mirror of
https://git.dev.opencascade.org/repos/occt.git
synced 2025-04-07 18:30:55 +03:00
Macro NO_CXX_EXCEPTION was removed from code. Method Raise() was replaced by explicit throw statement. Method Standard_Failure::Caught() was replaced by normal C++mechanism of exception transfer. Method Standard_Failure::Caught() is deprecated now. Eliminated empty constructors. Updated samples. Eliminate empty method ChangeValue from NCollection_Map class. Removed not operable methods from NCollection classes.
185 lines
5.5 KiB
C++
185 lines
5.5 KiB
C++
// Copyright (c) 1995-1999 Matra Datavision
|
|
// Copyright (c) 1999-2014 OPEN CASCADE SAS
|
|
//
|
|
// This file is part of Open CASCADE Technology software library.
|
|
//
|
|
// This library is free software; you can redistribute it and/or modify it under
|
|
// the terms of the GNU Lesser General Public License version 2.1 as published
|
|
// by the Free Software Foundation, with special exception defined in the file
|
|
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
|
|
// distribution for complete text of the license and disclaimer of any warranty.
|
|
//
|
|
// Alternatively, this file may be used under the terms of Open CASCADE
|
|
// commercial license or contractual agreement.
|
|
|
|
//JCV 16/10/91
|
|
|
|
#include <Convert_CircleToBSplineCurve.hxx>
|
|
#include <gp.hxx>
|
|
#include <gp_Ax2d.hxx>
|
|
#include <gp_Circ2d.hxx>
|
|
#include <gp_Dir2d.hxx>
|
|
#include <gp_Trsf2d.hxx>
|
|
#include <Precision.hxx>
|
|
#include <Standard_DomainError.hxx>
|
|
#include <TColgp_Array1OfPnt2d.hxx>
|
|
#include <TColgp_HArray1OfPnt2d.hxx>
|
|
#include <TColStd_Array1OfReal.hxx>
|
|
#include <TColStd_HArray1OfInteger.hxx>
|
|
#include <TColStd_HArray1OfReal.hxx>
|
|
|
|
//Attention :
|
|
//To avoid use of persistent tables in the fields
|
|
//the tables are dimensioned to the maximum (TheNbKnots and TheNbPoles)
|
|
//that correspond to the full circle. For an arc of circle there is a
|
|
//need of less poles and nodes, that is why the fields
|
|
//nbKnots and nbPoles are present and updated in the
|
|
//constructor of an arc of B-spline circle to take into account
|
|
//the real number of poles and nodes.
|
|
// parametrization :
|
|
// Reference : Rational B-spline for Curve and Surface Representation
|
|
// Wayne Tiller CADG September 1983
|
|
// x(t) = (1 - t^2) / (1 + t^2)
|
|
// y(t) = 2 t / (1 + t^2)
|
|
// then t = Sqrt(2) u / ((Sqrt(2) - 2) u + 2)
|
|
// => u = 2 t / (Sqrt(2) + (2 - Sqrt(2)) t)
|
|
//=======================================================================
|
|
//function : Convert_CircleToBSplineCurve
|
|
//purpose : this constructs a periodic circle
|
|
//=======================================================================
|
|
Convert_CircleToBSplineCurve::Convert_CircleToBSplineCurve
|
|
(const gp_Circ2d& C, const Convert_ParameterisationType Parameterisation)
|
|
:Convert_ConicToBSplineCurve(0,0,0){
|
|
|
|
Standard_Integer ii ;
|
|
|
|
Standard_Real R,
|
|
value ;
|
|
Handle(TColStd_HArray1OfReal) CosNumeratorPtr,
|
|
SinNumeratorPtr ;
|
|
|
|
|
|
R = C.Radius() ;
|
|
if (Parameterisation != Convert_TgtThetaOver2 &&
|
|
Parameterisation != Convert_RationalC1) {
|
|
// In case if BuildCosAndSin does not know how to manage the periodicity
|
|
// => trim on 0,2*PI
|
|
isperiodic = Standard_False;
|
|
Convert_ConicToBSplineCurve::
|
|
BuildCosAndSin(Parameterisation,
|
|
0, 2*M_PI,
|
|
CosNumeratorPtr,
|
|
SinNumeratorPtr,
|
|
weights,
|
|
degree,
|
|
knots,
|
|
mults);
|
|
}
|
|
else {
|
|
isperiodic = Standard_True;
|
|
Convert_ConicToBSplineCurve::
|
|
BuildCosAndSin(Parameterisation,
|
|
CosNumeratorPtr,
|
|
SinNumeratorPtr,
|
|
weights,
|
|
degree,
|
|
knots,
|
|
mults);
|
|
}
|
|
|
|
|
|
nbPoles = CosNumeratorPtr->Length();
|
|
nbKnots = knots->Length();
|
|
|
|
poles =
|
|
new TColgp_HArray1OfPnt2d(1,nbPoles);
|
|
|
|
|
|
gp_Dir2d Ox = C.XAxis().Direction();
|
|
gp_Dir2d Oy = C.YAxis().Direction();
|
|
gp_Trsf2d Trsf;
|
|
Trsf.SetTransformation( C.XAxis(), gp::OX2d());
|
|
if ( Ox.X() * Oy.Y() - Ox.Y() * Oy.X() > 0.0e0) {
|
|
value = R ;
|
|
}
|
|
else {
|
|
value = -R ;
|
|
}
|
|
|
|
// Replace the bspline in the reference of the circle.
|
|
// and calculate the weight of the bspline.
|
|
|
|
for (ii = 1; ii <= nbPoles ; ii++) {
|
|
poles->ChangeArray1()(ii).SetCoord(1, R * CosNumeratorPtr->Value(ii)) ;
|
|
poles->ChangeArray1()(ii).SetCoord(2, value * SinNumeratorPtr->Value(ii)) ;
|
|
poles->ChangeArray1()(ii).Transform( Trsf);
|
|
}
|
|
|
|
}
|
|
//=======================================================================
|
|
//function : Convert_CircleToBSplineCurve
|
|
//purpose : this constructs a non periodic circle
|
|
//=======================================================================
|
|
|
|
Convert_CircleToBSplineCurve::Convert_CircleToBSplineCurve
|
|
(const gp_Circ2d& C,
|
|
const Standard_Real UFirst,
|
|
const Standard_Real ULast,
|
|
const Convert_ParameterisationType Parameterisation)
|
|
:Convert_ConicToBSplineCurve(0,0,0)
|
|
{
|
|
Standard_Real delta = ULast - UFirst ;
|
|
Standard_Real Eps = Precision::PConfusion();
|
|
|
|
if ( (delta > (2*M_PI + Eps)) || (delta <= 0.0e0) ) {
|
|
throw Standard_DomainError( "Convert_CircleToBSplineCurve");
|
|
}
|
|
|
|
Standard_Integer ii;
|
|
Standard_Real R, value ;
|
|
Handle(TColStd_HArray1OfReal) CosNumeratorPtr,SinNumeratorPtr ;
|
|
|
|
|
|
R = C.Radius() ;
|
|
isperiodic = Standard_False;
|
|
Convert_ConicToBSplineCurve::BuildCosAndSin(Parameterisation,
|
|
UFirst,
|
|
ULast,
|
|
CosNumeratorPtr,
|
|
SinNumeratorPtr,
|
|
weights,
|
|
degree,
|
|
knots,
|
|
mults) ;
|
|
|
|
|
|
|
|
nbPoles = CosNumeratorPtr->Length();
|
|
nbKnots = knots->Length();
|
|
|
|
poles =
|
|
new TColgp_HArray1OfPnt2d(1,nbPoles) ;
|
|
|
|
gp_Dir2d Ox = C.XAxis().Direction();
|
|
gp_Dir2d Oy = C.YAxis().Direction();
|
|
gp_Trsf2d Trsf;
|
|
Trsf.SetTransformation( C.XAxis(), gp::OX2d());
|
|
if ( Ox.X() * Oy.Y() - Ox.Y() * Oy.X() > 0.0e0) {
|
|
value = R ;
|
|
}
|
|
else {
|
|
value = -R ;
|
|
}
|
|
|
|
// Replace the bspline in the reference of the circle.
|
|
// and calculate the weight of the bspline.
|
|
|
|
for (ii = 1; ii <= nbPoles ; ii++) {
|
|
poles->ChangeArray1()(ii).SetCoord(1, R * CosNumeratorPtr->Value(ii)) ;
|
|
poles->ChangeArray1()(ii).SetCoord(2, value * SinNumeratorPtr->Value(ii)) ;
|
|
poles->ChangeArray1()(ii).Transform( Trsf);
|
|
}
|
|
|
|
}
|
|
|