1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-04-06 18:26:22 +03:00
occt/src/Geom2dConvert/Geom2dConvert_CompCurveToBSplineCurve.cxx
ifv 2dad173d8b 0028230: Convert C0 2d curve to C1 raises exception
The treatment of small curves (length of curves is less then tolerance used for checking G1) is added in
Geom2dConvert_CompCurveToBSplineCurve.cxx
2017-01-26 12:51:31 +03:00

254 lines
7.8 KiB
C++

// Created on: 1997-04-29
// Created by: Stagiaire Francois DUMONT
// Copyright (c) 1997-1999 Matra Datavision
// Copyright (c) 1999-2014 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
#include <Geom2d_BoundedCurve.hxx>
#include <Geom2d_BSplineCurve.hxx>
#include <Geom2dConvert.hxx>
#include <Geom2dConvert_CompCurveToBSplineCurve.hxx>
#include <gp_Pnt2d.hxx>
#include <gp_Vec2d.hxx>
#include <Precision.hxx>
#include <TColgp_Array1OfPnt2d.hxx>
#include <TColStd_Array1OfInteger.hxx>
#include <TColStd_Array1OfReal.hxx>
//=======================================================================
//function : constructor
//purpose :
//=======================================================================
Geom2dConvert_CompCurveToBSplineCurve::Geom2dConvert_CompCurveToBSplineCurve (const Convert_ParameterisationType theParameterisation)
: myTol (Precision::Confusion()),
myType (theParameterisation)
{
//
}
//=======================================================================
//function : constructor
//purpose :
//=======================================================================
Geom2dConvert_CompCurveToBSplineCurve::
Geom2dConvert_CompCurveToBSplineCurve(const Handle(Geom2d_BoundedCurve)& BasisCurve,
const Convert_ParameterisationType Parameterisation) :
myTol(Precision::Confusion()),
myType(Parameterisation)
{
Handle(Geom2d_BSplineCurve) Bs =
Handle(Geom2d_BSplineCurve)::DownCast(BasisCurve);
if (!Bs.IsNull()) {
myCurve = Handle(Geom2d_BSplineCurve)::DownCast(BasisCurve->Copy());
}
else {
myCurve = Geom2dConvert::CurveToBSplineCurve (BasisCurve, myType);
}
}
//=======================================================================
//function : Add
//purpose :
//=======================================================================
Standard_Boolean Geom2dConvert_CompCurveToBSplineCurve::
Add(const Handle(Geom2d_BoundedCurve)& NewCurve,
const Standard_Real Tolerance,
const Standard_Boolean After)
{
// conversion
Handle(Geom2d_BSplineCurve) Bs = Handle(Geom2d_BSplineCurve)::DownCast (NewCurve);
if (!Bs.IsNull())
{
Bs = Handle(Geom2d_BSplineCurve)::DownCast (NewCurve->Copy());
}
else
{
Bs = Geom2dConvert::CurveToBSplineCurve (NewCurve, myType);
}
if (myCurve.IsNull())
{
myCurve = Bs;
return Standard_True;
}
myTol = Tolerance;
Standard_Integer LBs = Bs->NbPoles(), LCb = myCurve->NbPoles();
// myCurve est elle fermee ?
if (myCurve->Pole(LCb).Distance(myCurve->Pole(1)) < myTol){
if(After){
// Ajout Apres ?
Standard_Real d1 = myCurve->Pole(LCb).Distance(Bs->Pole(1));
Standard_Real d2 = myCurve->Pole(LCb).Distance(Bs->Pole(LBs));
if (d2 < d1) {
Bs->Reverse();
d1 = d2;
}
if (d1 < myTol) {
Add(myCurve, Bs, Standard_True);
return Standard_True;
}
}
else{
// Ajout avant ?
Standard_Real d1 = myCurve->Pole(1).Distance(Bs->Pole(1));
Standard_Real d2 = myCurve->Pole(1).Distance(Bs->Pole(LBs));
if (d1 < d2) {
Bs->Reverse();
d2 = d1;
}
if (d2 < myTol) {
Add(Bs, myCurve, Standard_False);
return Standard_True;
}
}
}
// Ajout Apres ?
else {
Standard_Real d1 = myCurve->Pole(LCb).Distance(Bs->Pole(1));
Standard_Real d2 = myCurve->Pole(LCb).Distance(Bs->Pole(LBs));
if (( d1 < myTol) || ( d2 < myTol)) {
if (d2 < d1) {Bs->Reverse();}
Add(myCurve, Bs, Standard_True);
return Standard_True;
}
// Ajout avant ?
else {
d1 = myCurve->Pole(1).Distance(Bs->Pole(1));
d2 = myCurve->Pole(1).Distance(Bs->Pole(LBs));
if ( (d1 < myTol) || (d2 < myTol)) {
if (d1 < d2) {Bs->Reverse();}
Add(Bs, myCurve, Standard_False );
return Standard_True;
}
}
}
return Standard_False;
}
//=======================================================================
//function : Add
//purpose :
//=======================================================================
void Geom2dConvert_CompCurveToBSplineCurve::Add(
Handle(Geom2d_BSplineCurve)& FirstCurve,
Handle(Geom2d_BSplineCurve)& SecondCurve,
const Standard_Boolean After)
{
// Harmonisation des degres.
Standard_Integer Deg = Max(FirstCurve->Degree(), SecondCurve->Degree());
if (FirstCurve->Degree() < Deg) { FirstCurve->IncreaseDegree(Deg); }
if (SecondCurve->Degree() < Deg) { SecondCurve->IncreaseDegree(Deg); }
// Declarationd
Standard_Real L1, L2, U_de_raccord;
Standard_Integer ii, jj;
Standard_Real Ratio=1, Ratio1, Ratio2, Delta1, Delta2;
Standard_Integer NbP1 = FirstCurve->NbPoles(), NbP2 = SecondCurve->NbPoles();
Standard_Integer NbK1 = FirstCurve->NbKnots(), NbK2 = SecondCurve->NbKnots();
TColStd_Array1OfReal Noeuds (1, NbK1+NbK2-1);
TColgp_Array1OfPnt2d Poles (1, NbP1+ NbP2-1);
TColStd_Array1OfReal Poids (1, NbP1+ NbP2-1);
TColStd_Array1OfInteger Mults (1, NbK1+NbK2-1);
// Ratio de reparametrisation (C1 si possible)
L1 = FirstCurve->DN(FirstCurve->LastParameter(), 1).Magnitude();
L2 = SecondCurve->DN(SecondCurve->FirstParameter(), 1). Magnitude();
if ( (L1 > Precision::Confusion()) && (L2 > Precision::Confusion()) ) {
Ratio = L1 / L2;
}
if ( (Ratio < Precision::Confusion()) || (Ratio > 1/Precision::Confusion()) ) {Ratio = 1;}
if (After) {
// On ne bouge pas la premiere courbe
Ratio1 = 1;
Delta1 = 0;
Ratio2 = 1/Ratio;
Delta2 = Ratio2*SecondCurve->Knot(1) - FirstCurve->Knot(NbK1);
U_de_raccord = FirstCurve->LastParameter();
}
else {
// On ne bouge pas la seconde courbe
Ratio1 = Ratio;
Delta1 = Ratio1*FirstCurve->Knot(NbK1) - SecondCurve->Knot(1);
Ratio2 = 1;
Delta2 = 0;
U_de_raccord = SecondCurve->FirstParameter();
}
// Les Noeuds
for (ii=1; ii<NbK1; ii++) {
Noeuds(ii) = Ratio1*FirstCurve->Knot(ii) - Delta1;
Mults(ii) = FirstCurve->Multiplicity(ii);
}
Noeuds(NbK1) = U_de_raccord;
Mults(NbK1) = FirstCurve->Degree();
for (ii=2, jj=NbK1+1; ii<=NbK2; ii++, jj++) {
Noeuds(jj) = Ratio2*SecondCurve->Knot(ii) - Delta2;
Mults(jj) = SecondCurve->Multiplicity(ii);
}
Ratio = FirstCurve->Weight(NbP1) ;
Ratio /= SecondCurve->Weight(1) ;
// Les Poles et Poids
for (ii=1; ii<NbP1; ii++) {
Poles(ii) = FirstCurve->Pole(ii);
Poids(ii) = FirstCurve->Weight(ii);
}
for (ii=1, jj=NbP1; ii<=NbP2; ii++, jj++) {
Poles(jj) = SecondCurve->Pole(ii);
//
// attentiion les poids ne se raccord pas forcement C0
// d'ou Ratio
//
Poids(jj) = Ratio * SecondCurve->Weight(ii);
}
// Creation de la BSpline
myCurve = new (Geom2d_BSplineCurve) (Poles, Poids, Noeuds, Mults, Deg);
// Reduction eventuelle de la multiplicite
Standard_Boolean Ok = Standard_True;
Standard_Integer M = Mults(NbK1);
while ( (M>0) && Ok) {
M--;
Ok = myCurve->RemoveKnot(NbK1, M, myTol);
}
}
//=======================================================================
//function : BSplineCurve
//purpose :
//=======================================================================
Handle(Geom2d_BSplineCurve) Geom2dConvert_CompCurveToBSplineCurve::BSplineCurve() const
{
return myCurve;
}
//=======================================================================
//function : Clear
//purpose :
//=======================================================================
void Geom2dConvert_CompCurveToBSplineCurve::Clear()
{
myCurve.Nullify();
}