearZero = (fabs(U1) < fabs(2.*M_PI-U1)) ? Standard_True : Standard_False;
Standard_Boolean cnearZero = (fabs(U) < fabs(2.*M_PI-U)) ? Standard_True : Standard_False;
if(pnearZero == cnearZero) {
if(!IsSeamParameter(U2,TOL2D) && !IsSeamParameter(U1,TOL2D)) {
Standard_Real nU = (cnearZero) ? (2.*M_PI) : 0.;
IntSurf_PntOn2S nP;
nP.SetValue(aP.Value());
Standard_Real U3 = 0., V3 = 0.;
if(IsReversed) {
Line->Value(ip).ParametersOnS1(U3,V3); // prm
nP.SetValue(Standard_False,nU,V);
nP.SetValue(Standard_True,U3,V3);
}
else {
Line->Value(ip).ParametersOnS2(U3,V3); // prm
nP.SetValue(Standard_True,nU,V);
nP.SetValue(Standard_False,U3,V3);
}
Line->InsertBefore(ipn,nP);
Vertices->Add(nP);
result = Standard_True;
break;
}
}
else {
if(!IsSeamParameter(U2,TOL2D) && !IsSeamParameter(U1,TOL2D)) {
Standard_Real nU = (cnearZero) ? (2.*M_PI) : 0.;
IntSurf_PntOn2S nP;
nP.SetValue(aP.Value());
Standard_Real U3 = 0., V3 = 0.;
if(IsReversed) {
Line->Value(ip).ParametersOnS1(U3,V3); // prm
nP.SetValue(Standard_False,nU,V);
nP.SetValue(Standard_True,U3,V3);
}
else {
Line->Value(ip).ParametersOnS2(U3,V3); // prm
nP.SetValue(Standard_True,nU,V);
nP.SetValue(Standard_False,U3,V3);
}
Line->InsertBefore(ip,nP);
Vertices->Add(nP);
result = Standard_True;
break;
}
else {
// Line->InsertBefore(ip,Line->Value(ipn));
// Line->RemovePoint(ip+2);
// result = Standard_True;
// std::cout << "swap vertex " << std::endl;
// break;
}
}
}
}
}
}
return result;
}
static void ToSmooth( const Handle(IntSurf_LineOn2S)& Line,
const Standard_Boolean IsReversed,
const IntSurf_Quadric& Quad,
const Standard_Boolean IsFirst,
Standard_Real& D3D)
{
if(Line->NbPoints() <= 10)
return;
D3D = 0.;
Standard_Integer NbTestPnts = Line->NbPoints() / 5;
if(NbTestPnts < 5) NbTestPnts = 5;
Standard_Integer startp = (IsFirst) ? 2 : (Line->NbPoints() - NbTestPnts - 2);
Standard_Integer ip = 0;
Standard_Real Uc = 0., Vc = 0., Un = 0., Vn = 0., DDU = 0.;
//Standard_Real DDV = 0.;
for(ip = startp; ip <= NbTestPnts; ip++) {
if(IsReversed) {
Line->Value(ip).ParametersOnS2(Uc,Vc); // S2 - quadric
Line->Value(ip+1).ParametersOnS2(Un,Vn);
}
else {
Line->Value(ip).ParametersOnS1(Uc,Vc); // S1 - quadric
Line->Value(ip+1).ParametersOnS1(Un,Vn);
}
DDU += fabs(fabs(Uc)-fabs(Un));
//DDV += fabs(fabs(Vc)-fabs(Vn));
if(ip > startp) {
Standard_Real DP = Line->Value(ip).Value().Distance(Line->Value(ip-1).Value());
D3D += DP;
}
}
DDU /= (Standard_Real) NbTestPnts + 1;
//DDV /= (Standard_Real) NbTestPnts + 1;
D3D /= (Standard_Real) NbTestPnts + 1;
Standard_Integer Index1 = (IsFirst) ? 1 : (Line->NbPoints());
Standard_Integer Index2 = (IsFirst) ? 2 : (Line->NbPoints()-1);
Standard_Integer Index3 = (IsFirst) ? 3 : (Line->NbPoints()-2);
Standard_Boolean doU = Standard_False;
Standard_Real U1 = 0., U2 = 0., V1 = 0., V2 = 0., U3 = 0., V3 = 0.;
if(IsReversed) {
Line->Value(Index1).ParametersOnS2(U1,V1); // S2 - quadric
Line->Value(Index2).ParametersOnS2(U2,V2);
Line->Value(Index3).ParametersOnS2(U3,V3);
}
else {
Line->Value(Index1).ParametersOnS1(U1,V1); // S1 - quadric
Line->Value(Index2).ParametersOnS1(U2,V2);
Line->Value(Index3).ParametersOnS1(U3,V3);
}
if(!doU && Quad.TypeQuadric() == GeomAbs_Sphere) {
if(fabs(fabs(U1)-fabs(U2)) > (M_PI/16.)) doU = Standard_True;
if(doU && (fabs(U1) <= 1.e-9 || fabs(U1-2.*M_PI) <= 1.e-9)) {
if(fabs(V1-M_PI/2.) <= 1.e-9 || fabs(V1+M_PI/2.) <= 1.e-9) {}
else {
doU = Standard_False;
}
}
}
if(Quad.TypeQuadric() == GeomAbs_Cone) {
Standard_Real Uapx = 0., Vapx = 0.;
Quad.Parameters(Quad.Cone().Apex(),Uapx,Vapx);
if(fabs(fabs(U1)-fabs(U2)) > M_PI/32.) doU = Standard_True;
if(doU && (fabs(U1) <= 1.e-9 || fabs(U1-2.*M_PI) <= 1.e-9)) {
if(fabs(V1-Vapx) <= 1.e-9) {}
else {
doU = Standard_False;
}
}
}
if(doU) {
Standard_Real dU = Min((DDU/10.),5.e-8);
Standard_Real U = (U2 > U3) ? (U2 + dU) : (U2 - dU);
if(IsReversed)
Line->SetUV(Index1,Standard_False,U,V1);
else
Line->SetUV(Index1,Standard_True,U,V1);
U1 = U;
}
}
static Standard_Boolean TestMiddleOnPrm(const IntSurf_PntOn2S& aP,
const IntSurf_PntOn2S& aV,
const Standard_Boolean IsReversed,
const Standard_Real ArcTol,
const Handle(Adaptor3d_TopolTool)& PDomain)
{
Standard_Boolean result = Standard_False;
Standard_Real Up = 0., Vp = 0., Uv = 0., Vv = 0.;
if(IsReversed) {
aP.ParametersOnS1(Up,Vp); //S1 - parametric
aV.ParametersOnS1(Uv,Vv);
}
else {
aP.ParametersOnS2(Up,Vp); // S2 - parametric
aV.ParametersOnS2(Uv,Vv);
}
Standard_Real Um = (Up + Uv)*0.5, Vm = (Vp + Vv)*0.5;
gp_Pnt2d a2DPntM(Um,Vm);
TopAbs_State PosM = PDomain->Classify(a2DPntM,ArcTol);
if(PosM == TopAbs_ON || PosM == TopAbs_IN )
result = Standard_True;
return result;
}
static void VerifyVertices( const Handle(IntSurf_LineOn2S)& Line,
const Standard_Boolean IsReversed,
const Handle(IntSurf_LineOn2S)& Vertices,
const Standard_Real TOL2D,
const Standard_Real ArcTol,
const Handle(Adaptor3d_TopolTool)& PDomain,
IntSurf_PntOn2S& VrtF,
Standard_Boolean& AddFirst,
IntSurf_PntOn2S& VrtL,
Standard_Boolean& AddLast)
{
Standard_Integer nbp = Line->NbPoints(), nbv = Vertices->NbPoints();
Standard_Integer FIndexSame = 0, FIndexNear = 0, LIndexSame = 0, LIndexNear = 0;
const IntSurf_PntOn2S& aPF = Line->Value(1);
const IntSurf_PntOn2S& aPL = Line->Value(nbp);
Standard_Real UF = 0., VF = 0., UL = 0., VL = 0.;
if(IsReversed) {
aPF.ParametersOnS2(UF,VF);
aPL.ParametersOnS2(UL,VL);
}
else {
aPF.ParametersOnS1(UF,VF);
aPL.ParametersOnS1(UL,VL);
}
gp_Pnt2d a2DPF(UF,VF);
gp_Pnt2d a2DPL(UL,VL);
Standard_Real DistMinF = 1.e+100, DistMinL = 1.e+100;
Standard_Integer FConjugated = 0, LConjugated = 0;
Standard_Integer iv = 0;
for(iv = 1; iv <= nbv; iv++) {
Standard_Real Uv = 0., Vv = 0.;
if(IsReversed) {
Vertices->Value(iv).ParametersOnS2(Uv,Vv);
Uv = AdjustU(Uv);
Vertices->SetUV(iv,Standard_False,Uv,Vv);
}
else {
Vertices->Value(iv).ParametersOnS1(Uv,Vv);
Uv = AdjustU(Uv);
Vertices->SetUV(iv,Standard_True,Uv,Vv);
}
}
for(iv = 1; iv <= nbv; iv++) {
const IntSurf_PntOn2S& aV = Vertices->Value(iv);
if(aPF.IsSame(aV, Precision::Confusion(), Precision::PConfusion())) {
FIndexSame = iv;
break;
}
else {
Standard_Real Uv = 0., Vv = 0.;
if(IsReversed)
aV.ParametersOnS2(Uv,Vv);
else
aV.ParametersOnS1(Uv,Vv);
gp_Pnt2d a2DV(Uv,Vv);
Standard_Real Dist = a2DV.Distance(a2DPF);
if(Dist < DistMinF) {
DistMinF = Dist;
FIndexNear = iv;
if(FConjugated != 0)
FConjugated = 0;
}
if(IsSeamParameter(Uv,TOL2D)) {
Standard_Real Ucv = (fabs(Uv) < fabs(2.*M_PI-Uv)) ? (2.*M_PI) : 0.;
gp_Pnt2d a2DCV(Ucv,Vv);
Standard_Real CDist = a2DCV.Distance(a2DPF);
if(CDist < DistMinF) {
DistMinF = CDist;
FConjugated = iv;
FIndexNear = iv;
}
}
}
}
for(iv = 1; iv <= nbv; iv++) {
const IntSurf_PntOn2S& aV = Vertices->Value(iv);
if(aPL.IsSame(aV, Precision::Confusion(), Precision::PConfusion())) {
LIndexSame = iv;
break;
}
else {
Standard_Real Uv = 0., Vv = 0.;
if(IsReversed)
aV.ParametersOnS2(Uv,Vv);
else
aV.ParametersOnS1(Uv,Vv);
gp_Pnt2d a2DV(Uv,Vv);
Standard_Real Dist = a2DV.Distance(a2DPL);
if(Dist < DistMinL) {
DistMinL = Dist;
LIndexNear = iv;
if(LConjugated != 0)
LConjugated = 0;
}
if(IsSeamParameter(Uv,TOL2D)) {
Standard_Real Ucv = (fabs(Uv) < fabs(2.*M_PI-Uv)) ? (2.*M_PI) : 0.;
gp_Pnt2d a2DCV(Ucv,Vv);
Standard_Real CDist = a2DCV.Distance(a2DPL);
if(CDist < DistMinL) {
DistMinL = CDist;
LConjugated = iv;
LIndexNear = iv;
}
}
}
}
AddFirst = Standard_False;
AddLast = Standard_False;
if(FIndexSame == 0) {
if(FIndexNear != 0) {
const IntSurf_PntOn2S& aV = Vertices->Value(FIndexNear);
Standard_Real Uv = 0., Vv = 0.;
if(IsReversed)
aV.ParametersOnS2(Uv,Vv);
else
aV.ParametersOnS1(Uv,Vv);
if(IsSeamParameter(Uv,TOL2D)) {
Standard_Real Ucv = (fabs(Uv) < fabs(2.*M_PI-Uv)) ? (2.*M_PI) : 0.;
Standard_Boolean test = TestMiddleOnPrm(aPF,aV,IsReversed,ArcTol,PDomain);
if(test) {
VrtF.SetValue(aV.Value());
if(IsReversed) {
Standard_Real U2 = 0., V2 = 0.;
aV.ParametersOnS1(U2,V2); // S1 - prm
VrtF.SetValue(Standard_True,U2,V2);
if(FConjugated == 0)
VrtF.SetValue(Standard_False,Uv,Vv);
else
VrtF.SetValue(Standard_False,Ucv,Vv);
}
else {
Standard_Real U2 = 0., V2 = 0.;
aV.ParametersOnS2(U2,V2); // S2 - prm
VrtF.SetValue(Standard_False,U2,V2);
if(FConjugated == 0)
VrtF.SetValue(Standard_True,Uv,Vv);
else
VrtF.SetValue(Standard_True,Ucv,Vv);
}
Standard_Real Dist3D = VrtF.Value().Distance(aPF.Value());
if(Dist3D > 1.5e-7 && DistMinF > TOL2D) {
AddFirst = Standard_True;
}
}
}
else {
// to do: analyze internal vertex
}
}
}
if(LIndexSame == 0) {
if(LIndexNear != 0) {
const IntSurf_PntOn2S& aV = Vertices->Value(LIndexNear);
Standard_Real Uv = 0., Vv = 0.;
if(IsReversed)
aV.ParametersOnS2(Uv,Vv);
else
aV.ParametersOnS1(Uv,Vv);
if(IsSeamParameter(Uv,TOL2D)) {
Standard_Real Ucv = (fabs(Uv) < fabs(2.*M_PI-Uv)) ? (2.*M_PI) : 0.;
Standard_Boolean test = TestMiddleOnPrm(aPL,aV,IsReversed,ArcTol,PDomain);
if(test) {
VrtL.SetValue(aV.Value());
if(IsReversed) {
Standard_Real U2 = 0., V2 = 0.;
aV.ParametersOnS1(U2,V2); // S1 - prm
VrtL.SetValue(Standard_True,U2,V2);
if(LConjugated == 0)
VrtL.SetValue(Standard_False,Uv,Vv);
else
VrtL.SetValue(Standard_False,Ucv,Vv);
}
else {
Standard_Real U2 = 0., V2 = 0.;
aV.ParametersOnS2(U2,V2); // S2 - prm
VrtL.SetValue(Standard_False,U2,V2);
if(LConjugated == 0)
VrtL.SetValue(Standard_True,Uv,Vv);
else
VrtL.SetValue(Standard_True,Ucv,Vv);
}
Standard_Real Dist3D = VrtL.Value().Distance(aPL.Value());
if(Dist3D > 1.5e-7 && DistMinL > TOL2D) {
AddLast = Standard_True;
}
}
}
else {
// to do: analyze internal vertex
}
}
}
}
static Standard_Boolean AddVertices(Handle(IntSurf_LineOn2S)& Line,
const IntSurf_PntOn2S& VrtF,
const Standard_Boolean AddFirst,
const IntSurf_PntOn2S& VrtL,
const Standard_Boolean AddLast,
const Standard_Real D3DF,
const Standard_Real D3DL)
{
Standard_Boolean result = Standard_False;
if(AddFirst) {
Standard_Real DF = Line->Value(1).Value().Distance(VrtF.Value());
if((D3DF*2.) > DF && DF > 1.5e-7) {
Line->InsertBefore(1,VrtF);
result = Standard_True;
}
}
if(AddLast) {
Standard_Real DL = Line->Value(Line->NbPoints()).Value().Distance(VrtL.Value());
if((D3DL*2.) > DL && DL > 1.5e-7) {
Line->Add(VrtL);
result = Standard_True;
}
}
return result;
}
static void PutIntVertices(const Handle(IntPatch_PointLine)& Line,
Handle(IntSurf_LineOn2S)& Result,
Standard_Boolean theIsReversed,
Handle(IntSurf_LineOn2S)& Vertices,
const Standard_Real ArcTol)
{
Standard_Integer nbp = Result->NbPoints(), nbv = Vertices->NbPoints();
if(nbp < 3)
return;
const Handle(IntPatch_RLine) aRLine = Handle(IntPatch_RLine)::DownCast(Line);
Standard_Integer ip = 0, iv = 0;
gp_Pnt aPnt;
IntPatch_Point thePnt;
Standard_Real U1 = 0., V1 = 0., U2 = 0., V2 = 0.;
for(ip = 2; ip <= (nbp-1); ip++) {
const IntSurf_PntOn2S& aP = Result->Value(ip);
for(iv = 1; iv <= nbv; iv++) {
const IntSurf_PntOn2S& aV = Vertices->Value(iv);
if(aP.IsSame(aV, Precision::Confusion(), Precision::PConfusion())) {
aPnt = Result->Value(ip).Value();
Result->Value(ip).ParametersOnS1(U1,V1);
Result->Value(ip).ParametersOnS2(U2,V2);
thePnt.SetValue(aPnt,ArcTol,Standard_False);
thePnt.SetParameters(U1,V1,U2,V2);
Standard_Real aParam = (Standard_Real)ip;
if(!aRLine.IsNull())
{
//In fact, aRLine is always on the parametric surface.
//If (theIsReversed == TRUE) then (U1, V1) - point on
//parametric surface, otherwise - point on quadric.
const Handle(Adaptor2d_Curve2d)& anArc = aRLine->IsArcOnS1() ?
aRLine->ArcOnS1() :
aRLine->ArcOnS2();
const gp_Lin2d aLin(anArc->Line());
gp_Pnt2d aPSurf;
if(theIsReversed)
{
aPSurf.SetCoord(U1, V1);
}
else
{
aPSurf.SetCoord(U2, V2);
}
aParam = ElCLib::Parameter(aLin, aPSurf);
}
thePnt.SetParameter(aParam);
Line->AddVertex(thePnt);
}
}
}
}
static Standard_Boolean HasInternals(Handle(IntSurf_LineOn2S)& Line,
Handle(IntSurf_LineOn2S)& Vertices)
{
Standard_Integer nbp = Line->NbPoints(), nbv = Vertices->NbPoints();
Standard_Integer ip = 0, iv = 0;
Standard_Boolean result = Standard_False;
if(nbp < 3)
return result;
for(ip = 2; ip <= (nbp-1); ip++) {
const IntSurf_PntOn2S& aP = Line->Value(ip);
for(iv = 1; iv <= nbv; iv++) {
const IntSurf_PntOn2S& aV = Vertices->Value(iv);
if(aP.IsSame(aV, Precision::Confusion(), Precision::PConfusion())) {
result = Standard_True;
break;
}
}
if(result)
break;
}
return result;
}
static Handle(IntPatch_WLine) MakeSplitWLine (Handle(IntPatch_WLine)& WLine,
Standard_Boolean Tang,
IntSurf_TypeTrans Trans1,
IntSurf_TypeTrans Trans2,
Standard_Real ArcTol,
Standard_Integer ParFirst,
Standard_Integer ParLast)
{
Handle(IntSurf_LineOn2S) SLine = WLine->Curve();
Handle(IntSurf_LineOn2S) sline = new IntSurf_LineOn2S();
Standard_Integer ip = 0;
for(ip = ParFirst; ip <= ParLast; ip++)
sline->Add(SLine->Value(ip));
Handle(IntPatch_WLine) wline = new IntPatch_WLine(sline,Tang,Trans1,Trans2);
wline->SetCreatingWayInfo(IntPatch_WLine::IntPatch_WLImpPrm);
gp_Pnt aSPnt;
IntPatch_Point TPntF,TPntL;
Standard_Real uu1 = 0., vv1 = 0., uu2 = 0., vv2 = 0.;
aSPnt = sline->Value(1).Value();
sline->Value(1).ParametersOnS1(uu1,vv1);
sline->Value(1).ParametersOnS2(uu2,vv2);
TPntF.SetValue(aSPnt,ArcTol,Standard_False);
TPntF.SetParameters(uu1,vv1,uu2,vv2);
TPntF.SetParameter(1.);
wline->AddVertex(TPntF);
wline->SetFirstPoint(1);
aSPnt = sline->Value(sline->NbPoints()).Value();
sline->Value(sline->NbPoints()).ParametersOnS1(uu1,vv1);
sline->Value(sline->NbPoints()).ParametersOnS2(uu2,vv2);
TPntL.SetValue(aSPnt,ArcTol,Standard_False);
TPntL.SetParameters(uu1,vv1,uu2,vv2);
TPntL.SetParameter((Standard_Real)sline->NbPoints());
wline->AddVertex(TPntL);
wline->SetLastPoint(wline->NbVertex());
return wline;
}
static Standard_Boolean SplitOnSegments(Handle(IntPatch_WLine)& WLine,
Standard_Boolean Tang,
IntSurf_TypeTrans Trans1,
IntSurf_TypeTrans Trans2,
Standard_Real ArcTol,
IntPatch_SequenceOfLine& Segments)
{
Standard_Boolean result = Standard_False;
Segments.Clear();
Standard_Integer nbv = WLine->NbVertex();
if(nbv > 3) {
Standard_Integer iv = 0;
for(iv = 1; iv < nbv; iv++) {
Standard_Integer firstPar =
(Standard_Integer) WLine->Vertex(iv).ParameterOnLine();
Standard_Integer lastPar =
(Standard_Integer) WLine->Vertex(iv+1).ParameterOnLine();
if((lastPar - firstPar) <= 1)
continue;
else {
Handle(IntPatch_WLine) splitwline = MakeSplitWLine(WLine,Tang,Trans1,Trans2,
ArcTol,firstPar,lastPar);
Segments.Append(splitwline);
if(!result)
result = Standard_True;
}
}
}
return result;
}
//=======================================================================
//function : IsPointOnBoundary
//purpose : Returns TRUE if point <theParam> matches <theBoundary +/- thePeriod>
// with given tolerance criterion.
// For not-periodic case, thePeriod must be equal to 0.0.
//=======================================================================
static Standard_Boolean IsPointOnBoundary(const Standard_Real theToler2D,
const Standard_Real theBoundary,
const Standard_Real thePeriod,
const Standard_Real theParam)
{
Standard_Real aDelta = Abs(theParam - theBoundary);
if (thePeriod != 0.0)
{
aDelta = fmod(aDelta, thePeriod);
// 0 <= aDelta < thePeriod
return ((aDelta < theToler2D) || ((thePeriod - aDelta) < theToler2D));
}
// Here, thePeriod == 0.0, aDelta > 0.0
return (aDelta < theToler2D);
}
//=======================================================================
//function : DetectOfBoundaryAchievement
//purpose : Can change values of theNewLine (by adding the computed point on boundary,
// which parameter will be adjusted) and theIsOnBoundary variables.
//=======================================================================
static void DetectOfBoundaryAchievement(const Handle(Adaptor3d_Surface)& theQSurf, // quadric
const Standard_Boolean theIsReversed,
const Handle(IntSurf_LineOn2S)& theSourceLine,
const Standard_Integer thePointIndex,
const Standard_Real theToler2D,
Handle(IntSurf_LineOn2S)& theNewLine,
Standard_Boolean& theIsOnBoundary)
{
const Standard_Real aUPeriod = theQSurf->IsUPeriodic() ? theQSurf->UPeriod() : 0.0,
aVPeriod = theQSurf->IsVPeriodic() ? theQSurf->VPeriod() : 0.0;
const Standard_Real aUf = theQSurf->FirstUParameter(),
aUl = theQSurf->LastUParameter(),
aVf = theQSurf->FirstVParameter(),
aVl = theQSurf->LastVParameter();
const IntSurf_PntOn2S &aPPrev = theSourceLine->Value(thePointIndex - 1),
&aPCurr = theSourceLine->Value(thePointIndex);
Standard_Real aUPrev, aVPrev, aUCurr, aVCurr;
if (theIsReversed)
{
aPPrev.ParametersOnS2(aUPrev, aVPrev); // S2 - quadric, set U,V by Pnt3D
aPCurr.ParametersOnS2(aUCurr, aVCurr); // S2 - quadric, set U,V by Pnt3D
}
else
{
aPPrev.ParametersOnS1(aUPrev, aVPrev); // S1 - quadric, set U,V by Pnt3D
aPCurr.ParametersOnS1(aUCurr, aVCurr); // S1 - quadric, set U,V by Pnt3D
}
// Ignore cases when the WLine goes along the surface boundary completely.
if (IsPointOnBoundary(theToler2D, aUf, aUPeriod, aUCurr) &&
!IsPointOnBoundary(theToler2D, aUf, aUPeriod, aUPrev))
{
theIsOnBoundary = Standard_True;
}
else if (IsPointOnBoundary(theToler2D, aUl, aUPeriod, aUCurr) &&
!IsPointOnBoundary(theToler2D, aUl, aUPeriod, aUPrev))
{
theIsOnBoundary = Standard_True;
}
else if (IsPointOnBoundary(theToler2D, aVf, aVPeriod, aVCurr) &&
!IsPointOnBoundary(theToler2D, aVf, aVPeriod, aVPrev))
{
theIsOnBoundary = Standard_True;
}
else if (IsPointOnBoundary(theToler2D, aVl, aVPeriod, aVCurr) &&
!IsPointOnBoundary(theToler2D, aVl, aVPeriod, aVPrev))
{
theIsOnBoundary = Standard_True;
}
if (theIsOnBoundary)
{
// Adjust, to avoid bad jumping of the WLine.
const Standard_Real aDu = (aUPrev - aUCurr);
const Standard_Real aDv = (aVPrev - aVCurr);
if (aUPeriod > 0.0 && (2.0*Abs(aDu) > aUPeriod))
{
aUCurr += Sign(aUPeriod, aDu);
}
if (aVPeriod > 0.0 && (2.0*Abs(aDv) > aVPeriod))
{
aVCurr += Sign(aVPeriod, aDv);
}
IntSurf_PntOn2S aPoint = aPCurr;
aPoint.SetValue(!theIsReversed, aUCurr, aVCurr);
theNewLine->Add(aPoint);
}
}
//=======================================================================
//function : DecomposeResult
//purpose : Split <theLine> in the places where it passes through seam edge
// or singularity (apex of cone or pole of sphere).
// This passage is detected by jump of U-parameter
// from point to point.
//=======================================================================
static Standard_Boolean DecomposeResult(const Handle(IntPatch_PointLine)& theLine,
const Standard_Boolean IsReversed,
const IntSurf_Quadric& theQuad,
const Handle(Adaptor3d_TopolTool)& thePDomain,
const Handle(Adaptor3d_Surface)& theQSurf, //quadric
const Handle(Adaptor3d_Surface)& thePSurf, //parametric
const Standard_Real theArcTol,
const Standard_Real theTolTang,
IntPatch_SequenceOfLine& theLines)
{
if(theLine->ArcType() == IntPatch_Restriction)
{
const Handle(IntPatch_RLine)& aRL = Handle(IntPatch_RLine)::DownCast(theLine);
if(!aRL.IsNull())
{
const Handle(Adaptor2d_Curve2d)& anArc = aRL->IsArcOnS1() ?
aRL->ArcOnS1() :
aRL->ArcOnS2();
if(anArc->GetType() != GeomAbs_Line)
{
//Restriction line must be isoline.
//Other cases are not supported by
//existing algorithms.
return Standard_False;
}
}
}
const Standard_Real aDeltaUmax = M_PI_2;
const Standard_Real aTOL3D = 1.e-10,
aTOL2D = Precision::PConfusion(),
aTOL2DS = Precision::PConfusion();
const Handle(IntSurf_LineOn2S)& aSLine = theLine->Curve();
if(aSLine->NbPoints() <= 2)
{
return Standard_False;
}
//Deletes repeated vertices
Handle(IntSurf_LineOn2S) aVLine = GetVertices(theLine,aTOL3D,aTOL2D);
Handle(IntSurf_LineOn2S) aSSLine(aSLine);
if(aSSLine->NbPoints() <= 1)
return Standard_False;
AdjustLine(aSSLine,IsReversed,theQSurf,aTOL2D);
if(theLine->ArcType() == IntPatch_Walking)
{
Standard_Boolean isInserted = Standard_True;
while(isInserted)
{
const Standard_Integer aNbPnts = aSSLine->NbPoints();
TColStd_Array1OfInteger aPTypes(1,aNbPnts);
SearchVertices(aSSLine,aVLine,aPTypes);
isInserted = InsertSeamVertices(aSSLine,IsReversed,aVLine,aPTypes,aTOL2D);
}
}
const Standard_Integer aLindex = aSSLine->NbPoints();
Standard_Integer aFindex = 1, aBindex = 0;
// build WLine parts (if any)
Standard_Boolean flNextLine = Standard_True;
Standard_Boolean hasBeenDecomposed = Standard_False;
IntPatch_SpecPntType aPrePointExist = IntPatch_SPntNone;
IntSurf_PntOn2S PrePoint;
while(flNextLine)
{
// reset variables
flNextLine = Standard_False;
Standard_Boolean isDecomposited = Standard_False;
Handle(IntSurf_LineOn2S) sline = new IntSurf_LineOn2S();
//if((Lindex-Findex+1) <= 2 )
if((aLindex <= aFindex) && !aPrePointExist)
{
//break of "while(flNextLine)" cycle
break;
}
if(aPrePointExist)
{
const IntSurf_PntOn2S& aRefPt = aSSLine->Value(aFindex);
const Standard_Real aURes = theQSurf->UResolution(theArcTol),
aVRes = theQSurf->VResolution(theArcTol);
const Standard_Real aTol2d = (aPrePointExist == IntPatch_SPntPole) ? -1.0 :
(aPrePointExist == IntPatch_SPntSeamV)? aVRes :
(aPrePointExist == IntPatch_SPntSeamUV)? Max(aURes, aVRes) : aURes;
if(IntPatch_SpecialPoints::ContinueAfterSpecialPoint(theQSurf, thePSurf, aRefPt,
aPrePointExist, aTol2d,
PrePoint, IsReversed))
{
sline->Add(PrePoint);
//Avoid adding duplicate points.
for (;aFindex <= aLindex; aFindex++)
{
if (!PrePoint.IsSame(aSSLine->Value(aFindex), theTolTang))
{
break;
}
}
}
else
{
//break of "while(flNextLine)" cycle
break;
}
}
aPrePointExist = IntPatch_SPntNone;
// analyze other points
for(Standard_Integer k = aFindex; k <= aLindex; k++)
{
if( k == aFindex )
{
PrePoint = aSSLine->Value(k);
sline->Add(PrePoint);
continue;
}
//Check whether the current point is on the boundary of theQSurf.
//If that is TRUE then the Walking-line will be decomposed in this point.
//However, this boundary is not singular-point (like seam or pole of sphere).
//Therefore, its processing will be simplified.
Standard_Boolean isOnBoundary = Standard_False;
// Values of sline and isOnBoundary can be changed by this function
DetectOfBoundaryAchievement(theQSurf, IsReversed, aSSLine,
k, aTOL2D, sline, isOnBoundary);
aPrePointExist = IsSeamOrPole(theQSurf, aSSLine, IsReversed,
k - 1, theTolTang, aDeltaUmax);
if (isOnBoundary && (aPrePointExist != IntPatch_SPntPoleSeamU))
{
// If the considered point is on seam then its UV-parameters
// are defined to within the surface period. Therefore, we can
// trust already computed parameters of this point.
// However, if this point (which is on the surface boundary) is
// a sphere pole or cone apex then its (point's) parameters
// have to be recomputed in the code below
// (see IntPatch_SpecialPoints::AddSingularPole() method).
// E.g. see "bugs modalg_6 bug26684_2" test case.
aPrePointExist = IntPatch_SPntNone;
}
if (aPrePointExist != IntPatch_SPntNone)
{
aBindex = k;
isDecomposited = Standard_True;
////
const IntSurf_PntOn2S& aRefPt = aSSLine->Value(aBindex-1);
Standard_Real aCompareTol3D = Precision::Confusion();
Standard_Real aCompareTol2D = Precision::PConfusion();
IntSurf_PntOn2S aNewPoint = aRefPt;
IntPatch_SpecPntType aLastType = IntPatch_SPntNone;
if(aPrePointExist == IntPatch_SPntSeamUV)
{
aPrePointExist = IntPatch_SPntNone;
aLastType = IntPatch_SPntSeamUV;
IntPatch_SpecialPoints::AddCrossUVIsoPoint(theQSurf, thePSurf,
aRefPt, theTolTang,
aNewPoint, IsReversed);
}
else if(aPrePointExist == IntPatch_SPntSeamV)
{//WLine goes through seam
aPrePointExist = IntPatch_SPntNone;
aLastType = IntPatch_SPntSeamV;
//Not quadric point
Standard_Real aU0 = 0.0, aV0 = 0.0;
//Quadric point
Standard_Real aUQuadRef = 0.0, aVQuadRef = 0.0;
if(IsReversed)
{
aRefPt.Parameters(aU0, aV0, aUQuadRef, aVQuadRef);
}
else
{
aRefPt.Parameters(aUQuadRef, aVQuadRef, aU0, aV0);
}
math_Vector aTol(1, 3), aStartPoint(1,3),
anInfBound(1, 3), aSupBound(1, 3);
//Parameters on parametric surface
Standard_Real aUp = 0.0, aVp = 0.0, aUq = 0.0, aVq = 0.0;
if(IsReversed)
{
aSSLine->Value(k).Parameters(aUp, aVp, aUq, aVq);
}
else
{
aSSLine->Value(k).Parameters(aUq, aVq, aUp, aVp);
}
aTol(1) = thePSurf->UResolution(theArcTol);
aTol(2) = thePSurf->VResolution(theArcTol);
aTol(3) = theQSurf->UResolution(theArcTol);
aStartPoint(1) = 0.5*(aU0 + aUp);
aStartPoint(2) = 0.5*(aV0 + aVp);
aStartPoint(3) = 0.5*(aUQuadRef + aUq);
anInfBound(1) = thePSurf->FirstUParameter();
anInfBound(2) = thePSurf->FirstVParameter();
anInfBound(3) = theQSurf->FirstUParameter();
aSupBound(1) = thePSurf->LastUParameter();
aSupBound(2) = thePSurf->LastVParameter();
aSupBound(3) = theQSurf->LastUParameter();
IntPatch_SpecialPoints::
AddPointOnUorVIso(theQSurf, thePSurf, aRefPt, Standard_False, 0.0,
aTol, aStartPoint, anInfBound, aSupBound,
aNewPoint, IsReversed);
}
else if(aPrePointExist == IntPatch_SPntPoleSeamU)
{
aPrePointExist = IntPatch_SPntNone;
IntPatch_Point aVert;
aVert.SetValue(aRefPt);
aVert.SetTolerance(theTolTang);
if(IntPatch_SpecialPoints::
AddSingularPole(theQSurf, thePSurf, aRefPt,
aVert, aNewPoint, IsReversed))
{
aPrePointExist = IntPatch_SPntPole;
aLastType = IntPatch_SPntPole;
if (isOnBoundary)
{
// It is necessary to replace earlier added point on
// the surface boundary with the pole. For that,
// here we delete excess point. New point will be added later.
isOnBoundary = Standard_False;
sline->RemovePoint(sline->NbPoints());
}
aCompareTol2D = -1.0;
} //if(IntPatch_AddSpecialPoints::AddSingularPole(...))
else
{//Pole is not an intersection point
aPrePointExist = IntPatch_SPntSeamU;
}
}
if(aPrePointExist == IntPatch_SPntSeamU)
{//WLine goes through seam
aPrePointExist = IntPatch_SPntNone;
aLastType = IntPatch_SPntSeamU;
//Not quadric point
Standard_Real aU0 = 0.0, aV0 = 0.0;
//Quadric point
Standard_Real aUQuadRef = 0.0, aVQuadRef = 0.0;
if(IsReversed)
{
aRefPt.Parameters(aU0, aV0, aUQuadRef, aVQuadRef);
}
else
{
aRefPt.Parameters(aUQuadRef, aVQuadRef, aU0, aV0);
}
math_Vector aTol(1, 3), aStartPoint(1,3),
anInfBound(1, 3), aSupBound(1, 3);
//Parameters on parametric surface
Standard_Real aUp = 0.0, aVp = 0.0, aUq = 0.0, aVq = 0.0;
if (IsReversed)
{
aSSLine->Value(k).Parameters(aUp, aVp, aUq, aVq);
}
else
{
aSSLine->Value(k).Parameters(aUq, aVq, aUp, aVp);
}
aTol(1) = thePSurf->UResolution(theArcTol);
aTol(2) = thePSurf->VResolution(theArcTol);
aTol(3) = theQSurf->VResolution(theArcTol);
aStartPoint(1) = 0.5*(aU0 + aUp);
aStartPoint(2) = 0.5*(aV0 + aVp);
aStartPoint(3) = 0.5*(aVQuadRef + aVq);
anInfBound(1) = thePSurf->FirstUParameter();
anInfBound(2) = thePSurf->FirstVParameter();
anInfBound(3) = theQSurf->FirstVParameter();
aSupBound(1) = thePSurf->LastUParameter();
aSupBound(2) = thePSurf->LastVParameter();
aSupBound(3) = theQSurf->LastVParameter();
IntPatch_SpecialPoints::
AddPointOnUorVIso(theQSurf, thePSurf, aRefPt, Standard_True, 0.0, aTol,
aStartPoint, anInfBound, aSupBound, aNewPoint,
IsReversed);
}
if(!aNewPoint.IsSame(aRefPt, aCompareTol3D, aCompareTol2D))
{
if (isOnBoundary)
break;
sline->Add(aNewPoint);
aPrePointExist = aLastType;
PrePoint = aNewPoint;
}
else
{
if (isOnBoundary || (sline->NbPoints() == 1))
{
//FIRST point of the sline is the pole of the quadric.
//Therefore, there is no point in decomposition.
// If the considered point is on surface boundary then
// it is already marked as vertex. So, decomposition is
// not required, too.
PrePoint = aRefPt;
aPrePointExist = isOnBoundary ? IntPatch_SPntNone : aLastType;
}
}
////
break;
} //if (aPrePointExist != IntPatch_SPntNone) cond.
PrePoint = aSSLine->Value(k);
if (isOnBoundary)
{
aBindex = k;
isDecomposited = Standard_True;
aPrePointExist = IntPatch_SPntNone;
break;
}
else
{
sline->Add(aSSLine->Value(k));
}
} //for(Standard_Integer k = aFindex; k <= aLindex; k++)
//Creation of new line as part of existing theLine.
//This part is defined by sline.
if(sline->NbPoints() == 1)
{
flNextLine = Standard_True;
if (aFindex < aBindex)
aFindex = aBindex;
//Go to the next part of aSSLine
//because we cannot create the line
//with single point.
continue;
}
IntSurf_PntOn2S aVF, aVL;
Standard_Boolean addVF = Standard_False, addVL = Standard_False;
VerifyVertices(sline,IsReversed,aVLine,aTOL2DS,theArcTol,
thePDomain,aVF,addVF,aVL,addVL);
Standard_Boolean hasInternals = HasInternals(sline,aVLine);
Standard_Real D3F = 0., D3L = 0.;
ToSmooth(sline,IsReversed,theQuad,Standard_True,D3F);
ToSmooth(sline,IsReversed,theQuad,Standard_False,D3L);
//if(D3F <= 1.5e-7 && sline->NbPoints() >=3) {
// D3F = sline->Value(2).Value().Distance(sline->Value(3).Value());
//}
//if(D3L <= 1.5e-7 && sline->NbPoints() >=3) {
// D3L = sline->Value(sline->NbPoints()-1).Value().Distance(sline->
// Value(sline->NbPoints()-2).Value());
//}
if(addVF || addVL)
{
Standard_Boolean isAdded = AddVertices(sline,aVF,addVF,aVL,addVL,D3F,D3L);
if(isAdded)
{
ToSmooth(sline,IsReversed,theQuad,Standard_True,D3F);
ToSmooth(sline,IsReversed,theQuad,Standard_False,D3L);
}
}
if(theLine->ArcType() == IntPatch_Walking)
{
IntPatch_Point aTPntF, aTPntL;
Handle(IntPatch_WLine) wline =
new IntPatch_WLine(sline,Standard_False,
theLine->TransitionOnS1(),theLine->TransitionOnS2());
wline->SetCreatingWayInfo(IntPatch_WLine::IntPatch_WLImpPrm);
Standard_Real aU1 = 0.0, aV1 = 0.0, aU2 = 0.0, aV2 = 0.0;
gp_Pnt aSPnt(sline->Value(1).Value());
sline->Value(1).Parameters(aU1, aV1, aU2, aV2);
aTPntF.SetValue(aSPnt,theArcTol,Standard_False);
aTPntF.SetParameters(aU1, aV1, aU2, aV2);
aTPntF.SetParameter(1.0);
wline->AddVertex(aTPntF);
wline->SetFirstPoint(1);
if(hasInternals)
{
PutIntVertices(wline,sline,IsReversed,aVLine,theArcTol);
}
aSPnt = sline->Value(sline->NbPoints()).Value();
sline->Value(sline->NbPoints()).Parameters(aU1, aV1, aU2, aV2);
aTPntL.SetValue(aSPnt,theArcTol,Standard_False);
aTPntL.SetParameters(aU1, aV1, aU2, aV2);
aTPntL.SetParameter(sline->NbPoints());
wline->AddVertex(aTPntL);
wline->SetLastPoint(wline->NbVertex());
IntPatch_SequenceOfLine segm;
Standard_Boolean isSplited = SplitOnSegments(wline,Standard_False,
theLine->TransitionOnS1(),theLine->TransitionOnS2(),theArcTol,segm);
if(!isSplited)
{
theLines.Append(wline);
}
else
{
Standard_Integer nbsegms = segm.Length();
Standard_Integer iseg = 0;
for(iseg = 1; iseg <= nbsegms; iseg++)
theLines.Append(segm(iseg));
}
}
else
{//theLine->ArcType() == IntPatch_Restriction
if(!isDecomposited && !hasBeenDecomposed)
{
//The line has not been changed
theLines.Append(Handle(IntPatch_RLine)::DownCast(theLine));
return hasBeenDecomposed;
}
IntPatch_Point aTPnt;
gp_Pnt2d aPSurf;
gp_Pnt aSPnt;
Handle(IntPatch_RLine) aRLine = new IntPatch_RLine(*Handle(IntPatch_RLine)::DownCast(theLine));
aRLine->ClearVertexes();
aRLine->SetCurve(sline);
if(hasInternals)
{
PutIntVertices(aRLine,sline,IsReversed,aVLine,theArcTol);
}
const Handle(Adaptor2d_Curve2d)& anArc = aRLine->IsArcOnS1() ?
aRLine->ArcOnS1() :
aRLine->ArcOnS2();
Standard_Real aFPar = anArc->FirstParameter(),
aLPar = anArc->LastParameter();
const IntSurf_PntOn2S &aRFirst = sline->Value(1),
&aRLast = sline->Value(sline->NbPoints());
const gp_Lin2d aLin(anArc->Line());
for(Standard_Integer aFLIndex = 0; aFLIndex < 2; aFLIndex++)
{
Standard_Real aU1 = 0.0, aV1 = 0.0, aU2 = 0.0, aV2 = 0.0;
if(aFLIndex == 0)
{
aRFirst.Parameters(aU1, aV1, aU2, aV2);
aSPnt.SetXYZ(aRFirst.Value().XYZ());
}
else
{
aRLast.Parameters(aU1, aV1, aU2, aV2);
aSPnt.SetXYZ(aRLast.Value().XYZ());
}
if(IsReversed)
{
aPSurf.SetCoord(aU1, aV1);
}
else
{
aPSurf.SetCoord(aU2, aV2);
}
Standard_Real aPar = ElCLib::Parameter(aLin, aPSurf);
if(aFLIndex == 0)
{
aFPar = Max(aFPar, aPar);
aPar = aFPar;
}
else
{
aLPar = Min(aLPar, aPar);
aPar = aLPar;
}
aTPnt.SetParameter(aPar);
aTPnt.SetValue(aSPnt,theArcTol,Standard_False);
aTPnt.SetParameters(aU1, aV1, aU2, aV2);
aRLine->AddVertex(aTPnt);
}
if(aLPar - aFPar > Precision::PConfusion())
{
aRLine->SetFirstPoint(1);
aRLine->SetLastPoint(aRLine->NbVertex());
anArc->Trim(aFPar, aLPar, theArcTol);
theLines.Append(aRLine);
}
}
if(isDecomposited)
{
aFindex = aBindex;
flNextLine = hasBeenDecomposed = Standard_True;
}
}
return hasBeenDecomposed;
}
//=======================================================================
//function : CheckSegmSegm
//purpose : Returns TRUE if the segment [theParF, theParL] is included
// in the segment [theRefParF, theRefParL] segment.
//=======================================================================
static Standard_Boolean CheckSegmSegm(const Standard_Real theRefParF,
const Standard_Real theRefParL,
const Standard_Real theParF,
const Standard_Real theParL)
{
if((theParF < theRefParF) || (theParF > theRefParL))
{
return Standard_False;
}
if((theParL < theRefParF) || (theParL > theRefParL))
{
return Standard_False;
}
return Standard_True;
}
//=======================================================================
//function : IsCoincide
//purpose : Check, if theLine is coincided with theArc (in 2d-space).
//
// Attention!!!
// Cases when theArc is not 2d-line adaptor are supported by
// TopOpeBRep classes only (i.e. are archaic).
//=======================================================================
Standard_Boolean IsCoincide(IntPatch_TheSurfFunction& theFunc,
const Handle(IntPatch_PointLine)& theLine,
const Handle(Adaptor2d_Curve2d)& theArc,
const Standard_Boolean isTheSurface1Using, //Surf1 is parametric?
const Standard_Real theToler3D,
const Standard_Real theToler2D,
const Standard_Real thePeriod) // Period of parametric surface in direction which is perpendicular to theArc direction.
{
const Standard_Real aCoeffs[] = { 0.02447174185, 0.09549150281, 0.20610737385, 0.34549150281, /*Sin(x)*Sin(x)*/
0.5, 0.65450849719, 0.79389262615 };
if(theLine->ArcType() == IntPatch_Restriction)
{//Restriction-restriction processing
const Handle(IntPatch_RLine)& aRL2 = Handle(IntPatch_RLine)::DownCast(theLine);
const Handle(Adaptor2d_Curve2d)& anArc = aRL2->IsArcOnS1() ? aRL2->ArcOnS1() : aRL2->ArcOnS2();
if(anArc->GetType() != GeomAbs_Line)
{
//Restriction line must be isoline.
//Other cases are not supported by
//existing algorithms.
return Standard_False;
}
const gp_Lin2d aLin1(theArc->Line()),
aLin2(anArc->Line());
if(!aLin1.Direction().IsParallel(aLin2.Direction(), Precision::Angular()))
{
return Standard_False;
}
const Standard_Real aDist =
theArc->Line().Distance(anArc->Line());
if((aDist < theToler2D) || (Abs(aDist - thePeriod) < theToler2D))
{
const Standard_Real aRf = theArc->FirstParameter(),
aRl = theArc->LastParameter();
const Standard_Real aParf = anArc->FirstParameter(),
aParl = anArc->LastParameter();
const gp_Pnt2d aP1(ElCLib::Value(aParf, aLin2)),
aP2(ElCLib::Value(aParl, aLin2));
Standard_Real aParam1 = ElCLib::Parameter(aLin1, aP1),
aParam2 = ElCLib::Parameter(aLin1, aP2);
if(CheckSegmSegm(aRf, aRl, aParam1, aParam2))
return Standard_True;
//Lines are parallel. Therefore, there is no point in
//projecting points to another line in order to check
//if segment second line is included in segment of first one.
return CheckSegmSegm(aParam1, aParam2, aRf, aRl);
}
return Standard_False;
}
const Standard_Integer aNbPnts = theLine->NbPnts();
const Standard_Real aUAf = theArc->FirstParameter(),
aUAl = theArc->LastParameter();
const gp_Lin2d anArcLin(theArc->Line());
math_Vector aX(1, 2), aVal(1, 1);
for(Standard_Integer aPtID = 1; aPtID <= aNbPnts; aPtID++)
{
Standard_Real aUf = 0.0, aVf = 0.0;
if(isTheSurface1Using)
theLine->Point(aPtID).ParametersOnS1(aUf, aVf);
else
theLine->Point(aPtID).ParametersOnS2(aUf, aVf);
//Take 2d-point in parametric surface (because theArc is
//2d-line in parametric surface).
const gp_Pnt2d aPloc(aUf, aVf);
const Standard_Real aRParam = ElCLib::Parameter(anArcLin, aPloc);
if((aRParam < aUAf) || (aRParam > aUAl))
return Standard_False;
const gp_Pnt2d aPmin(ElCLib::Value(aRParam, anArcLin));
const Standard_Real aDist = aPloc.Distance(aPmin);
if((aDist < theToler2D) || (Abs(aDist - thePeriod) < theToler2D))
{//Considered point is in Restriction line.
//Go to the next point.
continue;
}
//Check if intermediate points between aPloc and theArc are
//intersection point (i.e. if aPloc is in tangent zone between
//two intersected surfaces).
const Standard_Real aUl = aPmin.X(), aVl = aPmin.Y();
Standard_Real aU, aV;
Standard_Real dU = aUl - aUf, dV = aVl - aVf;
for(Standard_Integer i = 0; i < 7; i++)
{
aU = aUf + aCoeffs[i] * dU;
aV = aVf + aCoeffs[i] * dV;
aX.Value(1) = aU;
aX.Value(2) = aV;
if(!theFunc.Value(aX, aVal))
{
return Standard_False;
}
if(Abs(theFunc.Root()) > theToler3D)
{
return Standard_False;
}
}
}
return Standard_True;
}