1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-04-09 18:50:54 +03:00
occt/src/BRepLib/BRepLib.cxx
azv 712879c808 0027383: Modeling - improve handling of regularity on edges
1. There has been implemented calculation of all possible types of continuity for shared edges:
  * G1 is set if tangential planes are the same for connected faces in each control points through the edge;
  * C1 is set in addition to G1 conditions if derivatives, orthogonal to the edge on each face, are equal vectors;
  * G2 is set in addition to G1 if the centers of principal curvatures are the same for connected faces in each control points through the edge;
  * C2 is set in addition to C1 and G2 if directions of principal curvatures are equal;
  * CN continuity is set only if both connected faces are based on elementary surfaces (the conditions for this case are similar to C2 continuity).

2. ShapeFix::EncodeRegularity() is merged into BRepLib::EncodeRegularity().
3. Implemented several test cases to check correct handling of regularity.
4. Fix incorrect usage of BRepLib::EncodeRegularity() in BRepBuilderAPI_Sewing.
5. Implement a method for calculation of regularity on the given list of edges.
6. Documentation updates
2017-01-26 12:45:22 +03:00

2401 lines
78 KiB
C++

// Created on: 1993-12-15
// Created by: Remi LEQUETTE
// Copyright (c) 1993-1999 Matra Datavision
// Copyright (c) 1999-2014 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
//pmn 26/09/97 Add parameters of approximation in BuildCurve3d
// Modified by skv - Thu Jun 3 12:39:19 2004 OCC5898
#include <Adaptor3d_CurveOnSurface.hxx>
#include <AdvApprox_ApproxAFunction.hxx>
#include <AppParCurves_MultiBSpCurve.hxx>
#include <AppParCurves_MultiCurve.hxx>
#include <Approx_CurvilinearParameter.hxx>
#include <Approx_SameParameter.hxx>
#include <Bnd_Box.hxx>
#include <BRep_Builder.hxx>
#include <BRep_CurveRepresentation.hxx>
#include <BRep_GCurve.hxx>
#include <BRep_ListIteratorOfListOfCurveRepresentation.hxx>
#include <BRep_ListOfCurveRepresentation.hxx>
#include <BRep_TEdge.hxx>
#include <BRep_TFace.hxx>
#include <BRep_Tool.hxx>
#include <BRep_TVertex.hxx>
#include <BRepAdaptor_HCurve.hxx>
#include <BRepAdaptor_HCurve2d.hxx>
#include <BRepAdaptor_HSurface.hxx>
#include <BRepAdaptor_Surface.hxx>
#include <BRepBndLib.hxx>
#include <BRepClass3d_SolidClassifier.hxx>
#include <BRepLib.hxx>
#include <BSplCLib.hxx>
#include <ElSLib.hxx>
#include <Extrema_LocateExtPC.hxx>
#include <GCPnts_QuasiUniformDeflection.hxx>
#include <Geom2d_BSplineCurve.hxx>
#include <Geom2d_Curve.hxx>
#include <Geom2d_TrimmedCurve.hxx>
#include <Geom2dAdaptor.hxx>
#include <Geom2dAdaptor_Curve.hxx>
#include <Geom2dAdaptor_HCurve.hxx>
#include <Geom2dConvert.hxx>
#include <Geom_BSplineCurve.hxx>
#include <Geom_BSplineSurface.hxx>
#include <Geom_Curve.hxx>
#include <Geom_Plane.hxx>
#include <Geom_RectangularTrimmedSurface.hxx>
#include <Geom_Surface.hxx>
#include <Geom_TrimmedCurve.hxx>
#include <GeomAdaptor_Curve.hxx>
#include <GeomAdaptor_HCurve.hxx>
#include <GeomAdaptor_HSurface.hxx>
#include <GeomAdaptor_Surface.hxx>
#include <GeomLib.hxx>
#include <GeomLProp_SLProps.hxx>
#include <gp.hxx>
#include <gp_Ax2.hxx>
#include <gp_Pln.hxx>
#include <Poly_PolygonOnTriangulation.hxx>
#include <Poly_Triangulation.hxx>
#include <Precision.hxx>
#include <ProjLib_ProjectedCurve.hxx>
#include <Standard_ErrorHandler.hxx>
#include <Standard_Real.hxx>
#include <TColgp_Array1OfPnt.hxx>
#include <TColgp_Array1OfPnt2d.hxx>
#include <TColStd_Array1OfReal.hxx>
#include <TColStd_MapOfTransient.hxx>
#include <TopExp.hxx>
#include <TopExp_Explorer.hxx>
#include <TopoDS.hxx>
#include <TopoDS_Edge.hxx>
#include <TopoDS_Face.hxx>
#include <TopoDS_Shape.hxx>
#include <TopoDS_Solid.hxx>
#include <TopoDS_Vertex.hxx>
#include <TopTools_IndexedDataMapOfShapeListOfShape.hxx>
#include <TopTools_ListIteratorOfListOfShape.hxx>
#include <TopTools_MapOfShape.hxx>
#include <TShort_HArray1OfShortReal.hxx>
#include <TColgp_Array1OfXY.hxx>
#include <algorithm>
// TODO - not thread-safe static variables
static Standard_Real thePrecision = Precision::Confusion();
static Handle(Geom_Plane) thePlane;
//=======================================================================
// function: BRepLib_ComparePoints
// purpose: implementation of IsLess() function for two points
//=======================================================================
struct BRepLib_ComparePoints {
bool operator()(const gp_Pnt& theP1, const gp_Pnt& theP2)
{
for (Standard_Integer i = 1; i <= 3; ++i) {
if (theP1.Coord(i) < theP2.Coord(i)) {
return Standard_True;
}
else if (theP1.Coord(i) > theP2.Coord(i)) {
return Standard_False;
}
}
return Standard_False;
}
};
//=======================================================================
//function : Precision
//purpose :
//=======================================================================
void BRepLib::Precision(const Standard_Real P)
{
thePrecision = P;
}
//=======================================================================
//function : Precision
//purpose :
//=======================================================================
Standard_Real BRepLib::Precision()
{
return thePrecision;
}
//=======================================================================
//function : Plane
//purpose :
//=======================================================================
void BRepLib::Plane(const Handle(Geom_Plane)& P)
{
thePlane = P;
}
//=======================================================================
//function : Plane
//purpose :
//=======================================================================
const Handle(Geom_Plane)& BRepLib::Plane()
{
if (thePlane.IsNull()) thePlane = new Geom_Plane(gp::XOY());
return thePlane;
}
//=======================================================================
//function : CheckSameRange
//purpose :
//=======================================================================
Standard_Boolean BRepLib::CheckSameRange(const TopoDS_Edge& AnEdge,
const Standard_Real Tolerance)
{
Standard_Boolean IsSameRange = Standard_True,
first_time_in = Standard_True ;
BRep_ListIteratorOfListOfCurveRepresentation an_Iterator
((*((Handle(BRep_TEdge)*)&AnEdge.TShape()))->ChangeCurves());
Standard_Real first, last;
Standard_Real current_first =0., current_last =0. ;
Handle(BRep_GCurve) geometric_representation_ptr ;
while (IsSameRange && an_Iterator.More()) {
geometric_representation_ptr =
Handle(BRep_GCurve)::DownCast(an_Iterator.Value());
if (!geometric_representation_ptr.IsNull()) {
first = geometric_representation_ptr->First();
last = geometric_representation_ptr->Last();
if (first_time_in ) {
current_first = first ;
current_last = last ;
first_time_in = Standard_False ;
}
else {
IsSameRange = (Abs(current_first - first) <= Tolerance)
&& (Abs(current_last -last) <= Tolerance ) ;
}
}
an_Iterator.Next() ;
}
return IsSameRange ;
}
//=======================================================================
//function : SameRange
//purpose :
//=======================================================================
void BRepLib::SameRange(const TopoDS_Edge& AnEdge,
const Standard_Real Tolerance)
{
BRep_ListIteratorOfListOfCurveRepresentation an_Iterator
((*((Handle(BRep_TEdge)*)&AnEdge.TShape()))->ChangeCurves());
Handle(Geom2d_Curve) Curve2dPtr, Curve2dPtr2, NewCurve2dPtr, NewCurve2dPtr2;
TopLoc_Location LocalLoc ;
Standard_Boolean first_time_in = Standard_True,
has_curve,
has_closed_curve ;
Handle(BRep_GCurve) geometric_representation_ptr ;
Standard_Real first,
current_first,
last,
current_last ;
const Handle(Geom_Curve) C = BRep_Tool::Curve(AnEdge,
LocalLoc,
current_first,
current_last);
if (!C.IsNull()) {
first_time_in = Standard_False ;
}
while (an_Iterator.More()) {
geometric_representation_ptr =
Handle(BRep_GCurve)::DownCast(an_Iterator.Value());
if (! geometric_representation_ptr.IsNull()) {
has_closed_curve =
has_curve = Standard_False ;
first = geometric_representation_ptr->First();
last = geometric_representation_ptr->Last();
if (geometric_representation_ptr->IsCurveOnSurface()) {
Curve2dPtr = geometric_representation_ptr->PCurve() ;
has_curve = Standard_True ;
}
if (geometric_representation_ptr->IsCurveOnClosedSurface()) {
Curve2dPtr2 = geometric_representation_ptr->PCurve2() ;
has_closed_curve = Standard_True ;
}
if (has_curve || has_closed_curve) {
if (first_time_in) {
current_first = first ;
current_last = last ;
first_time_in = Standard_False ;
}
if (Abs(first - current_first) > Precision::Confusion() ||
Abs(last - current_last) > Precision::Confusion() )
{
if (has_curve)
{
GeomLib::SameRange(Tolerance,
Curve2dPtr,
geometric_representation_ptr->First(),
geometric_representation_ptr->Last(),
current_first,
current_last,
NewCurve2dPtr);
geometric_representation_ptr->PCurve(NewCurve2dPtr) ;
}
if (has_closed_curve)
{
GeomLib::SameRange(Tolerance,
Curve2dPtr2,
geometric_representation_ptr->First(),
geometric_representation_ptr->Last(),
current_first,
current_last,
NewCurve2dPtr2);
geometric_representation_ptr->PCurve2(NewCurve2dPtr2) ;
}
}
}
}
an_Iterator.Next() ;
}
BRep_Builder B;
B.Range(TopoDS::Edge(AnEdge),
current_first,
current_last) ;
B.SameRange(AnEdge,
Standard_True) ;
}
//=======================================================================
//function : EvaluateMaxSegment
//purpose : return MaxSegment to pass in approximation, if MaxSegment==0 provided
//=======================================================================
static Standard_Integer evaluateMaxSegment(const Standard_Integer aMaxSegment,
const Adaptor3d_CurveOnSurface& aCurveOnSurface)
{
if (aMaxSegment != 0) return aMaxSegment;
Handle(Adaptor3d_HSurface) aSurf = aCurveOnSurface.GetSurface();
Handle(Adaptor2d_HCurve2d) aCurv2d = aCurveOnSurface.GetCurve();
Standard_Real aNbSKnots = 0, aNbC2dKnots = 0;
if (aSurf->GetType() == GeomAbs_BSplineSurface) {
Handle(Geom_BSplineSurface) aBSpline = aSurf->BSpline();
aNbSKnots = Max(aBSpline->NbUKnots(), aBSpline->NbVKnots());
}
if (aCurv2d->GetType() == GeomAbs_BSplineCurve) {
aNbC2dKnots = aCurv2d->NbKnots();
}
Standard_Integer aReturn = (Standard_Integer) ( 30 + Max(aNbSKnots, aNbC2dKnots) ) ;
return aReturn;
}
//=======================================================================
//function : BuildCurve3d
//purpose :
//=======================================================================
Standard_Boolean BRepLib::BuildCurve3d(const TopoDS_Edge& AnEdge,
const Standard_Real Tolerance,
const GeomAbs_Shape Continuity,
const Standard_Integer MaxDegree,
const Standard_Integer MaxSegment)
{
Standard_Integer //ErrorCode,
// ReturnCode = 0,
ii,
// num_knots,
jj;
TopLoc_Location LocalLoc,L[2],LC;
Standard_Real f,l,fc,lc, first[2], last[2],
tolerance,
max_deviation,
average_deviation ;
Handle(Geom2d_Curve) Curve2dPtr, Curve2dArray[2] ;
Handle(Geom_Surface) SurfacePtr, SurfaceArray[2] ;
Standard_Integer not_done ;
// if the edge has a 3d curve returns true
const Handle(Geom_Curve) C = BRep_Tool::Curve(AnEdge,LocalLoc,f,l);
if (!C.IsNull())
return Standard_True;
//
// this should not exists but UpdateEdge makes funny things
// if the edge is not same range
//
if (! CheckSameRange(AnEdge,
Precision::Confusion())) {
SameRange(AnEdge,
Tolerance) ;
}
// search a curve on a plane
Handle(Geom_Surface) S;
Handle(Geom2d_Curve) PC;
Standard_Integer i = 0;
Handle(Geom_Plane) P;
not_done = 1 ;
while (not_done) {
i++;
BRep_Tool::CurveOnSurface(AnEdge,PC,S,LocalLoc,f,l,i);
Handle(Geom_RectangularTrimmedSurface) RT =
Handle(Geom_RectangularTrimmedSurface)::DownCast(S);
if ( RT.IsNull()) {
P = Handle(Geom_Plane)::DownCast(S);
}
else {
P = Handle(Geom_Plane)::DownCast(RT->BasisSurface());
}
not_done = ! (S.IsNull() || !P.IsNull()) ;
}
if (! P.IsNull()) {
// compute the 3d curve
gp_Ax2 axes = P->Position().Ax2();
Handle(Geom_Curve) C3d = GeomLib::To3d(axes,PC);
if (C3d.IsNull())
return Standard_False;
// update the edge
Standard_Real First, Last;
BRep_Builder B;
B.UpdateEdge(AnEdge,C3d,LocalLoc,0.0e0);
BRep_Tool::Range(AnEdge, S, LC, First, Last);
B.Range(AnEdge, First, Last); //Do not forget 3D range.(PRO6412)
}
else {
//
// compute the 3d curve using existing surface
//
fc = f ;
lc = l ;
if (!BRep_Tool::Degenerated(AnEdge)) {
jj = 0 ;
for (ii = 0 ; ii < 3 ; ii++ ) {
BRep_Tool::CurveOnSurface(TopoDS::Edge(AnEdge),
Curve2dPtr,
SurfacePtr,
LocalLoc,
fc,
lc,
ii) ;
if (!Curve2dPtr.IsNull() && jj < 2){
Curve2dArray[jj] = Curve2dPtr ;
SurfaceArray[jj] = SurfacePtr ;
L[jj] = LocalLoc ;
first[jj] = fc ;
last[jj] = lc ;
jj += 1 ;
}
}
f = first[0] ;
l = last[0] ;
Curve2dPtr = Curve2dArray[0] ;
SurfacePtr = SurfaceArray[0] ;
Geom2dAdaptor_Curve AnAdaptor3dCurve2d (Curve2dPtr, f, l) ;
GeomAdaptor_Surface AnAdaptor3dSurface (SurfacePtr) ;
Handle(Geom2dAdaptor_HCurve) AnAdaptor3dCurve2dPtr =
new Geom2dAdaptor_HCurve(AnAdaptor3dCurve2d) ;
Handle(GeomAdaptor_HSurface) AnAdaptor3dSurfacePtr =
new GeomAdaptor_HSurface (AnAdaptor3dSurface) ;
Adaptor3d_CurveOnSurface CurveOnSurface( AnAdaptor3dCurve2dPtr,
AnAdaptor3dSurfacePtr) ;
Handle(Geom_Curve) NewCurvePtr ;
GeomLib::BuildCurve3d(Tolerance,
CurveOnSurface,
f,
l,
NewCurvePtr,
max_deviation,
average_deviation,
Continuity,
MaxDegree,
evaluateMaxSegment(MaxSegment,CurveOnSurface)) ;
BRep_Builder B;
tolerance = BRep_Tool::Tolerance(AnEdge) ;
//Patch
//max_deviation = Max(tolerance, max_deviation) ;
max_deviation = Max( tolerance, Tolerance );
if (NewCurvePtr.IsNull())
return Standard_False;
B.UpdateEdge(TopoDS::Edge(AnEdge),
NewCurvePtr,
L[0],
max_deviation) ;
if (jj == 1 ) {
//
// if there is only one curve on surface attached to the edge
// than it can be qualified sameparameter
//
B.SameParameter(TopoDS::Edge(AnEdge),
Standard_True) ;
}
}
else {
return Standard_False ;
}
}
return Standard_True;
}
//=======================================================================
//function : BuildCurves3d
//purpose :
//=======================================================================
Standard_Boolean BRepLib::BuildCurves3d(const TopoDS_Shape& S)
{
return BRepLib::BuildCurves3d(S,
1.0e-5) ;
}
//=======================================================================
//function : BuildCurves3d
//purpose :
//=======================================================================
Standard_Boolean BRepLib::BuildCurves3d(const TopoDS_Shape& S,
const Standard_Real Tolerance,
const GeomAbs_Shape Continuity,
const Standard_Integer MaxDegree,
const Standard_Integer MaxSegment)
{
Standard_Boolean boolean_value,
ok = Standard_True;
TopTools_MapOfShape a_counter ;
TopExp_Explorer ex(S,TopAbs_EDGE);
while (ex.More()) {
if (a_counter.Add(ex.Current())) {
boolean_value =
BuildCurve3d(TopoDS::Edge(ex.Current()),
Tolerance, Continuity,
MaxDegree, MaxSegment);
ok = ok && boolean_value ;
}
ex.Next();
}
return ok;
}
//=======================================================================
//function : UpdateEdgeTolerance
//purpose :
//=======================================================================
Standard_Boolean BRepLib::UpdateEdgeTol(const TopoDS_Edge& AnEdge,
const Standard_Real MinToleranceRequested,
const Standard_Real MaxToleranceToCheck)
{
Standard_Integer curve_on_surface_index,
curve_index,
not_done,
has_closed_curve,
has_curve,
jj,
ii,
geom_reference_curve_flag = 0,
max_sampling_points = 90,
min_sampling_points = 30 ;
Standard_Real factor = 100.0e0,
// sampling_array[2],
safe_factor = 1.4e0,
current_last,
current_first,
max_distance,
coded_edge_tolerance,
edge_tolerance = 0.0e0 ;
Handle(TColStd_HArray1OfReal) parameters_ptr ;
Handle(BRep_GCurve) geometric_representation_ptr ;
if (BRep_Tool::Degenerated(AnEdge)) return Standard_False ;
coded_edge_tolerance = BRep_Tool::Tolerance(AnEdge) ;
if (coded_edge_tolerance > MaxToleranceToCheck) return Standard_False ;
const Handle(BRep_TEdge)& TE = *((Handle(BRep_TEdge)*)&AnEdge.TShape());
BRep_ListOfCurveRepresentation& list_curve_rep = TE->ChangeCurves() ;
BRep_ListIteratorOfListOfCurveRepresentation an_iterator(list_curve_rep),
second_iterator(list_curve_rep) ;
Handle(Geom2d_Curve) curve2d_ptr, new_curve2d_ptr;
Handle(Geom_Surface) surface_ptr ;
TopLoc_Location local_location ;
GCPnts_QuasiUniformDeflection a_sampler ;
GeomAdaptor_Curve geom_reference_curve ;
Adaptor3d_CurveOnSurface curve_on_surface_reference ;
Handle(Geom_Curve) C = BRep_Tool::Curve(AnEdge,
local_location,
current_first,
current_last);
curve_on_surface_index = -1 ;
if (!C.IsNull()) {
if (! local_location.IsIdentity()) {
C = Handle(Geom_Curve)::
DownCast(C-> Transformed(local_location.Transformation()) ) ;
}
geom_reference_curve.Load(C) ;
geom_reference_curve_flag = 1 ;
a_sampler.Initialize(geom_reference_curve,
MinToleranceRequested * factor,
current_first,
current_last) ;
}
else {
not_done = 1 ;
curve_on_surface_index = 0 ;
while (not_done && an_iterator.More()) {
geometric_representation_ptr =
Handle(BRep_GCurve)::DownCast(second_iterator.Value());
if (!geometric_representation_ptr.IsNull()
&& geometric_representation_ptr->IsCurveOnSurface()) {
curve2d_ptr = geometric_representation_ptr->PCurve() ;
local_location = geometric_representation_ptr->Location() ;
current_first = geometric_representation_ptr->First();
//first = geometric_representation_ptr->First();
current_last = geometric_representation_ptr->Last();
// must be inverted
//
if (! local_location.IsIdentity() ) {
surface_ptr = Handle(Geom_Surface)::
DownCast( geometric_representation_ptr->Surface()->
Transformed(local_location.Transformation()) ) ;
}
else {
surface_ptr =
geometric_representation_ptr->Surface() ;
}
not_done = 0 ;
}
curve_on_surface_index += 1 ;
}
Geom2dAdaptor_Curve AnAdaptor3dCurve2d (curve2d_ptr) ;
GeomAdaptor_Surface AnAdaptor3dSurface (surface_ptr) ;
Handle(Geom2dAdaptor_HCurve) AnAdaptor3dCurve2dPtr =
new Geom2dAdaptor_HCurve(AnAdaptor3dCurve2d) ;
Handle(GeomAdaptor_HSurface) AnAdaptor3dSurfacePtr =
new GeomAdaptor_HSurface (AnAdaptor3dSurface) ;
curve_on_surface_reference.Load (AnAdaptor3dCurve2dPtr, AnAdaptor3dSurfacePtr);
a_sampler.Initialize(curve_on_surface_reference,
MinToleranceRequested * factor,
current_first,
current_last) ;
}
TColStd_Array1OfReal sampling_parameters(1,a_sampler.NbPoints()) ;
for (ii = 1 ; ii <= a_sampler.NbPoints() ; ii++) {
sampling_parameters(ii) = a_sampler.Parameter(ii) ;
}
if (a_sampler.NbPoints() < min_sampling_points) {
GeomLib::DensifyArray1OfReal(min_sampling_points,
sampling_parameters,
parameters_ptr) ;
}
else if (a_sampler.NbPoints() > max_sampling_points) {
GeomLib::RemovePointsFromArray(max_sampling_points,
sampling_parameters,
parameters_ptr) ;
}
else {
jj = 1 ;
parameters_ptr =
new TColStd_HArray1OfReal(1,sampling_parameters.Length()) ;
for (ii = sampling_parameters.Lower() ; ii <= sampling_parameters.Upper() ; ii++) {
parameters_ptr->ChangeArray1()(jj) =
sampling_parameters(ii) ;
jj +=1 ;
}
}
curve_index = 0 ;
while (second_iterator.More()) {
geometric_representation_ptr =
Handle(BRep_GCurve)::DownCast(second_iterator.Value());
if (! geometric_representation_ptr.IsNull() &&
curve_index != curve_on_surface_index) {
has_closed_curve =
has_curve = Standard_False ;
// first = geometric_representation_ptr->First();
// last = geometric_representation_ptr->Last();
local_location = geometric_representation_ptr->Location() ;
if (geometric_representation_ptr->IsCurveOnSurface()) {
curve2d_ptr = geometric_representation_ptr->PCurve() ;
has_curve = Standard_True ;
}
if (geometric_representation_ptr->IsCurveOnClosedSurface()) {
curve2d_ptr = geometric_representation_ptr->PCurve2() ;
has_closed_curve = Standard_True ;
}
if (has_curve ||
has_closed_curve) {
if (! local_location.IsIdentity() ) {
surface_ptr = Handle(Geom_Surface)::
DownCast( geometric_representation_ptr->Surface()->
Transformed(local_location.Transformation()) ) ;
}
else {
surface_ptr =
geometric_representation_ptr->Surface() ;
}
Geom2dAdaptor_Curve an_adaptor_curve2d (curve2d_ptr) ;
GeomAdaptor_Surface an_adaptor_surface(surface_ptr) ;
Handle(Geom2dAdaptor_HCurve) an_adaptor_curve2d_ptr =
new Geom2dAdaptor_HCurve(an_adaptor_curve2d) ;
Handle(GeomAdaptor_HSurface) an_adaptor_surface_ptr =
new GeomAdaptor_HSurface (an_adaptor_surface) ;
Adaptor3d_CurveOnSurface a_curve_on_surface(an_adaptor_curve2d_ptr,
an_adaptor_surface_ptr) ;
if (BRep_Tool::SameParameter(AnEdge)) {
GeomLib::EvalMaxParametricDistance(a_curve_on_surface,
geom_reference_curve,
MinToleranceRequested,
parameters_ptr->Array1(),
max_distance) ;
}
else if (geom_reference_curve_flag) {
GeomLib::EvalMaxDistanceAlongParameter(a_curve_on_surface,
geom_reference_curve,
MinToleranceRequested,
parameters_ptr->Array1(),
max_distance) ;
}
else {
GeomLib::EvalMaxDistanceAlongParameter(a_curve_on_surface,
curve_on_surface_reference,
MinToleranceRequested,
parameters_ptr->Array1(),
max_distance) ;
}
max_distance *= safe_factor ;
edge_tolerance = Max(max_distance, edge_tolerance) ;
}
}
curve_index += 1 ;
second_iterator.Next() ;
}
TE->Tolerance(edge_tolerance);
return Standard_True ;
}
//=======================================================================
//function : UpdateEdgeTolerance
//purpose :
//=======================================================================
Standard_Boolean BRepLib::UpdateEdgeTolerance(const TopoDS_Shape& S,
const Standard_Real MinToleranceRequested,
const Standard_Real MaxToleranceToCheck)
{
TopExp_Explorer ex(S,TopAbs_EDGE);
TopTools_MapOfShape a_counter ;
Standard_Boolean return_status = Standard_False,
local_flag ;
while (ex.More()) {
if (a_counter.Add(ex.Current())) {
local_flag =
BRepLib::UpdateEdgeTol(TopoDS::Edge(ex.Current()),
MinToleranceRequested,
MaxToleranceToCheck) ;
if (local_flag && ! return_status) {
return_status = Standard_True ;
}
}
ex.Next();
}
return return_status ;
}
//=======================================================================
//function : SetEdgeTol
//purpose :
//=======================================================================
static void SetEdgeTol(const TopoDS_Edge& E,
const TopoDS_Face& F)
{
TopLoc_Location L;
const Handle(Geom_Surface)& S = BRep_Tool::Surface(F,L);
TopLoc_Location l = L.Predivided(E.Location());
const Handle(BRep_TEdge)& TE = *((Handle(BRep_TEdge)*)&E.TShape());
BRep_ListIteratorOfListOfCurveRepresentation itcr(TE->ChangeCurves());
while (itcr.More()) {
const Handle(BRep_CurveRepresentation)& cr = itcr.Value();
if(cr->IsCurveOnSurface(S,l)) return;
itcr.Next();
}
Handle(Geom_Plane) GP;
Handle(Geom_RectangularTrimmedSurface) GRTS;
GRTS = Handle(Geom_RectangularTrimmedSurface)::DownCast(S);
if(!GRTS.IsNull())
GP = Handle(Geom_Plane)::DownCast(GRTS->BasisSurface());
else
GP = Handle(Geom_Plane)::DownCast(S);
Handle(GeomAdaptor_HCurve) HC = new GeomAdaptor_HCurve();
Handle(GeomAdaptor_HSurface) HS = new GeomAdaptor_HSurface();
TopLoc_Location LC;
Standard_Real First, Last;
GeomAdaptor_Curve& GAC = HC->ChangeCurve();
GAC.Load(BRep_Tool::Curve(E,LC,First,Last));
LC = L.Predivided(LC);
if (!LC.IsIdentity()) {
GP = Handle(Geom_Plane)::DownCast(
GP->Transformed(LC.Transformation()));
}
GeomAdaptor_Surface& GAS = HS->ChangeSurface();
GAS.Load(GP);
ProjLib_ProjectedCurve Proj(HS,HC);
Handle(Geom2d_Curve) pc = Geom2dAdaptor::MakeCurve(Proj);
gp_Pln pln = GAS.Plane();
Standard_Real d2 = 0.;
Standard_Integer nn = 23;
Standard_Real unsurnn = 1./nn;
for(Standard_Integer i = 0; i <= nn; i++){
Standard_Real t = unsurnn*i;
Standard_Real u = First*(1.-t) + Last*t;
gp_Pnt Pc3d = HC->Value(u);
gp_Pnt2d p2d = pc->Value(u);
gp_Pnt Pcons = ElSLib::Value(p2d.X(),p2d.Y(),pln);
Standard_Real eps = Max(Pc3d.XYZ().SquareModulus(), Pcons.XYZ().SquareModulus());
eps = Epsilon(eps);
Standard_Real temp = Pc3d.SquareDistance(Pcons);
if(temp <= eps)
{
temp = 0.;
}
if(temp > d2) d2 = temp;
}
d2 = 1.5*sqrt(d2);
TE->UpdateTolerance(d2);
}
//=======================================================================
//function : SameParameter
//purpose :
//=======================================================================
void BRepLib::SameParameter(const TopoDS_Shape& S,
const Standard_Real Tolerance,
const Standard_Boolean forced)
{
TopExp_Explorer ex(S,TopAbs_EDGE);
TopTools_MapOfShape Done;
BRep_Builder brB;
while (ex.More()) {
if (Done.Add(ex.Current())) {
if (forced) {
brB.SameRange(TopoDS::Edge(ex.Current()), Standard_False);
brB.SameParameter(TopoDS::Edge(ex.Current()), Standard_False);
}
BRepLib::SameParameter(TopoDS::Edge(ex.Current()),Tolerance);
}
ex.Next();
}
Done.Clear();
BRepAdaptor_Surface BS;
for(ex.Init(S,TopAbs_FACE); ex.More(); ex.Next()){
const TopoDS_Face& curface = TopoDS::Face(ex.Current());
if(!Done.Add(curface)) continue;
BS.Initialize(curface);
if(BS.GetType() != GeomAbs_Plane) continue;
TopExp_Explorer ex2;
for(ex2.Init(curface,TopAbs_EDGE); ex2.More(); ex2.Next()){
const TopoDS_Edge& E = TopoDS::Edge(ex2.Current());
SetEdgeTol(E,curface);
}
}
BRepLib::UpdateTolerances(S);
}
//================================================================
//function : SameParameter
//WARNING : New spec DUB LBO 9/9/97.
// Recode in the edge the best tolerance found,
// for vertex extremities it is required to find something else
//================================================================
static Standard_Boolean EvalTol(const Handle(Geom2d_Curve)& pc,
const Handle(Geom_Surface)& s,
const GeomAdaptor_Curve& gac,
const Standard_Real tol,
Standard_Real& tolbail)
{
Standard_Integer ok = 0;
Standard_Real f = gac.FirstParameter();
Standard_Real l = gac.LastParameter();
Extrema_LocateExtPC Projector;
Projector.Initialize(gac,f,l,tol);
Standard_Real u,v;
gp_Pnt p;
tolbail = tol;
for(Standard_Integer i = 1; i <= 5; i++){
Standard_Real t = i/6.;
t = (1.-t) * f + t * l;
pc->Value(t).Coord(u,v);
p = s->Value(u,v);
Projector.Perform(p,t);
if (Projector.IsDone()) {
Standard_Real dist2 = Projector.SquareDistance();
if(dist2 > tolbail * tolbail) tolbail = sqrt (dist2);
ok++;
}
}
return (ok > 2);
}
static Standard_Real ComputeTol(const Handle(Adaptor3d_HCurve)& c3d,
const Handle(Adaptor2d_HCurve2d)& c2d,
const Handle(Adaptor3d_HSurface)& surf,
const Standard_Integer nbp)
{
TColStd_Array1OfReal dist(1,nbp+10);
dist.Init(-1.);
//Adaptor3d_CurveOnSurface cons(c2d,surf);
Standard_Real uf = surf->FirstUParameter(), ul = surf->LastUParameter(),
vf = surf->FirstVParameter(), vl = surf->LastVParameter();
Standard_Real du = 0.01 * (ul - uf), dv = 0.01 * (vl - vf);
Standard_Boolean isUPeriodic = surf->IsUPeriodic(), isVPeriodic = surf->IsVPeriodic();
Standard_Real DSdu = 1./surf->UResolution(1.), DSdv = 1./surf->VResolution(1.);
Standard_Real d2 = 0.;
Standard_Real first = c3d->FirstParameter();
Standard_Real last = c3d->LastParameter();
Standard_Real dapp = -1.;
Standard_Integer i = 0;
for(i = 0; i <= nbp; i++){
const Standard_Real t = IntToReal(i)/IntToReal(nbp);
const Standard_Real u = first*(1.-t) + last*t;
gp_Pnt Pc3d = c3d->Value(u);
gp_Pnt2d Puv = c2d->Value(u);
if(!isUPeriodic)
{
if(Puv.X() < uf - du)
{
dapp = Max(dapp, DSdu * (uf - Puv.X()));
continue;
}
else if(Puv.X() > ul + du)
{
dapp = Max(dapp, DSdu * (Puv.X() - ul));
continue;
}
}
if(!isVPeriodic)
{
if(Puv.Y() < vf - dv)
{
dapp = Max(dapp, DSdv * (vf - Puv.Y()));
continue;
}
else if(Puv.Y() > vl + dv)
{
dapp = Max(dapp, DSdv * (Puv.Y() - vl));
continue;
}
}
gp_Pnt Pcons = surf->Value(Puv.X(), Puv.Y());
if (Precision::IsInfinite(Pcons.X()) ||
Precision::IsInfinite(Pcons.Y()) ||
Precision::IsInfinite(Pcons.Z()))
{
d2=Precision::Infinite();
break;
}
Standard_Real temp = Pc3d.SquareDistance(Pcons);
dist(i+1) = temp;
if(temp > d2) d2 = temp;
}
if(Precision::IsInfinite(d2))
{
return d2;
}
d2 = Sqrt(d2);
if(dapp > d2)
{
return dapp;
}
Standard_Boolean ana = Standard_False;
Standard_Real D2 = 0;
Standard_Integer N1 = 0;
Standard_Integer N2 = 0;
Standard_Integer N3 = 0;
for( i = 1; i<= nbp+10; i++)
if( dist(i) > 0 ) {
if( dist(i) < 1.0 ) N1++;
else N2++;
}
if( N1 > N2 && N2 != 0 ) N3 = 100*N2/(N1+N2);
if( N3 < 10 && N3 != 0 ) {
ana = Standard_True;
for( i = 1; i<= nbp+10; i++)
if( dist(i) > 0 && dist(i) < 1.0 )
if( dist(i) > D2 ) D2 = dist(i);
}
//d2 = 1.5*sqrt(d2);
d2 = (!ana) ? 1.5 * d2 : 1.5*sqrt(D2);
if(d2<1.e-7) d2 = 1.e-7;
return d2;
}
void BRepLib::SameParameter(const TopoDS_Edge& AnEdge,
const Standard_Real Tolerance)
{
if (BRep_Tool::SameParameter(AnEdge)) return;
const Standard_Integer NCONTROL = 22;
Handle(GeomAdaptor_HCurve) HC = new GeomAdaptor_HCurve();
Handle(Geom2dAdaptor_HCurve) HC2d = new Geom2dAdaptor_HCurve();
Handle(GeomAdaptor_HSurface) HS = new GeomAdaptor_HSurface();
GeomAdaptor_Curve& GAC = HC->ChangeCurve();
Geom2dAdaptor_Curve& GAC2d = HC2d->ChangeCurve2d();
GeomAdaptor_Surface& GAS = HS->ChangeSurface();
Standard_Real f3d =0.,l3d =0.;
TopLoc_Location L3d;
Handle(Geom_Curve) C3d;
const Handle(BRep_TEdge)& TE = *((Handle(BRep_TEdge)*) &AnEdge.TShape());
BRep_ListOfCurveRepresentation& CList = TE->ChangeCurves();
BRep_ListIteratorOfListOfCurveRepresentation It(CList);
Standard_Boolean NotDone = Standard_True;
while (NotDone && It.More()) {
Handle(BRep_GCurve) GCurve = Handle(BRep_GCurve)::DownCast(It.Value());
if (!GCurve.IsNull() && GCurve->IsCurve3D()) {
C3d = GCurve->Curve3D() ;
f3d = GCurve->First();
l3d = GCurve->Last();
L3d = GCurve->Location() ;
NotDone = Standard_False;
}
It.Next() ;
}
if(C3d.IsNull()) return;
// modified by NIZHNY-OCC486 Tue Aug 27 17:15:13 2002 :
Standard_Boolean m_TrimmedPeriodical = Standard_False;
Handle(Standard_Type) TheType = C3d->DynamicType();
if( TheType == STANDARD_TYPE(Geom_TrimmedCurve))
{
Handle(Geom_Curve) gtC (Handle(Geom_TrimmedCurve)::DownCast (C3d)->BasisCurve());
m_TrimmedPeriodical = gtC->IsPeriodic();
}
// modified by NIZHNY-OCC486 Tue Aug 27 17:15:17 2002 .
BRep_Builder B;
if(!C3d->IsPeriodic()) {
Standard_Real Udeb = C3d->FirstParameter();
Standard_Real Ufin = C3d->LastParameter();
// modified by NIZHNY-OCC486 Tue Aug 27 17:17:14 2002 :
//if (Udeb > f3d) f3d = Udeb;
//if (l3d > Ufin) l3d = Ufin;
if(!m_TrimmedPeriodical)
{
if (Udeb > f3d) f3d = Udeb;
if (l3d > Ufin) l3d = Ufin;
}
// modified by NIZHNY-OCC486 Tue Aug 27 17:17:55 2002 .
}
if(!L3d.IsIdentity()){
C3d = Handle(Geom_Curve)::DownCast(C3d->Transformed(L3d.Transformation()));
}
GAC.Load(C3d,f3d,l3d);
Standard_Boolean IsSameP = 1;
Standard_Real maxdist = 0.;
// Modified by skv - Thu Jun 3 12:39:19 2004 OCC5898 Begin
Standard_Real anEdgeTol = BRep_Tool::Tolerance(AnEdge);
// Modified by skv - Thu Jun 3 12:39:20 2004 OCC5898 End
Standard_Boolean SameRange = BRep_Tool::SameRange(AnEdge);
Standard_Boolean YaPCu = Standard_False;
const Standard_Real BigError = 1.e10;
It.Initialize(CList);
while (It.More()) {
Standard_Boolean isANA = Standard_False;
Standard_Boolean isBSP = Standard_False;
Handle(BRep_GCurve) GCurve = Handle(BRep_GCurve)::DownCast(It.Value());
Handle(Geom2d_Curve) PC[2];
Handle(Geom_Surface) S;
if (!GCurve.IsNull() && GCurve->IsCurveOnSurface()) {
YaPCu = Standard_True;
PC[0] = GCurve->PCurve();
TopLoc_Location PCLoc = GCurve->Location();
S = GCurve->Surface();
if (!PCLoc.IsIdentity() ) {
S = Handle(Geom_Surface)::DownCast(S->Transformed(PCLoc.Transformation()));
}
GAS.Load(S);
if (GCurve->IsCurveOnClosedSurface()) {
PC[1] = GCurve->PCurve2();
}
// Eval tol2d to compute SameRange
Standard_Real UResol = Max(GAS.UResolution(Tolerance), Precision::PConfusion());
Standard_Real VResol = Max(GAS.VResolution(Tolerance), Precision::PConfusion());
Standard_Real Tol2d = Min(UResol, VResol);
for(Standard_Integer i = 0; i < 2; i++){
Handle(Geom2d_Curve) curPC = PC[i];
Standard_Boolean updatepc = 0;
if(curPC.IsNull()) break;
if(!SameRange){
GeomLib::SameRange(Tol2d,
PC[i],GCurve->First(),GCurve->Last(),
f3d,l3d,curPC);
updatepc = (curPC != PC[i]);
}
Standard_Boolean goodpc = 1;
GAC2d.Load(curPC,f3d,l3d);
Standard_Real error = ComputeTol(HC, HC2d, HS, NCONTROL);
if(error > BigError)
{
maxdist = error;
break;
}
if(GAC2d.GetType() == GeomAbs_BSplineCurve &&
GAC2d.Continuity() == GeomAbs_C0) {
Handle(Geom2d_BSplineCurve) bs2d = GAC2d.BSpline();
Handle(Geom2d_BSplineCurve) bs2dsov = bs2d;
Standard_Real fC0 = bs2d->FirstParameter(), lC0 = bs2d->LastParameter();
Standard_Boolean repar = Standard_True;
gp_Pnt2d OriginPoint;
bs2d->D0(fC0, OriginPoint);
Geom2dConvert::C0BSplineToC1BSplineCurve(bs2d, Tol2d);
isBSP = Standard_True;
if(bs2d->IsPeriodic()) { // -------- IFV, Jan 2000
gp_Pnt2d NewOriginPoint;
bs2d->D0(bs2d->FirstParameter(), NewOriginPoint);
if(Abs(OriginPoint.X() - NewOriginPoint.X()) > Precision::PConfusion() ||
Abs(OriginPoint.Y() - NewOriginPoint.Y()) > Precision::PConfusion() ) {
TColStd_Array1OfReal Knotbs2d (1, bs2d->NbKnots());
bs2d->Knots(Knotbs2d);
for(Standard_Integer Index = 1; Index <= bs2d->NbKnots(); Index++) {
bs2d->D0(Knotbs2d(Index), NewOriginPoint);
if(Abs(OriginPoint.X() - NewOriginPoint.X()) > Precision::PConfusion() ||
Abs(OriginPoint.Y() - NewOriginPoint.Y()) > Precision::PConfusion() ) continue;
bs2d->SetOrigin(Index);
break;
}
}
}
if(bs2d->Continuity() == GeomAbs_C0) {
Standard_Real tolbail;
if(EvalTol(curPC,S,GAC,Tolerance,tolbail)){
bs2d = bs2dsov;
Standard_Real UResbail = GAS.UResolution(tolbail);
Standard_Real VResbail = GAS.VResolution(tolbail);
Standard_Real Tol2dbail = Min(UResbail,VResbail);
bs2d->D0(bs2d->FirstParameter(), OriginPoint);
Standard_Integer nbp = bs2d->NbPoles();
TColgp_Array1OfPnt2d poles(1,nbp);
bs2d->Poles(poles);
gp_Pnt2d p = poles(1), p1;
Standard_Real d = Precision::Infinite();
for(Standard_Integer ip = 2; ip <= nbp; ip++) {
p1 = poles(ip);
d = Min(d,p.SquareDistance(p1));
p = p1;
}
d = sqrt(d)*.1;
Tol2dbail = Max(Min(Tol2dbail,d),Tol2d);
Geom2dConvert::C0BSplineToC1BSplineCurve(bs2d,Tol2dbail);
if(bs2d->IsPeriodic()) { // -------- IFV, Jan 2000
gp_Pnt2d NewOriginPoint;
bs2d->D0(bs2d->FirstParameter(), NewOriginPoint);
if(Abs(OriginPoint.X() - NewOriginPoint.X()) > Precision::PConfusion() ||
Abs(OriginPoint.Y() - NewOriginPoint.Y()) > Precision::PConfusion() ) {
TColStd_Array1OfReal Knotbs2d (1, bs2d->NbKnots());
bs2d->Knots(Knotbs2d);
for(Standard_Integer Index = 1; Index <= bs2d->NbKnots(); Index++) {
bs2d->D0(Knotbs2d(Index), NewOriginPoint);
if(Abs(OriginPoint.X() - NewOriginPoint.X()) > Precision::PConfusion() ||
Abs(OriginPoint.Y() - NewOriginPoint.Y()) > Precision::PConfusion() ) continue;
bs2d->SetOrigin(Index);
break;
}
}
}
if(bs2d->Continuity() == GeomAbs_C0) {
goodpc = 1;
bs2d = bs2dsov;
repar = Standard_False;
}
}
else goodpc = 0;
}
if(goodpc){
if(repar) {
Standard_Integer NbKnots = bs2d->NbKnots();
TColStd_Array1OfReal Knots(1,NbKnots);
bs2d->Knots(Knots);
// BSplCLib::Reparametrize(f3d,l3d,Knots);
BSplCLib::Reparametrize(fC0,lC0,Knots);
bs2d->SetKnots(Knots);
GAC2d.Load(bs2d,f3d,l3d);
curPC = bs2d;
Standard_Boolean updatepcsov = updatepc;
updatepc = Standard_True;
Standard_Real error1 = ComputeTol(HC, HC2d, HS, NCONTROL);
if(error1 > error) {
bs2d = bs2dsov;
GAC2d.Load(bs2d,f3d,l3d);
curPC = bs2d;
updatepc = updatepcsov;
isANA = Standard_True;
}
else {
error = error1;
}
}
//check, if new BSpline "good" or not --------- IFV, Jan of 2000
GeomAbs_Shape cont = bs2d->Continuity();
Standard_Boolean IsBad = Standard_False;
if(cont > GeomAbs_C0 && error > Max(1.e-3,Tolerance)) {
Standard_Integer NbKnots = bs2d->NbKnots();
TColStd_Array1OfReal Knots(1,NbKnots);
bs2d->Knots(Knots);
Standard_Real critratio = 10.;
Standard_Real dtprev = Knots(2) - Knots(1), dtratio = 1.;
Standard_Real dtmin = dtprev;
Standard_Real dtcur;
for(Standard_Integer j = 2; j < NbKnots; j++) {
dtcur = Knots(j+1) - Knots(j);
dtmin = Min(dtmin, dtcur);
if(IsBad) continue;
if(dtcur > dtprev) dtratio = dtcur/dtprev;
else dtratio = dtprev/dtcur;
if(dtratio > critratio) {IsBad = Standard_True;}
dtprev = dtcur;
}
if(IsBad) {
// To avoid failures in Approx_CurvilinearParameter
bs2d->Resolution(Max(1.e-3,Tolerance), dtcur);
if(dtmin < dtcur) IsBad = Standard_False;
}
}
if(IsBad ) { //if BSpline "bad", try to reparametrize it
// by its curve length
// GeomAbs_Shape cont = bs2d->Continuity();
if(cont > GeomAbs_C2) cont = GeomAbs_C2;
Standard_Integer maxdeg = bs2d->Degree();
if(maxdeg == 1) maxdeg = 14;
Approx_CurvilinearParameter AppCurPar(HC2d, HS, Max(1.e-3,Tolerance),
cont, maxdeg, 10);
if(AppCurPar.IsDone() || AppCurPar.HasResult()) {
bs2d = AppCurPar.Curve2d1();
GAC2d.Load(bs2d,f3d,l3d);
curPC = bs2d;
if(Abs(bs2d->FirstParameter() - fC0) > Tol2d ||
Abs(bs2d->LastParameter() - lC0) > Tol2d ) {
Standard_Integer NbKnots = bs2d->NbKnots();
TColStd_Array1OfReal Knots(1,NbKnots);
bs2d->Knots(Knots);
// BSplCLib::Reparametrize(f3d,l3d,Knots);
BSplCLib::Reparametrize(fC0,lC0,Knots);
bs2d->SetKnots(Knots);
GAC2d.Load(bs2d,f3d,l3d);
curPC = bs2d;
}
}
}
}
}
if(goodpc){
// Approx_SameParameter SameP(HC,HC2d,HS,Tolerance);
Standard_Real aTol = (isANA && isBSP) ? 1.e-7 : Tolerance;
const Handle(Adaptor3d_HCurve)& aHCurv = HC; // to avoid ambiguity
const Handle(Adaptor2d_HCurve2d)& aHCurv2d = HC2d; // to avoid ambiguity
Approx_SameParameter SameP(aHCurv,aHCurv2d,HS,aTol);
if (SameP.IsSameParameter()) {
maxdist = Max(maxdist,SameP.TolReached());
if(updatepc){
if (i == 0) GCurve->PCurve(curPC);
else GCurve->PCurve2(curPC);
}
}
else if (SameP.IsDone()) {
Standard_Real tolreached = SameP.TolReached();
if(tolreached <= error) {
curPC = SameP.Curve2d();
updatepc = Standard_True;
maxdist = Max(maxdist,tolreached);
}
else {
maxdist = Max(maxdist, error);
}
if(updatepc){
if (i == 0) GCurve->PCurve(curPC);
else GCurve->PCurve2(curPC);
}
}
else
{
//Approx_SameParameter has failed.
//Consequently, the situation might be,
//when 3D and 2D-curve do not have same-range.
GeomLib::SameRange( Tol2d, PC[i],
GCurve->First(), GCurve->Last(),
f3d,l3d,curPC);
if (i == 0) GCurve->PCurve(curPC);
else GCurve->PCurve2(curPC);
IsSameP = 0;
}
}
else IsSameP = 0;
// Modified by skv - Thu Jun 3 12:39:19 2004 OCC5898 Begin
if (!IsSameP) {
if (anEdgeTol >= error) {
maxdist = Max(maxdist, anEdgeTol);
IsSameP = Standard_True;
}
}
// Modified by skv - Thu Jun 3 12:39:20 2004 OCC5898 End
}
}
It.Next() ;
}
B.Range(AnEdge,f3d,l3d);
B.SameRange(AnEdge,Standard_True);
if ( IsSameP) {
// Reduce eventually the tolerance of the edge, as
// all its representations are processed (except for some associated
// to planes and not stored in the edge !)
// The same cannot be done with vertices that cannot be enlarged
// or left as is.
if (YaPCu) {
// Avoid setting too small tolerances.
maxdist = Max(maxdist,Precision::Confusion());
TopoDS_Vertex V1,V2;
TopExp::Vertices(AnEdge,V1,V2);
if (!V1.IsNull())
B.UpdateVertex(V1,maxdist);
if (!V2.IsNull())
B.UpdateVertex(V2,maxdist);
TE->Modified(Standard_True);
TE->Tolerance(maxdist);
}
B.SameParameter(AnEdge,Standard_True);
}
}
//=======================================================================
//function : UpdateTolerances
//purpose :
//=======================================================================
void BRepLib::UpdateTolerances(const TopoDS_Shape& aShape,
const Standard_Boolean verifyTolerance)
{
// Harmonize tolerances
// with rule Tolerance(VERTEX)>=Tolerance(EDGE)>=Tolerance(FACE)
BRep_Builder B;
Standard_Real tol=0;
if (verifyTolerance) {
// Set tolerance to its minimum value
Handle(Geom_Surface) S;
TopLoc_Location l;
TopExp_Explorer ex;
Bnd_Box aB;
Standard_Real aXmin, aYmin, aZmin, aXmax, aYmax, aZmax, dMax;
for (ex.Init(aShape, TopAbs_FACE); ex.More(); ex.Next()) {
const TopoDS_Face& curf=TopoDS::Face(ex.Current());
S = BRep_Tool::Surface(curf, l);
if (!S.IsNull()) {
aB.SetVoid();
BRepBndLib::Add(curf,aB);
if (S->DynamicType() == STANDARD_TYPE(Geom_RectangularTrimmedSurface)) {
S = Handle(Geom_RectangularTrimmedSurface)::DownCast (S)->BasisSurface();
}
GeomAdaptor_Surface AS(S);
switch (AS.GetType()) {
case GeomAbs_Plane:
case GeomAbs_Cylinder:
case GeomAbs_Cone:
{
tol=Precision::Confusion();
break;
}
case GeomAbs_Sphere:
case GeomAbs_Torus:
{
tol=Precision::Confusion()*2;
break;
}
default:
tol=Precision::Confusion()*4;
}
if (!aB.IsWhole()) {
aB.Get(aXmin, aYmin, aZmin, aXmax, aYmax, aZmax);
dMax=1.;
if (!aB.IsOpenXmin() && !aB.IsOpenXmax()) dMax=aXmax-aXmin;
if (!aB.IsOpenYmin() && !aB.IsOpenYmax()) aYmin=aYmax-aYmin;
if (!aB.IsOpenZmin() && !aB.IsOpenZmax()) aZmin=aZmax-aZmin;
if (aYmin>dMax) dMax=aYmin;
if (aZmin>dMax) dMax=aZmin;
tol=tol*dMax;
// Do not process tolerances > 1.
if (tol>1.) tol=0.99;
}
const Handle(BRep_TFace)& Tf = *((Handle(BRep_TFace)*)&curf.TShape());
Tf->Tolerance(tol);
}
}
}
//Process edges
TopTools_IndexedDataMapOfShapeListOfShape parents;
TopExp::MapShapesAndAncestors(aShape, TopAbs_EDGE, TopAbs_FACE, parents);
TopTools_ListIteratorOfListOfShape lConx;
Standard_Integer iCur;
for (iCur=1; iCur<=parents.Extent(); iCur++) {
tol=0;
for (lConx.Initialize(parents(iCur)); lConx.More(); lConx.Next()) {
tol=Max(tol, BRep_Tool::Tolerance(TopoDS::Face(lConx.Value())));
}
// Update can only increase tolerance, so if the edge has a greater
// tolerance than its faces it is not concerned
B.UpdateEdge(TopoDS::Edge(parents.FindKey(iCur)), tol);
}
//Vertices are processed
const Standard_Real BigTol = 1.e10;
parents.Clear();
TopExp::MapShapesAndAncestors(aShape, TopAbs_VERTEX, TopAbs_EDGE, parents);
TColStd_MapOfTransient Initialized;
TopTools_MapOfShape Done;
Standard_Integer nbV = parents.Extent();
for (iCur=1; iCur<=nbV; iCur++) {
tol=0;
Done.Clear();
const TopoDS_Vertex& V = TopoDS::Vertex(parents.FindKey(iCur));
Bnd_Box box;
box.Add(BRep_Tool::Pnt(V));
gp_Pnt p3d;
for (lConx.Initialize(parents(iCur)); lConx.More(); lConx.Next()) {
const TopoDS_Edge& E = TopoDS::Edge(lConx.Value());
if(!Done.Add(E)) continue;
tol=Max(tol, BRep_Tool::Tolerance(E));
if(tol > BigTol) continue;
if(!BRep_Tool::SameRange(E)) continue;
Standard_Real par = BRep_Tool::Parameter(V,E);
Handle(BRep_TEdge)& TE = *((Handle(BRep_TEdge)*)&E.TShape());
BRep_ListIteratorOfListOfCurveRepresentation itcr(TE->Curves());
const TopLoc_Location& Eloc = E.Location();
while (itcr.More()) {
// For each CurveRepresentation, check the provided parameter
const Handle(BRep_CurveRepresentation)& cr = itcr.Value();
const TopLoc_Location& loc = cr->Location();
TopLoc_Location L = (Eloc * loc);
if (cr->IsCurve3D()) {
const Handle(Geom_Curve)& C = cr->Curve3D();
if (!C.IsNull()) { // edge non degenerated
p3d = C->Value(par);
p3d.Transform(L.Transformation());
box.Add(p3d);
}
}
else if (cr->IsCurveOnSurface()) {
const Handle(Geom_Surface)& Su = cr->Surface();
const Handle(Geom2d_Curve)& PC = cr->PCurve();
Handle(Geom2d_Curve) PC2;
if (cr->IsCurveOnClosedSurface()) {
PC2 = cr->PCurve2();
}
gp_Pnt2d p2d = PC->Value(par);
p3d = Su->Value(p2d.X(),p2d.Y());
p3d.Transform(L.Transformation());
box.Add(p3d);
if (!PC2.IsNull()) {
p2d = PC2->Value(par);
p3d = Su->Value(p2d.X(),p2d.Y());
p3d.Transform(L.Transformation());
box.Add(p3d);
}
}
itcr.Next();
}
}
Standard_Real aXmin, aYmin, aZmin, aXmax, aYmax, aZmax;
box.Get(aXmin, aYmin, aZmin, aXmax, aYmax, aZmax);
aXmax -= aXmin; aYmax -= aYmin; aZmax -= aZmin;
tol = Max(tol,sqrt(aXmax*aXmax+aYmax*aYmax+aZmax*aZmax));
tol += 2.*Epsilon(tol);
if (verifyTolerance) {
// ASet minimum value of the tolerance
// Attention to sharing of the vertex by other shapes
const Handle(BRep_TVertex)& TV = *((Handle(BRep_TVertex)*)&V.TShape());
if (Initialized.Add(TV))
TV->Tolerance(tol);
else
B.UpdateVertex(V, tol);
}
else {
// Update can only increase tolerance, so if the edge has a greater
// tolerance than its faces it is not concerned
B.UpdateVertex(V, tol);
}
}
}
//=======================================================================
//function : UpdateInnerTolerances
//purpose :
//=======================================================================
void BRepLib::UpdateInnerTolerances(const TopoDS_Shape& aShape)
{
TopTools_IndexedDataMapOfShapeListOfShape EFmap;
TopExp::MapShapesAndAncestors(aShape, TopAbs_EDGE, TopAbs_FACE, EFmap);
BRep_Builder BB;
for (Standard_Integer i = 1; i <= EFmap.Extent(); i++)
{
TopoDS_Edge anEdge = TopoDS::Edge(EFmap.FindKey(i));
TopoDS_Vertex V1, V2;
TopExp::Vertices(anEdge, V1, V2);
Standard_Real fpar, lpar;
BRep_Tool::Range(anEdge, fpar, lpar);
Standard_Real TolEdge = BRep_Tool::Tolerance(anEdge);
gp_Pnt Pnt1, Pnt2;
Handle(BRepAdaptor_HCurve) anHCurve = new BRepAdaptor_HCurve();
anHCurve->ChangeCurve().Initialize(anEdge);
if (!V1.IsNull())
Pnt1 = BRep_Tool::Pnt(V1);
if (!V2.IsNull())
Pnt2 = BRep_Tool::Pnt(V2);
if (!BRep_Tool::Degenerated(anEdge) &&
EFmap(i).Extent() > 0)
{
NCollection_Sequence<Handle(Adaptor3d_HCurve)> theRep;
theRep.Append(anHCurve);
TopTools_ListIteratorOfListOfShape itl(EFmap(i));
for (; itl.More(); itl.Next())
{
const TopoDS_Face& aFace = TopoDS::Face(itl.Value());
Handle(BRepAdaptor_HCurve) anHCurvOnSurf = new BRepAdaptor_HCurve();
anHCurvOnSurf->ChangeCurve().Initialize(anEdge, aFace);
theRep.Append(anHCurvOnSurf);
}
const Standard_Integer NbSamples = (BRep_Tool::SameParameter(anEdge))? 23 : 2;
Standard_Real delta = (lpar - fpar)/(NbSamples-1);
Standard_Real MaxDist = 0.;
for (Standard_Integer j = 2; j <= theRep.Length(); j++)
{
for (Standard_Integer k = 0; k <= NbSamples; k++)
{
Standard_Real ParamOnCenter = (k == NbSamples)? lpar :
fpar + k*delta;
gp_Pnt Center = theRep(1)->Value(ParamOnCenter);
Standard_Real ParamOnCurve = (BRep_Tool::SameParameter(anEdge))? ParamOnCenter
: ((k == 0)? theRep(j)->FirstParameter() : theRep(j)->LastParameter());
gp_Pnt aPoint = theRep(j)->Value(ParamOnCurve);
Standard_Real aDist = Center.Distance(aPoint);
//aDist *= 1.1;
aDist += 2.*Epsilon(aDist);
if (aDist > MaxDist)
MaxDist = aDist;
//Update tolerances of vertices
if (k == 0 && !V1.IsNull())
{
Standard_Real aDist1 = Pnt1.Distance(aPoint);
aDist1 += 2.*Epsilon(aDist1);
BB.UpdateVertex(V1, aDist1);
}
if (k == NbSamples && !V2.IsNull())
{
Standard_Real aDist2 = Pnt2.Distance(aPoint);
aDist2 += 2.*Epsilon(aDist2);
BB.UpdateVertex(V2, aDist2);
}
}
}
BB.UpdateEdge(anEdge, MaxDist);
}
TolEdge = BRep_Tool::Tolerance(anEdge);
if (!V1.IsNull())
{
gp_Pnt End1 = anHCurve->Value(fpar);
Standard_Real dist1 = Pnt1.Distance(End1);
dist1 += 2.*Epsilon(dist1);
BB.UpdateVertex(V1, Max(dist1, TolEdge));
}
if (!V2.IsNull())
{
gp_Pnt End2 = anHCurve->Value(lpar);
Standard_Real dist2 = Pnt2.Distance(End2);
dist2 += 2.*Epsilon(dist2);
BB.UpdateVertex(V2, Max(dist2, TolEdge));
}
}
}
//=======================================================================
//function : OrientClosedSolid
//purpose :
//=======================================================================
Standard_Boolean BRepLib::OrientClosedSolid(TopoDS_Solid& solid)
{
// Set material inside the solid
BRepClass3d_SolidClassifier where(solid);
where.PerformInfinitePoint(Precision::Confusion());
if (where.State()==TopAbs_IN) {
solid.Reverse();
}
else if (where.State()==TopAbs_ON || where.State()==TopAbs_UNKNOWN)
return Standard_False;
return Standard_True;
}
// Structure for calculation of properties, necessary for decision about continuity
class SurfaceProperties
{
public:
SurfaceProperties(const Handle(Geom_Surface)& theSurface,
const gp_Trsf& theSurfaceTrsf,
const Handle(Geom2d_Curve)& theCurve2D,
const Standard_Boolean theReversed)
: mySurfaceProps(theSurface, 2, Precision::Confusion()),
mySurfaceTrsf(theSurfaceTrsf),
myCurve2d(theCurve2D),
myIsReversed(theReversed)
{}
// Calculate derivatives on surface related to the point on curve
void Calculate(const Standard_Real theParamOnCurve)
{
gp_Pnt2d aUV;
myCurve2d->D1(theParamOnCurve, aUV, myCurveTangent);
mySurfaceProps.SetParameters(aUV.X(), aUV.Y());
}
// Returns point just calculated
gp_Pnt Value()
{ return mySurfaceProps.Value().Transformed(mySurfaceTrsf); }
// Calculate a derivative orthogonal to curve's tangent vector
gp_Vec Derivative()
{
gp_Vec aDeriv;
// direction orthogonal to tangent vector of the curve
gp_Vec2d anOrtho(-myCurveTangent.Y(), myCurveTangent.X());
Standard_Real aLen = anOrtho.Magnitude();
if (aLen < Precision::Confusion())
return aDeriv;
anOrtho /= aLen;
if (myIsReversed)
anOrtho.Reverse();
aDeriv.SetLinearForm(anOrtho.X(), mySurfaceProps.D1U(),
anOrtho.Y(), mySurfaceProps.D1V());
return aDeriv.Transformed(mySurfaceTrsf);
}
// Calculate principal curvatures, which consist of minimal and maximal normal curvatures and
// the directions on the tangent plane (principal direction) where the extremums are reached
void Curvature(gp_Dir& thePrincipalDir1, Standard_Real& theCurvature1,
gp_Dir& thePrincipalDir2, Standard_Real& theCurvature2)
{
mySurfaceProps.CurvatureDirections(thePrincipalDir1, thePrincipalDir2);
theCurvature1 = mySurfaceProps.MaxCurvature();
theCurvature2 = mySurfaceProps.MinCurvature();
if (myIsReversed)
{
theCurvature1 = -theCurvature1;
theCurvature2 = -theCurvature2;
}
thePrincipalDir1.Transform(mySurfaceTrsf);
thePrincipalDir2.Transform(mySurfaceTrsf);
}
private:
GeomLProp_SLProps mySurfaceProps; // properties calculator
gp_Trsf mySurfaceTrsf;
Handle(Geom2d_Curve) myCurve2d;
Standard_Boolean myIsReversed; // the face based on the surface is reversed
// tangent vector to Pcurve in UV
gp_Vec2d myCurveTangent;
};
//=======================================================================
//function : tgtfaces
//purpose : check the angle at the border between two squares.
// Two shares should have a shared front edge.
//=======================================================================
static GeomAbs_Shape tgtfaces(const TopoDS_Edge& Ed,
const TopoDS_Face& F1,
const TopoDS_Face& F2,
const Standard_Real theAngleTol)
{
Standard_Boolean isSeam = F1.IsEqual(F2);
TopoDS_Edge E = Ed;
// Check if pcurves exist on both faces of edge
Standard_Real aFirst,aLast;
E.Orientation(TopAbs_FORWARD);
Handle(Geom2d_Curve) aCurve1 = BRep_Tool::CurveOnSurface(E, F1, aFirst, aLast);
if(aCurve1.IsNull())
return GeomAbs_C0;
if (isSeam)
E.Orientation(TopAbs_REVERSED);
Handle(Geom2d_Curve) aCurve2 = BRep_Tool::CurveOnSurface(E, F2, aFirst, aLast);
if(aCurve2.IsNull())
return GeomAbs_C0;
TopLoc_Location aLoc1, aLoc2;
Handle(Geom_Surface) aSurface1 = BRep_Tool::Surface(F1, aLoc1);
const gp_Trsf& aSurf1Trsf = aLoc1.Transformation();
Handle(Geom_Surface) aSurface2 = BRep_Tool::Surface(F2, aLoc2);
const gp_Trsf& aSurf2Trsf = aLoc2.Transformation();
if (aSurface1->IsKind(STANDARD_TYPE(Geom_RectangularTrimmedSurface)))
aSurface1 = Handle(Geom_RectangularTrimmedSurface)::DownCast(aSurface1)->BasisSurface();
if (aSurface2->IsKind(STANDARD_TYPE(Geom_RectangularTrimmedSurface)))
aSurface2 = Handle(Geom_RectangularTrimmedSurface)::DownCast(aSurface2)->BasisSurface();
// seam edge on elementary surface is always CN
Standard_Boolean isElementary =
(aSurface1->IsKind(STANDARD_TYPE(Geom_ElementarySurface)) &&
aSurface2->IsKind(STANDARD_TYPE(Geom_ElementarySurface)));
if (isSeam && isElementary)
{
return GeomAbs_CN;
}
SurfaceProperties aSP1(aSurface1, aSurf1Trsf, aCurve1, F1.Orientation() == TopAbs_REVERSED);
SurfaceProperties aSP2(aSurface2, aSurf2Trsf, aCurve2, F2.Orientation() == TopAbs_REVERSED);
Standard_Real f, l, eps;
BRep_Tool::Range(E,f,l);
Extrema_LocateExtPC ext;
Handle(BRepAdaptor_HCurve) aHC2;
eps = (l - f)/100.;
f += eps; // to avoid calculations on
l -= eps; // points of pointed squares.
const Standard_Real anAngleTol2 = theAngleTol * theAngleTol;
gp_Vec aDer1, aDer2;
gp_Vec aNorm1;
Standard_Real aSqLen1, aSqLen2;
gp_Dir aCrvDir1[2], aCrvDir2[2];
Standard_Real aCrvLen1[2], aCrvLen2[2];
GeomAbs_Shape aCont = (isElementary ? GeomAbs_CN : GeomAbs_C2);
GeomAbs_Shape aCurCont;
Standard_Real u;
for (Standard_Integer i = 0; i <= 20 && aCont > GeomAbs_C0; i++)
{
// First suppose that this is sameParameter
u = f + (l-f)*i/20;
// Check conditions for G1 and C1 continuity:
// * calculate a derivative in tangent plane of each surface
// orthogonal to curve's tangent vector
// * continuity is C1 if the vectors are equal
// * continuity is G1 if the vectors are just parallel
aCurCont = GeomAbs_C0;
aSP1.Calculate(u);
aSP2.Calculate(u);
aDer1 = aSP1.Derivative();
aSqLen1 = aDer1.SquareMagnitude();
aDer2 = aSP2.Derivative();
aSqLen2 = aDer2.SquareMagnitude();
Standard_Boolean isSmoothSuspect = (aDer1.CrossSquareMagnitude(aDer2) <= anAngleTol2 * aSqLen1 * aSqLen2);
if (!isSmoothSuspect)
{
// Refine by projection
if (aHC2.IsNull())
{
// adaptor for pcurve on the second surface
aHC2 = new BRepAdaptor_HCurve(BRepAdaptor_Curve(E, F2));
ext.Initialize(aHC2->Curve(), f, l, Precision::PConfusion());
}
ext.Perform(aSP1.Value(), u);
if (ext.IsDone() && ext.IsMin())
{
const Extrema_POnCurv& poc = ext.Point();
aSP2.Calculate(poc.Parameter());
aDer2 = aSP2.Derivative();
aSqLen2 = aDer2.SquareMagnitude();
}
isSmoothSuspect = (aDer1.CrossSquareMagnitude(aDer2) <= anAngleTol2 * aSqLen1 * aSqLen2);
}
if (isSmoothSuspect)
{
aCurCont = GeomAbs_G1;
if (Abs(Sqrt(aSqLen1) - Sqrt(aSqLen2)) < Precision::Confusion() &&
aDer1.Dot(aDer2) > Precision::SquareConfusion()) // <= check vectors are codirectional
aCurCont = GeomAbs_C1;
}
else
return GeomAbs_C0;
if (aCont < GeomAbs_G2)
continue; // no need further processing, because maximal continuity is less than G2
// Check conditions for G2 and C2 continuity:
// * calculate principal curvatures on each surface
// * continuity is C2 if directions of principal curvatures are equal on differenct surfaces
// * continuity is G2 if directions of principal curvatures are just parallel
// and values of curvatures are the same
aSP1.Curvature(aCrvDir1[0], aCrvLen1[0], aCrvDir1[1], aCrvLen1[1]);
aSP2.Curvature(aCrvDir2[0], aCrvLen2[0], aCrvDir2[1], aCrvLen2[1]);
for (Standard_Integer aStep = 0; aStep <= 1; ++aStep)
{
if (aCrvDir1[0].XYZ().CrossSquareMagnitude(aCrvDir2[aStep].XYZ()) <= Precision::SquareConfusion() &&
Abs(aCrvLen1[0] - aCrvLen2[aStep]) < Precision::Confusion() &&
aCrvDir1[1].XYZ().CrossSquareMagnitude(aCrvDir2[1 - aStep].XYZ()) <= Precision::SquareConfusion() &&
Abs(aCrvLen1[1] - aCrvLen2[1 - aStep]) < Precision::Confusion())
{
if (aCurCont == GeomAbs_C1 &&
aCrvDir1[0].Dot(aCrvDir2[aStep]) > Precision::Confusion() &&
aCrvDir1[1].Dot(aCrvDir2[1 - aStep]) > Precision::Confusion())
aCurCont = GeomAbs_C2;
else
aCurCont = GeomAbs_G2;
break;
}
}
if (aCurCont < aCont)
aCont = aCurCont;
}
// according to the list of supported elementary surfaces,
// if the continuity is C2, than it is totally CN
if (isElementary && aCont == GeomAbs_C2)
aCont = GeomAbs_CN;
return aCont;
}
//=======================================================================
// function : EncodeRegularity
// purpose : Code the regularities on all edges of the shape, boundary of
// two faces that do not have it.
// Takes into account that compound may consists of same solid
// placed with different transformations
//=======================================================================
static void EncodeRegularity(const TopoDS_Shape& theShape,
const Standard_Real theTolAng,
TopTools_MapOfShape& theMap,
const TopTools_MapOfShape& theEdgesToEncode = TopTools_MapOfShape())
{
TopoDS_Shape aShape = theShape;
TopLoc_Location aNullLoc;
aShape.Location(aNullLoc); // nullify location
if (!theMap.Add(aShape))
return; // do not need to process shape twice
if (aShape.ShapeType() == TopAbs_COMPOUND ||
aShape.ShapeType() == TopAbs_COMPSOLID)
{
for (TopoDS_Iterator it(aShape); it.More(); it.Next())
EncodeRegularity(it.Value(), theTolAng, theMap, theEdgesToEncode);
return;
}
try {
OCC_CATCH_SIGNALS
TopTools_IndexedDataMapOfShapeListOfShape M;
TopExp::MapShapesAndAncestors(aShape, TopAbs_EDGE, TopAbs_FACE, M);
TopTools_ListIteratorOfListOfShape It;
TopExp_Explorer Ex;
TopoDS_Face F1,F2;
Standard_Boolean found;
for (Standard_Integer i = 1; i <= M.Extent(); i++){
TopoDS_Edge E = TopoDS::Edge(M.FindKey(i));
if (!theEdgesToEncode.IsEmpty())
{
// process only the edges from the list to update their regularity
TopoDS_Shape aPureEdge = E.Located(aNullLoc);
aPureEdge.Orientation(TopAbs_FORWARD);
if (!theEdgesToEncode.Contains(aPureEdge))
continue;
}
found = Standard_False;
F1.Nullify();
for (It.Initialize(M.FindFromIndex(i)); It.More() && !found; It.Next()){
if (F1.IsNull()) { F1 = TopoDS::Face(It.Value()); }
else {
const TopoDS_Face& aTmpF2 = TopoDS::Face(It.Value());
if (!F1.IsSame(aTmpF2)){
found = Standard_True;
F2 = aTmpF2;
}
}
}
if (!found && !F1.IsNull()){//is it a sewing edge?
TopAbs_Orientation orE = E.Orientation();
TopoDS_Edge curE;
for (Ex.Init(F1, TopAbs_EDGE); Ex.More() && !found; Ex.Next()){
curE = TopoDS::Edge(Ex.Current());
if (E.IsSame(curE) && orE != curE.Orientation()) {
found = Standard_True;
F2 = F1;
}
}
}
if (found)
BRepLib::EncodeRegularity(E, F1, F2, theTolAng);
}
}
catch (Standard_Failure) {
#ifdef OCCT_DEBUG
cout << "Warning: Exception in BRepLib::EncodeRegularity(): ";
Standard_Failure::Caught()->Print(cout);
cout << endl;
#endif
}
}
//=======================================================================
// function : EncodeRegularity
// purpose : code the regularities on all edges of the shape, boundary of
// two faces that do not have it.
//=======================================================================
void BRepLib::EncodeRegularity(const TopoDS_Shape& S,
const Standard_Real TolAng)
{
TopTools_MapOfShape aMap;
::EncodeRegularity(S, TolAng, aMap);
}
//=======================================================================
// function : EncodeRegularity
// purpose : code the regularities on all edges in the list that do not
// have it, and which are boundary of two faces on the shape.
//=======================================================================
void BRepLib::EncodeRegularity(const TopoDS_Shape& S,
const TopTools_ListOfShape& LE,
const Standard_Real TolAng)
{
// Collect edges without location and orientation
TopTools_MapOfShape aPureEdges;
TopLoc_Location aNullLoc;
TopTools_ListIteratorOfListOfShape anEdgeIt(LE);
for (; anEdgeIt.More(); anEdgeIt.Next())
{
TopoDS_Shape anEdge = anEdgeIt.Value();
anEdge.Location(aNullLoc);
anEdge.Orientation(TopAbs_FORWARD);
aPureEdges.Add(anEdge);
}
TopTools_MapOfShape aMap;
::EncodeRegularity(S, TolAng, aMap, aPureEdges);
}
//=======================================================================
// function : EncodeRegularity
// purpose : code the regularity between 2 faces connected by edge
//=======================================================================
void BRepLib::EncodeRegularity(TopoDS_Edge& E,
const TopoDS_Face& F1,
const TopoDS_Face& F2,
const Standard_Real TolAng)
{
BRep_Builder B;
if(BRep_Tool::Continuity(E,F1,F2)<=GeomAbs_C0){
try {
GeomAbs_Shape aCont = tgtfaces(E, F1, F2, TolAng);
B.Continuity(E,F1,F2,aCont);
}
catch(Standard_Failure)
{
#ifdef OCCT_DEBUG
cout << "Failure: Exception in BRepLib::EncodeRegularity" << endl;
#endif
}
}
}
//=======================================================================
// function : EnsureNormalConsistency
// purpose : Corrects the normals in Poly_Triangulation of faces.
// Returns TRUE if any correction is done.
//=======================================================================
Standard_Boolean BRepLib::
EnsureNormalConsistency(const TopoDS_Shape& theShape,
const Standard_Real theAngTol,
const Standard_Boolean theForceComputeNormals)
{
const Standard_Real aThresDot = cos(theAngTol);
Standard_Boolean aRetVal = Standard_False, isNormalsFound = Standard_False;
// compute normals if they are absent
TopExp_Explorer anExpFace(theShape,TopAbs_FACE);
for (; anExpFace.More(); anExpFace.Next())
{
const TopoDS_Face& aFace = TopoDS::Face(anExpFace.Current());
const Handle(Geom_Surface) aSurf = BRep_Tool::Surface(aFace);
if(aSurf.IsNull())
continue;
TopLoc_Location aLoc;
const Handle(Poly_Triangulation)& aPT = BRep_Tool::Triangulation(aFace, aLoc);
if(aPT.IsNull())
continue;
if (!theForceComputeNormals && aPT->HasNormals())
{
isNormalsFound = Standard_True;
continue;
}
GeomLProp_SLProps aSLP(aSurf, 2, Precision::Confusion());
const Standard_Integer anArrDim = 3*aPT->NbNodes();
Handle(TShort_HArray1OfShortReal) aNormArr = new TShort_HArray1OfShortReal(1, anArrDim);
Standard_Integer anNormInd = aNormArr->Lower();
for(Standard_Integer i = aPT->UVNodes().Lower(); i <= aPT->UVNodes().Upper(); i++)
{
const gp_Pnt2d &aP2d = aPT->UVNodes().Value(i);
aSLP.SetParameters(aP2d.X(), aP2d.Y());
gp_XYZ aNorm(0.,0.,0.);
if(!aSLP.IsNormalDefined())
{
#ifdef OCCT_DEBUG
cout << "BRepLib::EnsureNormalConsistency(): Cannot find normal!" << endl;
#endif
}
else
{
aNorm = aSLP.Normal().XYZ();
if (aFace.Orientation() == TopAbs_REVERSED)
aNorm.Reverse();
}
aNormArr->ChangeValue(anNormInd++) = static_cast<Standard_ShortReal>(aNorm.X());
aNormArr->ChangeValue(anNormInd++) = static_cast<Standard_ShortReal>(aNorm.Y());
aNormArr->ChangeValue(anNormInd++) = static_cast<Standard_ShortReal>(aNorm.Z());
}
aRetVal = Standard_True;
isNormalsFound = Standard_True;
aPT->SetNormals(aNormArr);
}
if(!isNormalsFound)
{
return aRetVal;
}
// loop by edges
TopTools_IndexedDataMapOfShapeListOfShape aMapEF;
TopExp::MapShapesAndAncestors(theShape,TopAbs_EDGE,TopAbs_FACE,aMapEF);
for(Standard_Integer anInd = 1; anInd <= aMapEF.Extent(); anInd++)
{
const TopoDS_Edge& anEdg = TopoDS::Edge(aMapEF.FindKey(anInd));
const TopTools_ListOfShape& anEdgList = aMapEF.FindFromIndex(anInd);
if (anEdgList.Extent() != 2)
continue;
TopTools_ListIteratorOfListOfShape anItF(anEdgList);
const TopoDS_Face aFace1 = TopoDS::Face(anItF.Value());
anItF.Next();
const TopoDS_Face aFace2 = TopoDS::Face(anItF.Value());
TopLoc_Location aLoc1, aLoc2;
const Handle(Poly_Triangulation)& aPT1 = BRep_Tool::Triangulation(aFace1, aLoc1);
const Handle(Poly_Triangulation)& aPT2 = BRep_Tool::Triangulation(aFace2, aLoc2);
if(aPT1.IsNull() || aPT2.IsNull())
continue;
if(!aPT1->HasNormals() || !aPT2->HasNormals())
continue;
const Handle(Poly_PolygonOnTriangulation)& aPTEF1 =
BRep_Tool::PolygonOnTriangulation(anEdg, aPT1, aLoc1);
const Handle(Poly_PolygonOnTriangulation)& aPTEF2 =
BRep_Tool::PolygonOnTriangulation(anEdg, aPT2, aLoc2);
TShort_Array1OfShortReal& aNormArr1 = aPT1->ChangeNormals();
TShort_Array1OfShortReal& aNormArr2 = aPT2->ChangeNormals();
if (aPTEF1->Nodes().Lower() != aPTEF2->Nodes().Lower() ||
aPTEF1->Nodes().Upper() != aPTEF2->Nodes().Upper())
continue;
for(Standard_Integer anEdgNode = aPTEF1->Nodes().Lower();
anEdgNode <= aPTEF1->Nodes().Upper(); anEdgNode++)
{
//Number of node
const Standard_Integer aFNodF1 = aPTEF1->Nodes().Value(anEdgNode);
const Standard_Integer aFNodF2 = aPTEF2->Nodes().Value(anEdgNode);
const Standard_Integer aFNorm1FirstIndex = aNormArr1.Lower() + 3*
(aFNodF1 - aPT1->Nodes().Lower());
const Standard_Integer aFNorm2FirstIndex = aNormArr2.Lower() + 3*
(aFNodF2 - aPT2->Nodes().Lower());
gp_XYZ aNorm1(aNormArr1.Value(aFNorm1FirstIndex),
aNormArr1.Value(aFNorm1FirstIndex+1),
aNormArr1.Value(aFNorm1FirstIndex+2));
gp_XYZ aNorm2(aNormArr2.Value(aFNorm2FirstIndex),
aNormArr2.Value(aFNorm2FirstIndex+1),
aNormArr2.Value(aFNorm2FirstIndex+2));
const Standard_Real aDot = aNorm1 * aNorm2;
if(aDot > aThresDot)
{
gp_XYZ aNewNorm = (aNorm1 + aNorm2).Normalized();
aNormArr1.ChangeValue(aFNorm1FirstIndex) =
aNormArr2.ChangeValue(aFNorm2FirstIndex) =
static_cast<Standard_ShortReal>(aNewNorm.X());
aNormArr1.ChangeValue(aFNorm1FirstIndex+1) =
aNormArr2.ChangeValue(aFNorm2FirstIndex+1) =
static_cast<Standard_ShortReal>(aNewNorm.Y());
aNormArr1.ChangeValue(aFNorm1FirstIndex+2) =
aNormArr2.ChangeValue(aFNorm2FirstIndex+2) =
static_cast<Standard_ShortReal>(aNewNorm.Z());
aRetVal = Standard_True;
}
}
}
return aRetVal;
}
//=======================================================================
//function : SortFaces
//purpose :
//=======================================================================
void BRepLib::SortFaces (const TopoDS_Shape& Sh,
TopTools_ListOfShape& LF)
{
LF.Clear();
TopTools_ListOfShape LTri,LPlan,LCyl,LCon,LSphere,LTor,LOther;
TopExp_Explorer exp(Sh,TopAbs_FACE);
TopLoc_Location l;
Handle(Geom_Surface) S;
for (; exp.More(); exp.Next()) {
const TopoDS_Face& F = TopoDS::Face(exp.Current());
S = BRep_Tool::Surface(F, l);
if (!S.IsNull()) {
if (S->DynamicType() == STANDARD_TYPE(Geom_RectangularTrimmedSurface)) {
S = Handle(Geom_RectangularTrimmedSurface)::DownCast (S)->BasisSurface();
}
GeomAdaptor_Surface AS(S);
switch (AS.GetType()) {
case GeomAbs_Plane:
{
LPlan.Append(F);
break;
}
case GeomAbs_Cylinder:
{
LCyl.Append(F);
break;
}
case GeomAbs_Cone:
{
LCon.Append(F);
break;
}
case GeomAbs_Sphere:
{
LSphere.Append(F);
break;
}
case GeomAbs_Torus:
{
LTor.Append(F);
break;
}
default:
LOther.Append(F);
}
}
else LTri.Append(F);
}
LF.Append(LPlan); LF.Append(LCyl ); LF.Append(LCon); LF.Append(LSphere);
LF.Append(LTor ); LF.Append(LOther); LF.Append(LTri);
}
//=======================================================================
//function : ReverseSortFaces
//purpose :
//=======================================================================
void BRepLib::ReverseSortFaces (const TopoDS_Shape& Sh,
TopTools_ListOfShape& LF)
{
LF.Clear();
// Use the allocator of the result LF for intermediate results
TopTools_ListOfShape LTri(LF.Allocator()), LPlan(LF.Allocator()),
LCyl(LF.Allocator()), LCon(LF.Allocator()), LSphere(LF.Allocator()),
LTor(LF.Allocator()), LOther(LF.Allocator());
TopExp_Explorer exp(Sh,TopAbs_FACE);
TopLoc_Location l;
for (; exp.More(); exp.Next()) {
const TopoDS_Face& F = TopoDS::Face(exp.Current());
const Handle(Geom_Surface)& S = BRep_Tool::Surface(F, l);
if (!S.IsNull()) {
GeomAdaptor_Surface AS(S);
switch (AS.GetType()) {
case GeomAbs_Plane:
{
LPlan.Append(F);
break;
}
case GeomAbs_Cylinder:
{
LCyl.Append(F);
break;
}
case GeomAbs_Cone:
{
LCon.Append(F);
break;
}
case GeomAbs_Sphere:
{
LSphere.Append(F);
break;
}
case GeomAbs_Torus:
{
LTor.Append(F);
break;
}
default:
LOther.Append(F);
}
}
else LTri.Append(F);
}
LF.Append(LTri); LF.Append(LOther); LF.Append(LTor ); LF.Append(LSphere);
LF.Append(LCon); LF.Append(LCyl ); LF.Append(LPlan);
}
//=======================================================================
// function: BoundingVertex
// purpose :
//=======================================================================
void BRepLib::BoundingVertex(const NCollection_List<TopoDS_Shape>& theLV,
gp_Pnt& theNewCenter, Standard_Real& theNewTol)
{
Standard_Integer aNb;
//
aNb=theLV.Extent();
if (aNb < 2) {
return;
}
//
else if (aNb==2) {
Standard_Integer m, n;
Standard_Real aR[2], dR, aD, aEps;
TopoDS_Vertex aV[2];
gp_Pnt aP[2];
//
aEps=RealEpsilon();
for (m=0; m<aNb; ++m) {
aV[m]=(!m)?
*((TopoDS_Vertex*)(&theLV.First())):
*((TopoDS_Vertex*)(&theLV.Last()));
aP[m]=BRep_Tool::Pnt(aV[m]);
aR[m]=BRep_Tool::Tolerance(aV[m]);
}
//
m=0; // max R
n=1; // min R
if (aR[0]<aR[1]) {
m=1;
n=0;
}
//
dR=aR[m]-aR[n]; // dR >= 0.
gp_Vec aVD(aP[m], aP[n]);
aD=aVD.Magnitude();
//
if (aD<=dR || aD<aEps) {
theNewCenter = aP[m];
theNewTol = aR[m];
}
else {
Standard_Real aRr;
gp_XYZ aXYZr;
gp_Pnt aPr;
//
aRr=0.5*(aR[m]+aR[n]+aD);
aXYZr=0.5*(aP[m].XYZ()+aP[n].XYZ()-aVD.XYZ()*(dR/aD));
aPr.SetXYZ(aXYZr);
//
theNewCenter = aPr;
theNewTol = aRr;
//aBB.MakeVertex (aVnew, aPr, aRr);
}
return;
}// else if (aNb==2) {
//
else { // if (aNb>2)
// compute the point
//
// issue 0027540 - sum of doubles may depend on the order
// of addition, thus sort the coordinates for stable result
Standard_Integer i;
NCollection_Array1<gp_Pnt> aPoints(0, aNb-1);
NCollection_List<TopoDS_Edge>::Iterator aIt(theLV);
for (i = 0; aIt.More(); aIt.Next(), ++i) {
const TopoDS_Vertex& aVi = *((TopoDS_Vertex*)(&aIt.Value()));
gp_Pnt aPi = BRep_Tool::Pnt(aVi);
aPoints(i) = aPi;
}
//
std::sort(aPoints.begin(), aPoints.end(), BRepLib_ComparePoints());
//
gp_XYZ aXYZ(0., 0., 0.);
for (i = 0; i < aNb; ++i) {
aXYZ += aPoints(i).XYZ();
}
aXYZ.Divide((Standard_Real)aNb);
//
gp_Pnt aP(aXYZ);
//
// compute the tolerance for the new vertex
Standard_Real aTi, aDi, aDmax;
//
aDmax=-1.;
aIt.Initialize(theLV);
for (; aIt.More(); aIt.Next()) {
TopoDS_Vertex& aVi=*((TopoDS_Vertex*)(&aIt.Value()));
gp_Pnt aPi=BRep_Tool::Pnt(aVi);
aTi=BRep_Tool::Tolerance(aVi);
aDi=aP.SquareDistance(aPi);
aDi=sqrt(aDi);
aDi=aDi+aTi;
if (aDi > aDmax) {
aDmax=aDi;
}
}
//
theNewCenter = aP;
theNewTol = aDmax;
}
}