mirror of
https://git.dev.opencascade.org/repos/occt.git
synced 2025-04-04 18:06:22 +03:00
384 lines
12 KiB
C++
384 lines
12 KiB
C++
// Copyright (c) 1991-1999 Matra Datavision
|
|
// Copyright (c) 1999-2014 OPEN CASCADE SAS
|
|
//
|
|
// This file is part of Open CASCADE Technology software library.
|
|
//
|
|
// This library is free software; you can redistribute it and/or modify it under
|
|
// the terms of the GNU Lesser General Public License version 2.1 as published
|
|
// by the Free Software Foundation, with special exception defined in the file
|
|
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
|
|
// distribution for complete text of the license and disclaimer of any warranty.
|
|
//
|
|
// Alternatively, this file may be used under the terms of Open CASCADE
|
|
// commercial license or contractual agreement.
|
|
|
|
#ifndef _gp_Vec_HeaderFile
|
|
#define _gp_Vec_HeaderFile
|
|
|
|
#include <Standard.hxx>
|
|
#include <Standard_DefineAlloc.hxx>
|
|
#include <Standard_Handle.hxx>
|
|
|
|
#include <gp_XYZ.hxx>
|
|
#include <Standard_Real.hxx>
|
|
#include <Standard_Integer.hxx>
|
|
#include <Standard_Boolean.hxx>
|
|
class Standard_ConstructionError;
|
|
class Standard_DomainError;
|
|
class Standard_OutOfRange;
|
|
class gp_VectorWithNullMagnitude;
|
|
class gp_Dir;
|
|
class gp_XYZ;
|
|
class gp_Pnt;
|
|
class gp_Ax1;
|
|
class gp_Ax2;
|
|
class gp_Trsf;
|
|
|
|
|
|
|
|
//! Defines a non-persistent vector in 3D space.
|
|
class gp_Vec
|
|
{
|
|
public:
|
|
|
|
DEFINE_STANDARD_ALLOC
|
|
|
|
|
|
//! Creates a zero vector.
|
|
gp_Vec();
|
|
|
|
//! Creates a unitary vector from a direction V.
|
|
gp_Vec(const gp_Dir& V);
|
|
|
|
//! Creates a vector with a triplet of coordinates.
|
|
gp_Vec(const gp_XYZ& Coord);
|
|
|
|
//! Creates a point with its three cartesian coordinates.
|
|
gp_Vec(const Standard_Real Xv, const Standard_Real Yv, const Standard_Real Zv);
|
|
|
|
|
|
//! Creates a vector from two points. The length of the vector
|
|
//! is the distance between P1 and P2
|
|
gp_Vec(const gp_Pnt& P1, const gp_Pnt& P2);
|
|
|
|
//! Changes the coordinate of range Index
|
|
//! Index = 1 => X is modified
|
|
//! Index = 2 => Y is modified
|
|
//! Index = 3 => Z is modified
|
|
//! Raised if Index != {1, 2, 3}.
|
|
void SetCoord (const Standard_Integer Index, const Standard_Real Xi);
|
|
|
|
//! For this vector, assigns
|
|
//! - the values Xv, Yv and Zv to its three coordinates.
|
|
void SetCoord (const Standard_Real Xv, const Standard_Real Yv, const Standard_Real Zv);
|
|
|
|
//! Assigns the given value to the X coordinate of this vector.
|
|
void SetX (const Standard_Real X);
|
|
|
|
//! Assigns the given value to the X coordinate of this vector.
|
|
void SetY (const Standard_Real Y);
|
|
|
|
//! Assigns the given value to the X coordinate of this vector.
|
|
void SetZ (const Standard_Real Z);
|
|
|
|
//! Assigns the three coordinates of Coord to this vector.
|
|
void SetXYZ (const gp_XYZ& Coord);
|
|
|
|
|
|
//! Returns the coordinate of range Index :
|
|
//! Index = 1 => X is returned
|
|
//! Index = 2 => Y is returned
|
|
//! Index = 3 => Z is returned
|
|
//! Raised if Index != {1, 2, 3}.
|
|
Standard_Real Coord (const Standard_Integer Index) const;
|
|
|
|
//! For this vector returns its three coordinates Xv, Yv, and Zvinline
|
|
void Coord (Standard_Real& Xv, Standard_Real& Yv, Standard_Real& Zv) const;
|
|
|
|
//! For this vector, returns its X coordinate.
|
|
Standard_Real X() const;
|
|
|
|
//! For this vector, returns its Y coordinate.
|
|
Standard_Real Y() const;
|
|
|
|
//! For this vector, returns its Z coordinate.
|
|
Standard_Real Z() const;
|
|
|
|
//! For this vector, returns
|
|
//! - its three coordinates as a number triple
|
|
const gp_XYZ& XYZ() const;
|
|
|
|
|
|
//! Returns True if the two vectors have the same magnitude value
|
|
//! and the same direction. The precision values are LinearTolerance
|
|
//! for the magnitude and AngularTolerance for the direction.
|
|
Standard_EXPORT Standard_Boolean IsEqual (const gp_Vec& Other, const Standard_Real LinearTolerance, const Standard_Real AngularTolerance) const;
|
|
|
|
|
|
//! Returns True if abs(<me>.Angle(Other) - PI/2.) <= AngularTolerance
|
|
//! Raises VectorWithNullMagnitude if <me>.Magnitude() <= Resolution or
|
|
//! Other.Magnitude() <= Resolution from gp
|
|
Standard_Boolean IsNormal (const gp_Vec& Other, const Standard_Real AngularTolerance) const;
|
|
|
|
|
|
//! Returns True if PI - <me>.Angle(Other) <= AngularTolerance
|
|
//! Raises VectorWithNullMagnitude if <me>.Magnitude() <= Resolution or
|
|
//! Other.Magnitude() <= Resolution from gp
|
|
Standard_Boolean IsOpposite (const gp_Vec& Other, const Standard_Real AngularTolerance) const;
|
|
|
|
|
|
//! Returns True if Angle(<me>, Other) <= AngularTolerance or
|
|
//! PI - Angle(<me>, Other) <= AngularTolerance
|
|
//! This definition means that two parallel vectors cannot define
|
|
//! a plane but two vectors with opposite directions are considered
|
|
//! as parallel. Raises VectorWithNullMagnitude if <me>.Magnitude() <= Resolution or
|
|
//! Other.Magnitude() <= Resolution from gp
|
|
Standard_Boolean IsParallel (const gp_Vec& Other, const Standard_Real AngularTolerance) const;
|
|
|
|
|
|
//! Computes the angular value between <me> and <Other>
|
|
//! Returns the angle value between 0 and PI in radian.
|
|
//! Raises VectorWithNullMagnitude if <me>.Magnitude() <= Resolution from gp or
|
|
//! Other.Magnitude() <= Resolution because the angular value is
|
|
//! indefinite if one of the vectors has a null magnitude.
|
|
Standard_Real Angle (const gp_Vec& Other) const;
|
|
|
|
//! Computes the angle, in radians, between this vector and
|
|
//! vector Other. The result is a value between -Pi and Pi.
|
|
//! For this, VRef defines the positive sense of rotation: the
|
|
//! angular value is positive, if the cross product this ^ Other
|
|
//! has the same orientation as VRef relative to the plane
|
|
//! defined by the vectors this and Other. Otherwise, the
|
|
//! angular value is negative.
|
|
//! Exceptions
|
|
//! gp_VectorWithNullMagnitude if the magnitude of this
|
|
//! vector, the vector Other, or the vector VRef is less than or
|
|
//! equal to gp::Resolution().
|
|
//! Standard_DomainError if this vector, the vector Other,
|
|
//! and the vector VRef are coplanar, unless this vector and
|
|
//! the vector Other are parallel.
|
|
Standard_Real AngleWithRef (const gp_Vec& Other, const gp_Vec& VRef) const;
|
|
|
|
//! Computes the magnitude of this vector.
|
|
Standard_Real Magnitude() const;
|
|
|
|
//! Computes the square magnitude of this vector.
|
|
Standard_Real SquareMagnitude() const;
|
|
|
|
//! Adds two vectors
|
|
void Add (const gp_Vec& Other);
|
|
void operator += (const gp_Vec& Other)
|
|
{
|
|
Add(Other);
|
|
}
|
|
|
|
//! Adds two vectors
|
|
Standard_NODISCARD gp_Vec Added (const gp_Vec& Other) const;
|
|
Standard_NODISCARD gp_Vec operator + (const gp_Vec& Other) const
|
|
{
|
|
return Added(Other);
|
|
}
|
|
|
|
//! Subtracts two vectors
|
|
void Subtract (const gp_Vec& Right);
|
|
void operator -= (const gp_Vec& Right)
|
|
{
|
|
Subtract(Right);
|
|
}
|
|
|
|
//! Subtracts two vectors
|
|
Standard_NODISCARD gp_Vec Subtracted (const gp_Vec& Right) const;
|
|
Standard_NODISCARD gp_Vec operator - (const gp_Vec& Right) const
|
|
{
|
|
return Subtracted(Right);
|
|
}
|
|
|
|
//! Multiplies a vector by a scalar
|
|
void Multiply (const Standard_Real Scalar);
|
|
void operator *= (const Standard_Real Scalar)
|
|
{
|
|
Multiply(Scalar);
|
|
}
|
|
|
|
//! Multiplies a vector by a scalar
|
|
Standard_NODISCARD gp_Vec Multiplied (const Standard_Real Scalar) const;
|
|
Standard_NODISCARD gp_Vec operator * (const Standard_Real Scalar) const
|
|
{
|
|
return Multiplied(Scalar);
|
|
}
|
|
|
|
//! Divides a vector by a scalar
|
|
void Divide (const Standard_Real Scalar);
|
|
void operator /= (const Standard_Real Scalar)
|
|
{
|
|
Divide(Scalar);
|
|
}
|
|
|
|
//! Divides a vector by a scalar
|
|
Standard_NODISCARD gp_Vec Divided (const Standard_Real Scalar) const;
|
|
Standard_NODISCARD gp_Vec operator / (const Standard_Real Scalar) const
|
|
{
|
|
return Divided(Scalar);
|
|
}
|
|
|
|
//! computes the cross product between two vectors
|
|
void Cross (const gp_Vec& Right);
|
|
void operator ^= (const gp_Vec& Right)
|
|
{
|
|
Cross(Right);
|
|
}
|
|
|
|
//! computes the cross product between two vectors
|
|
Standard_NODISCARD gp_Vec Crossed (const gp_Vec& Right) const;
|
|
Standard_NODISCARD gp_Vec operator ^ (const gp_Vec& Right) const
|
|
{
|
|
return Crossed(Right);
|
|
}
|
|
|
|
|
|
//! Computes the magnitude of the cross
|
|
//! product between <me> and Right.
|
|
//! Returns || <me> ^ Right ||
|
|
Standard_Real CrossMagnitude (const gp_Vec& Right) const;
|
|
|
|
|
|
//! Computes the square magnitude of
|
|
//! the cross product between <me> and Right.
|
|
//! Returns || <me> ^ Right ||**2
|
|
Standard_Real CrossSquareMagnitude (const gp_Vec& Right) const;
|
|
|
|
//! Computes the triple vector product.
|
|
//! <me> ^= (V1 ^ V2)
|
|
void CrossCross (const gp_Vec& V1, const gp_Vec& V2);
|
|
|
|
//! Computes the triple vector product.
|
|
//! <me> ^ (V1 ^ V2)
|
|
Standard_NODISCARD gp_Vec CrossCrossed (const gp_Vec& V1, const gp_Vec& V2) const;
|
|
|
|
//! computes the scalar product
|
|
Standard_Real Dot (const gp_Vec& Other) const;
|
|
Standard_Real operator * (const gp_Vec& Other) const
|
|
{
|
|
return Dot(Other);
|
|
}
|
|
|
|
//! Computes the triple scalar product <me> * (V1 ^ V2).
|
|
Standard_Real DotCross (const gp_Vec& V1, const gp_Vec& V2) const;
|
|
|
|
//! normalizes a vector
|
|
//! Raises an exception if the magnitude of the vector is
|
|
//! lower or equal to Resolution from gp.
|
|
void Normalize();
|
|
|
|
//! normalizes a vector
|
|
//! Raises an exception if the magnitude of the vector is
|
|
//! lower or equal to Resolution from gp.
|
|
Standard_NODISCARD gp_Vec Normalized() const;
|
|
|
|
//! Reverses the direction of a vector
|
|
void Reverse();
|
|
|
|
//! Reverses the direction of a vector
|
|
Standard_NODISCARD gp_Vec Reversed() const;
|
|
Standard_NODISCARD gp_Vec operator -() const
|
|
{
|
|
return Reversed();
|
|
}
|
|
|
|
|
|
//! <me> is set to the following linear form :
|
|
//! A1 * V1 + A2 * V2 + A3 * V3 + V4
|
|
void SetLinearForm (const Standard_Real A1, const gp_Vec& V1, const Standard_Real A2, const gp_Vec& V2, const Standard_Real A3, const gp_Vec& V3, const gp_Vec& V4);
|
|
|
|
|
|
//! <me> is set to the following linear form :
|
|
//! A1 * V1 + A2 * V2 + A3 * V3
|
|
void SetLinearForm (const Standard_Real A1, const gp_Vec& V1, const Standard_Real A2, const gp_Vec& V2, const Standard_Real A3, const gp_Vec& V3);
|
|
|
|
|
|
//! <me> is set to the following linear form :
|
|
//! A1 * V1 + A2 * V2 + V3
|
|
void SetLinearForm (const Standard_Real A1, const gp_Vec& V1, const Standard_Real A2, const gp_Vec& V2, const gp_Vec& V3);
|
|
|
|
|
|
//! <me> is set to the following linear form :
|
|
//! A1 * V1 + A2 * V2
|
|
void SetLinearForm (const Standard_Real A1, const gp_Vec& V1, const Standard_Real A2, const gp_Vec& V2);
|
|
|
|
|
|
//! <me> is set to the following linear form : A1 * V1 + V2
|
|
void SetLinearForm (const Standard_Real A1, const gp_Vec& V1, const gp_Vec& V2);
|
|
|
|
|
|
//! <me> is set to the following linear form : V1 + V2
|
|
void SetLinearForm (const gp_Vec& V1, const gp_Vec& V2);
|
|
|
|
Standard_EXPORT void Mirror (const gp_Vec& V);
|
|
|
|
|
|
//! Performs the symmetrical transformation of a vector
|
|
//! with respect to the vector V which is the center of
|
|
//! the symmetry.
|
|
Standard_NODISCARD Standard_EXPORT gp_Vec Mirrored (const gp_Vec& V) const;
|
|
|
|
Standard_EXPORT void Mirror (const gp_Ax1& A1);
|
|
|
|
|
|
//! Performs the symmetrical transformation of a vector
|
|
//! with respect to an axis placement which is the axis
|
|
//! of the symmetry.
|
|
Standard_NODISCARD Standard_EXPORT gp_Vec Mirrored (const gp_Ax1& A1) const;
|
|
|
|
Standard_EXPORT void Mirror (const gp_Ax2& A2);
|
|
|
|
|
|
//! Performs the symmetrical transformation of a vector
|
|
//! with respect to a plane. The axis placement A2 locates
|
|
//! the plane of the symmetry : (Location, XDirection, YDirection).
|
|
Standard_NODISCARD Standard_EXPORT gp_Vec Mirrored (const gp_Ax2& A2) const;
|
|
|
|
void Rotate (const gp_Ax1& A1, const Standard_Real Ang);
|
|
|
|
|
|
//! Rotates a vector. A1 is the axis of the rotation.
|
|
//! Ang is the angular value of the rotation in radians.
|
|
Standard_NODISCARD gp_Vec Rotated (const gp_Ax1& A1, const Standard_Real Ang) const;
|
|
|
|
void Scale (const Standard_Real S);
|
|
|
|
//! Scales a vector. S is the scaling value.
|
|
Standard_NODISCARD gp_Vec Scaled (const Standard_Real S) const;
|
|
|
|
//! Transforms a vector with the transformation T.
|
|
Standard_EXPORT void Transform (const gp_Trsf& T);
|
|
|
|
//! Transforms a vector with the transformation T.
|
|
Standard_NODISCARD gp_Vec Transformed (const gp_Trsf& T) const;
|
|
|
|
|
|
|
|
|
|
protected:
|
|
|
|
|
|
|
|
|
|
|
|
private:
|
|
|
|
|
|
|
|
gp_XYZ coord;
|
|
|
|
|
|
};
|
|
|
|
|
|
#include <gp_Vec.lxx>
|
|
|
|
|
|
|
|
|
|
|
|
#endif // _gp_Vec_HeaderFile
|