1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-04-03 17:56:21 +03:00
occt/src/CPnts/CPnts_UniformDeflection.hxx

169 lines
5.9 KiB
C++

// Created on: 1991-02-27
// Created by: Jean Claude Vauthier
// Copyright (c) 1991-1999 Matra Datavision
// Copyright (c) 1999-2014 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
#ifndef _CPnts_UniformDeflection_HeaderFile
#define _CPnts_UniformDeflection_HeaderFile
#include <Standard.hxx>
#include <Standard_DefineAlloc.hxx>
#include <Standard_Integer.hxx>
#include <gp_Pnt.hxx>
class Adaptor3d_Curve;
class Adaptor2d_Curve2d;
//! This class defines an algorithm to create a set of points
//! (with a given chordal deviation) at the
//! positions of constant deflection of a given parametrized curve or a trimmed
//! circle.
//! The continuity of the curve must be at least C2.
//!
//! the usage of the is the following.
//!
//! class myUniformDFeflection instantiates
//! UniformDeflection(Curve, Tool);
//!
//! Curve C; // Curve inherits from Curve or Curve2d from Adaptor2d
//! myUniformDeflection Iter1;
//! DefPntOfmyUniformDeflection P;
//!
//! for(Iter1.Initialize(C, Deflection, EPSILON, True);
//! Iter1.More();
//! Iter1.Next()) {
//! P = Iter1.Value();
//! ... make something with P
//! }
//! if(!Iter1.IsAllDone()) {
//! ... something wrong happened
//! }
class CPnts_UniformDeflection
{
public:
DEFINE_STANDARD_ALLOC
//! creation of a indefinite UniformDeflection
Standard_EXPORT CPnts_UniformDeflection();
//! Computes a uniform deflection distribution of points
//! on the curve <C>.
//! <Deflection> defines the constant deflection value.
//! The algorithm computes the number of points and the points.
//! The curve <C> must be at least C2 else the computation can fail.
//! If just some parts of the curve is C2 it is better to give the
//! parameters bounds and to use the below constructor .
//! if <WithControl> is True, the algorithm controls the estimate
//! deflection
//! when the curve is singular at the point P(u),the algorithm
//! computes the next point as
//! P(u + Max(CurrentStep,Abs(LastParameter-FirstParameter)))
//! if the singularity is at the first point ,the next point
//! calculated is the P(LastParameter)
Standard_EXPORT CPnts_UniformDeflection(const Adaptor3d_Curve& C, const Standard_Real Deflection, const Standard_Real Resolution, const Standard_Boolean WithControl);
//! As above with 2d curve
Standard_EXPORT CPnts_UniformDeflection(const Adaptor2d_Curve2d& C, const Standard_Real Deflection, const Standard_Real Resolution, const Standard_Boolean WithControl);
//! Computes an uniform deflection distribution of points on a part of
//! the curve <C>. Deflection defines the step between the points.
//! <U1> and <U2> define the distribution span.
//! <U1> and <U2> must be in the parametric range of the curve.
Standard_EXPORT CPnts_UniformDeflection(const Adaptor3d_Curve& C, const Standard_Real Deflection, const Standard_Real U1, const Standard_Real U2, const Standard_Real Resolution, const Standard_Boolean WithControl);
//! As above with 2d curve
Standard_EXPORT CPnts_UniformDeflection(const Adaptor2d_Curve2d& C, const Standard_Real Deflection, const Standard_Real U1, const Standard_Real U2, const Standard_Real Resolution, const Standard_Boolean WithControl);
//! Initialize the algorithms with <C>, <Deflection>, <UStep>,
//! <Resolution> and <WithControl>
Standard_EXPORT void Initialize (const Adaptor3d_Curve& C, const Standard_Real Deflection, const Standard_Real Resolution, const Standard_Boolean WithControl);
//! Initialize the algorithms with <C>, <Deflection>, <UStep>,
//! <Resolution> and <WithControl>
Standard_EXPORT void Initialize (const Adaptor2d_Curve2d& C, const Standard_Real Deflection, const Standard_Real Resolution, const Standard_Boolean WithControl);
//! Initialize the algorithms with <C>, <Deflection>, <UStep>,
//! <U1>, <U2> and <WithControl>
Standard_EXPORT void Initialize (const Adaptor3d_Curve& C, const Standard_Real Deflection, const Standard_Real U1, const Standard_Real U2, const Standard_Real Resolution, const Standard_Boolean WithControl);
//! Initialize the algorithms with <C>, <Deflection>, <UStep>,
//! <U1>, <U2> and <WithControl>
Standard_EXPORT void Initialize (const Adaptor2d_Curve2d& C, const Standard_Real Deflection, const Standard_Real U1, const Standard_Real U2, const Standard_Real Resolution, const Standard_Boolean WithControl);
//! To know if all the calculus were done successfully
//! (ie all the points have been computed). The calculus can fail if
//! the Curve is not C1 in the considered domain.
//! Returns True if the calculus was successful.
Standard_Boolean IsAllDone() const;
//! go to the next Point.
void Next();
//! returns True if it exists a next Point.
Standard_EXPORT Standard_Boolean More();
//! return the computed parameter
Standard_Real Value() const;
//! return the computed parameter
gp_Pnt Point() const;
protected:
private:
//! algorithm
Standard_EXPORT void Perform();
Standard_Boolean myDone;
Standard_Boolean my3d;
Standard_Address myCurve;
Standard_Boolean myFinish;
Standard_Real myTolCur;
Standard_Boolean myControl;
Standard_Integer myIPoint;
Standard_Integer myNbPoints;
Standard_Real myParams[3];
gp_Pnt myPoints[3];
Standard_Real myDwmax;
Standard_Real myDeflection;
Standard_Real myFirstParam;
Standard_Real myLastParam;
Standard_Real myDu;
};
#include <CPnts_UniformDeflection.lxx>
#endif // _CPnts_UniformDeflection_HeaderFile