mirror of
https://git.dev.opencascade.org/repos/occt.git
synced 2025-04-09 18:50:54 +03:00
Output to cout activated previously in Debug mode by #ifdef DEB is suppressed by using macro <PACKAGE>_DEB instead of DEB
667 lines
22 KiB
C++
667 lines
22 KiB
C++
// Created on: 1997-08-22
|
|
// Created by: Sergey SOKOLOV
|
|
// Copyright (c) 1997-1999 Matra Datavision
|
|
// Copyright (c) 1999-2014 OPEN CASCADE SAS
|
|
//
|
|
// This file is part of Open CASCADE Technology software library.
|
|
//
|
|
// This library is free software; you can redistribute it and/or modify it under
|
|
// the terms of the GNU Lesser General Public License version 2.1 as published
|
|
// by the Free Software Foundation, with special exception defined in the file
|
|
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
|
|
// distribution for complete text of the license and disclaimer of any warranty.
|
|
//
|
|
// Alternatively, this file may be used under the terms of Open CASCADE
|
|
// commercial license or contractual agreement.
|
|
|
|
#include <Approx_CurvilinearParameter.ixx>
|
|
|
|
#include <Adaptor3d_Curve.hxx>
|
|
#include <GCPnts_AbscissaPoint.hxx>
|
|
#include <gp_Pnt.hxx>
|
|
#include <gp_Pnt2d.hxx>
|
|
#include <gp_Vec.hxx>
|
|
#include <gp_Vec2d.hxx>
|
|
#include <GeomAbs_Shape.hxx>
|
|
#include <AdvApprox_ApproxAFunction.hxx>
|
|
#include <Geom_BSplineCurve.hxx>
|
|
#include <TColStd_HArray1OfReal.hxx>
|
|
#include <TColStd_HArray1OfInteger.hxx>
|
|
#include <TColgp_Array1OfPnt.hxx>
|
|
#include <GeomAdaptor_HCurve.hxx>
|
|
#include <GeomAdaptor_HSurface.hxx>
|
|
#include <TColStd_Array1OfReal.hxx>
|
|
#include <AdvApprox_PrefAndRec.hxx>
|
|
#include <Adaptor3d_CurveOnSurface.hxx>
|
|
#include <Precision.hxx>
|
|
#include <Geom2d_BSplineCurve.hxx>
|
|
#include <TColgp_Array1OfPnt2d.hxx>
|
|
#include <math_Vector.hxx>
|
|
#include <CPnts_AbscissaPoint.hxx>
|
|
#include <Approx_CurvlinFunc.hxx>
|
|
|
|
#ifdef __OCC_DEBUG_CHRONO
|
|
#include <OSD_Timer.hxx>
|
|
static OSD_Chronometer chr_total, chr_init, chr_approx;
|
|
|
|
Standard_Real t_total, t_init, t_approx;
|
|
void InitChron(OSD_Chronometer& ch)
|
|
{
|
|
ch.Reset();
|
|
ch.Start();
|
|
}
|
|
|
|
void ResultChron( OSD_Chronometer & ch, Standard_Real & time)
|
|
{
|
|
Standard_Real tch ;
|
|
ch.Stop();
|
|
ch.Show(tch);
|
|
time=time +tch;
|
|
}
|
|
|
|
Standard_IMPORT Standard_Integer uparam_count;
|
|
Standard_IMPORT Standard_Real t_uparam;
|
|
#endif
|
|
|
|
//=======================================================================
|
|
//class : Approx_CurvilinearParameter_EvalCurv
|
|
//purpose : case of a free 3D curve
|
|
//=======================================================================
|
|
|
|
class Approx_CurvilinearParameter_EvalCurv : public AdvApprox_EvaluatorFunction
|
|
{
|
|
public:
|
|
Approx_CurvilinearParameter_EvalCurv (const Handle(Approx_CurvlinFunc)& theFunc,
|
|
Standard_Real First, Standard_Real Last)
|
|
: fonct(theFunc) { StartEndSav[0] = First; StartEndSav[1] = Last; }
|
|
|
|
virtual void Evaluate (Standard_Integer *Dimension,
|
|
Standard_Real StartEnd[2],
|
|
Standard_Real *Parameter,
|
|
Standard_Integer *DerivativeRequest,
|
|
Standard_Real *Result, // [Dimension]
|
|
Standard_Integer *ErrorCode);
|
|
|
|
private:
|
|
Handle(Approx_CurvlinFunc) fonct;
|
|
Standard_Real StartEndSav[2];
|
|
};
|
|
|
|
void Approx_CurvilinearParameter_EvalCurv::Evaluate (Standard_Integer * Dimension,
|
|
Standard_Real * StartEnd,
|
|
Standard_Real * Param,
|
|
Standard_Integer * Order,
|
|
Standard_Real * Result,
|
|
Standard_Integer * ErrorCode)
|
|
{
|
|
*ErrorCode = 0;
|
|
Standard_Real S = *Param;
|
|
TColStd_Array1OfReal Res(0, 2);
|
|
Standard_Integer i;
|
|
|
|
// Dimension is incorrect
|
|
if (*Dimension != 3) {
|
|
*ErrorCode = 1;
|
|
}
|
|
// Parameter is incorrect
|
|
if ( S < StartEnd[0] || S > StartEnd[1] ) {
|
|
*ErrorCode = 2;
|
|
}
|
|
|
|
if(StartEnd[0] != StartEndSav[0] || StartEnd[1]!= StartEndSav[1])
|
|
{
|
|
fonct->Trim(StartEnd[0],StartEnd[1], Precision::Confusion());
|
|
StartEndSav[0]=StartEnd[0];
|
|
StartEndSav[1]=StartEnd[1];
|
|
}
|
|
|
|
if(!fonct->EvalCase1(S, *Order, Res)) {
|
|
*ErrorCode = 3;
|
|
}
|
|
|
|
for(i = 0; i <= 2; i++)
|
|
Result[i] = Res(i);
|
|
}
|
|
|
|
Approx_CurvilinearParameter::Approx_CurvilinearParameter(const Handle(Adaptor3d_HCurve)& C3D,
|
|
const Standard_Real Tol,
|
|
const GeomAbs_Shape Order,
|
|
const Standard_Integer MaxDegree,
|
|
const Standard_Integer MaxSegments)
|
|
{
|
|
#ifdef __OCC_DEBUG_CHRONO
|
|
t_total = t_init = t_approx = t_uparam = 0;
|
|
uparam_count = 0;
|
|
InitChron(chr_total);
|
|
#endif
|
|
myCase = 1;
|
|
// Initialisation of input parameters of AdvApprox
|
|
|
|
Standard_Integer Num1DSS=0, Num2DSS=0, Num3DSS=1;
|
|
Handle(TColStd_HArray1OfReal) OneDTolNul, TwoDTolNul;
|
|
Handle(TColStd_HArray1OfReal) ThreeDTol = new TColStd_HArray1OfReal(1,Num3DSS);
|
|
ThreeDTol->Init(Tol);
|
|
|
|
#ifdef __OCC_DEBUG_CHRONO
|
|
InitChron(chr_init);
|
|
#endif
|
|
Handle(Approx_CurvlinFunc) fonct = new Approx_CurvlinFunc(C3D, Tol/10);
|
|
#ifdef __OCC_DEBUG_CHRONO
|
|
ResultChron(chr_init, t_init);
|
|
#endif
|
|
|
|
Standard_Real FirstS = fonct->FirstParameter();
|
|
Standard_Real LastS = fonct->LastParameter();
|
|
|
|
Standard_Integer NbInterv_C2 = fonct->NbIntervals(GeomAbs_C2);
|
|
TColStd_Array1OfReal CutPnts_C2(1, NbInterv_C2+1);
|
|
fonct->Intervals(CutPnts_C2,GeomAbs_C2);
|
|
Standard_Integer NbInterv_C3 = fonct->NbIntervals(GeomAbs_C3);
|
|
TColStd_Array1OfReal CutPnts_C3(1, NbInterv_C3+1);
|
|
fonct->Intervals(CutPnts_C3,GeomAbs_C3);
|
|
AdvApprox_PrefAndRec CutTool(CutPnts_C2,CutPnts_C3);
|
|
|
|
#ifdef __OCC_DEBUG_CHRONO
|
|
InitChron(chr_approx);
|
|
#endif
|
|
|
|
Approx_CurvilinearParameter_EvalCurv evC (fonct, FirstS, LastS);
|
|
AdvApprox_ApproxAFunction aApprox (Num1DSS, Num2DSS, Num3DSS,
|
|
OneDTolNul, TwoDTolNul, ThreeDTol,
|
|
FirstS, LastS, Order,
|
|
MaxDegree, MaxSegments,
|
|
evC, CutTool);
|
|
|
|
#ifdef __OCC_DEBUG_CHRONO
|
|
ResultChron(chr_approx, t_approx);
|
|
#endif
|
|
|
|
myDone = aApprox.IsDone();
|
|
myHasResult = aApprox.HasResult();
|
|
|
|
if (myHasResult) {
|
|
TColgp_Array1OfPnt Poles(1,aApprox.NbPoles());
|
|
aApprox.Poles(1,Poles);
|
|
Handle(TColStd_HArray1OfReal) Knots = aApprox.Knots();
|
|
Handle(TColStd_HArray1OfInteger) Mults = aApprox.Multiplicities();
|
|
Standard_Integer Degree = aApprox.Degree();
|
|
myCurve3d = new Geom_BSplineCurve(Poles, Knots->Array1(), Mults->Array1(), Degree);
|
|
}
|
|
myMaxError3d = aApprox.MaxError(3,1);
|
|
|
|
#ifdef __OCC_DEBUG_CHRONO
|
|
ResultChron(chr_total, t_total);
|
|
|
|
cout<<" total reparametrization time = "<<t_total<<endl;
|
|
cout<<"initialization time = "<<t_init<<endl;
|
|
cout<<"approximation time = "<<t_approx<<endl;
|
|
cout<<"total time for uparam computation = "<<t_uparam<<endl;
|
|
cout<<"number uparam calles = "<<uparam_count<<endl;
|
|
#endif
|
|
}
|
|
|
|
//=======================================================================
|
|
//class : Approx_CurvilinearParameter_EvalCurvOnSurf
|
|
//purpose : case of a curve on one surface
|
|
//=======================================================================
|
|
|
|
class Approx_CurvilinearParameter_EvalCurvOnSurf : public AdvApprox_EvaluatorFunction
|
|
{
|
|
public:
|
|
Approx_CurvilinearParameter_EvalCurvOnSurf (const Handle(Approx_CurvlinFunc)& theFunc,
|
|
Standard_Real First, Standard_Real Last)
|
|
: fonct(theFunc) { StartEndSav[0] = First; StartEndSav[1] = Last; }
|
|
|
|
virtual void Evaluate (Standard_Integer *Dimension,
|
|
Standard_Real StartEnd[2],
|
|
Standard_Real *Parameter,
|
|
Standard_Integer *DerivativeRequest,
|
|
Standard_Real *Result, // [Dimension]
|
|
Standard_Integer *ErrorCode);
|
|
|
|
private:
|
|
Handle(Approx_CurvlinFunc) fonct;
|
|
Standard_Real StartEndSav[2];
|
|
};
|
|
|
|
void Approx_CurvilinearParameter_EvalCurvOnSurf::Evaluate (Standard_Integer * Dimension,
|
|
Standard_Real * StartEnd,
|
|
Standard_Real * Param,
|
|
Standard_Integer * Order,
|
|
Standard_Real * Result,
|
|
Standard_Integer * ErrorCode)
|
|
{
|
|
*ErrorCode = 0;
|
|
Standard_Real S = *Param;
|
|
TColStd_Array1OfReal Res(0, 4);
|
|
Standard_Integer i;
|
|
|
|
// Dimension is incorrect
|
|
if (*Dimension != 5) {
|
|
*ErrorCode = 1;
|
|
}
|
|
// Parameter is incorrect
|
|
if ( S < StartEnd[0] || S > StartEnd[1] ) {
|
|
*ErrorCode = 2;
|
|
}
|
|
|
|
if(StartEnd[0] != StartEndSav[0] || StartEnd[1]!= StartEndSav[1])
|
|
{
|
|
fonct->Trim(StartEnd[0],StartEnd[1], Precision::Confusion());
|
|
StartEndSav[0]=StartEnd[0];
|
|
StartEndSav[1]=StartEnd[1];
|
|
}
|
|
|
|
if(!fonct->EvalCase2(S, *Order, Res)) {
|
|
*ErrorCode = 3;
|
|
}
|
|
|
|
for(i = 0; i <= 4; i++)
|
|
Result[i] = Res(i);
|
|
}
|
|
|
|
Approx_CurvilinearParameter::Approx_CurvilinearParameter(const Handle(Adaptor2d_HCurve2d)& C2D,
|
|
const Handle(Adaptor3d_HSurface)& Surf,
|
|
const Standard_Real Tol,
|
|
const GeomAbs_Shape Order,
|
|
const Standard_Integer MaxDegree,
|
|
const Standard_Integer MaxSegments)
|
|
{
|
|
#ifdef __OCC_DEBUG_CHRONO
|
|
t_total = t_init = t_approx = t_uparam = 0;
|
|
uparam_count = 0;
|
|
InitChron(chr_total);
|
|
#endif
|
|
myCase = 2;
|
|
|
|
// Initialisation of input parameters of AdvApprox
|
|
|
|
Standard_Integer Num1DSS=2, Num2DSS=0, Num3DSS=1, i;
|
|
|
|
Handle(TColStd_HArray1OfReal) OneDTol = new TColStd_HArray1OfReal(1,Num1DSS);
|
|
Standard_Real TolV,TolW;
|
|
|
|
ToleranceComputation(C2D,Surf,10,Tol,TolV,TolW);
|
|
OneDTol->SetValue(1,TolV);
|
|
OneDTol->SetValue(2,TolW);
|
|
|
|
OneDTol->SetValue(1,Tol);
|
|
OneDTol->SetValue(2,Tol);
|
|
|
|
Handle(TColStd_HArray1OfReal) TwoDTolNul;
|
|
Handle(TColStd_HArray1OfReal) ThreeDTol = new TColStd_HArray1OfReal(1,Num3DSS);
|
|
ThreeDTol->Init(Tol/2.);
|
|
|
|
#ifdef __OCC_DEBUG_CHRONO
|
|
InitChron(chr_init);
|
|
#endif
|
|
Handle(Approx_CurvlinFunc) fonct = new Approx_CurvlinFunc(C2D, Surf, Tol/20);
|
|
#ifdef __OCC_DEBUG_CHRONO
|
|
ResultChron(chr_init, t_init);
|
|
#endif
|
|
|
|
Standard_Real FirstS = fonct->FirstParameter();
|
|
Standard_Real LastS = fonct->LastParameter();
|
|
|
|
Standard_Integer NbInterv_C2 = fonct->NbIntervals(GeomAbs_C2);
|
|
TColStd_Array1OfReal CutPnts_C2(1, NbInterv_C2+1);
|
|
fonct->Intervals(CutPnts_C2,GeomAbs_C2);
|
|
Standard_Integer NbInterv_C3 = fonct->NbIntervals(GeomAbs_C3);
|
|
TColStd_Array1OfReal CutPnts_C3(1, NbInterv_C3+1);
|
|
fonct->Intervals(CutPnts_C3,GeomAbs_C3);
|
|
AdvApprox_PrefAndRec CutTool(CutPnts_C2,CutPnts_C3);
|
|
|
|
#ifdef __OCC_DEBUG_CHRONO
|
|
InitChron(chr_approx);
|
|
#endif
|
|
|
|
Approx_CurvilinearParameter_EvalCurvOnSurf evCOnS (fonct, FirstS, LastS);
|
|
AdvApprox_ApproxAFunction aApprox (Num1DSS, Num2DSS, Num3DSS,
|
|
OneDTol, TwoDTolNul, ThreeDTol,
|
|
FirstS, LastS, Order,
|
|
MaxDegree, MaxSegments,
|
|
evCOnS, CutTool);
|
|
|
|
#ifdef __OCC_DEBUG_CHRONO
|
|
ResultChron(chr_approx, t_approx);
|
|
#endif
|
|
|
|
myDone = aApprox.IsDone();
|
|
myHasResult = aApprox.HasResult();
|
|
|
|
if (myHasResult) {
|
|
Standard_Integer NbPoles = aApprox.NbPoles();
|
|
TColgp_Array1OfPnt Poles (1,NbPoles);
|
|
TColgp_Array1OfPnt2d Poles2d(1,NbPoles);
|
|
TColStd_Array1OfReal Poles1d(1,NbPoles);
|
|
aApprox.Poles(1,Poles);
|
|
aApprox.Poles1d(1,Poles1d);
|
|
for (i=1; i<=NbPoles; i++)
|
|
Poles2d(i).SetX(Poles1d(i));
|
|
aApprox.Poles1d(2,Poles1d);
|
|
for (i=1; i<=NbPoles; i++)
|
|
Poles2d(i).SetY(Poles1d(i));
|
|
Handle(TColStd_HArray1OfReal) Knots = aApprox.Knots();
|
|
Handle(TColStd_HArray1OfInteger) Mults = aApprox.Multiplicities();
|
|
Standard_Integer Degree = aApprox.Degree();
|
|
myCurve3d = new Geom_BSplineCurve(Poles, Knots->Array1(), Mults->Array1(), Degree);
|
|
myCurve2d1 = new Geom2d_BSplineCurve(Poles2d, Knots->Array1(), Mults->Array1(), Degree);
|
|
}
|
|
myMaxError2d1 = Max (aApprox.MaxError(1,1),aApprox.MaxError(1,2));
|
|
myMaxError3d = aApprox.MaxError(3,1);
|
|
|
|
#ifdef __OCC_DEBUG_CHRONO
|
|
ResultChron(chr_total, t_total);
|
|
|
|
cout<<" total reparametrization time = "<<t_total<<endl;
|
|
cout<<"initialization time = "<<t_init<<endl;
|
|
cout<<"approximation time = "<<t_approx<<endl;
|
|
cout<<"total time for uparam computation = "<<t_uparam<<endl;
|
|
cout<<"number uparam calles = "<<uparam_count<<endl;
|
|
#endif
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : Approx_CurvilinearParameter_EvalCurvOn2Surf
|
|
//purpose : case of a curve on two surfaces
|
|
//=======================================================================
|
|
|
|
class Approx_CurvilinearParameter_EvalCurvOn2Surf : public AdvApprox_EvaluatorFunction
|
|
{
|
|
public:
|
|
Approx_CurvilinearParameter_EvalCurvOn2Surf (const Handle(Approx_CurvlinFunc)& theFunc,
|
|
Standard_Real First, Standard_Real Last)
|
|
: fonct(theFunc) { StartEndSav[0] = First; StartEndSav[1] = Last; }
|
|
|
|
virtual void Evaluate (Standard_Integer *Dimension,
|
|
Standard_Real StartEnd[2],
|
|
Standard_Real *Parameter,
|
|
Standard_Integer *DerivativeRequest,
|
|
Standard_Real *Result, // [Dimension]
|
|
Standard_Integer *ErrorCode);
|
|
|
|
private:
|
|
Handle(Approx_CurvlinFunc) fonct;
|
|
Standard_Real StartEndSav[2];
|
|
};
|
|
|
|
void Approx_CurvilinearParameter_EvalCurvOn2Surf::Evaluate (Standard_Integer * Dimension,
|
|
Standard_Real * StartEnd,
|
|
Standard_Real * Param,
|
|
Standard_Integer * Order,
|
|
Standard_Real * Result,
|
|
Standard_Integer * ErrorCode)
|
|
{
|
|
*ErrorCode = 0;
|
|
Standard_Real S = *Param;
|
|
TColStd_Array1OfReal Res(0, 6);
|
|
Standard_Integer i;
|
|
|
|
// Dimension is incorrect
|
|
if (*Dimension != 7) {
|
|
*ErrorCode = 1;
|
|
}
|
|
// Parameter is incorrect
|
|
if ( S < StartEnd[0] || S > StartEnd[1] ) {
|
|
*ErrorCode = 2;
|
|
}
|
|
|
|
/* if(StartEnd[0] != StartEndSav[0] || StartEnd[1]!= StartEndSav[1])
|
|
{
|
|
fonct->Trim(StartEnd[0],StartEnd[1], Precision::Confusion());
|
|
StartEndSav[0]=StartEnd[0];
|
|
StartEndSav[1]=StartEnd[1];
|
|
}
|
|
*/
|
|
if(!fonct->EvalCase3(S, *Order, Res)) {
|
|
*ErrorCode = 3;
|
|
}
|
|
|
|
for(i = 0; i <= 6; i++)
|
|
Result[i] = Res(i);
|
|
}
|
|
|
|
Approx_CurvilinearParameter::Approx_CurvilinearParameter(const Handle(Adaptor2d_HCurve2d)& C2D1,
|
|
const Handle(Adaptor3d_HSurface)& Surf1,
|
|
const Handle(Adaptor2d_HCurve2d)& C2D2,
|
|
const Handle(Adaptor3d_HSurface)& Surf2,
|
|
const Standard_Real Tol,
|
|
const GeomAbs_Shape Order,
|
|
const Standard_Integer MaxDegree,
|
|
const Standard_Integer MaxSegments)
|
|
{
|
|
Standard_Integer i;
|
|
|
|
#ifdef __OCC_DEBUG_CHRONO
|
|
t_total = t_init = t_approx = t_uparam = 0;
|
|
uparam_count = 0;
|
|
InitChron(chr_total);
|
|
#endif
|
|
myCase = 3;
|
|
|
|
// Initialisation of input parameters of AdvApprox
|
|
|
|
Standard_Integer Num1DSS=4, Num2DSS=0, Num3DSS=1;
|
|
Handle(TColStd_HArray1OfReal) OneDTol = new TColStd_HArray1OfReal(1,Num1DSS);
|
|
|
|
Standard_Real TolV,TolW;
|
|
ToleranceComputation(C2D1,Surf1,10,Tol,TolV,TolW);
|
|
OneDTol->SetValue(1,TolV);
|
|
OneDTol->SetValue(2,TolW);
|
|
|
|
ToleranceComputation(C2D2,Surf2,10,Tol,TolV,TolW);
|
|
OneDTol->SetValue(3,TolV);
|
|
OneDTol->SetValue(4,TolW);
|
|
|
|
Handle(TColStd_HArray1OfReal) TwoDTolNul;
|
|
Handle(TColStd_HArray1OfReal) ThreeDTol = new TColStd_HArray1OfReal(1,Num3DSS);
|
|
ThreeDTol->Init(Tol/2);
|
|
|
|
#ifdef __OCC_DEBUG_CHRONO
|
|
InitChron(chr_init);
|
|
#endif
|
|
Handle(Approx_CurvlinFunc) fonct = new Approx_CurvlinFunc(C2D1, C2D2, Surf1, Surf2, Tol/20);
|
|
#ifdef __OCC_DEBUG_CHRONO
|
|
ResultChron(chr_init, t_init);
|
|
#endif
|
|
|
|
Standard_Real FirstS = fonct->FirstParameter();
|
|
Standard_Real LastS = fonct->LastParameter();
|
|
|
|
Standard_Integer NbInterv_C2 = fonct->NbIntervals(GeomAbs_C2);
|
|
TColStd_Array1OfReal CutPnts_C2(1, NbInterv_C2+1);
|
|
fonct->Intervals(CutPnts_C2,GeomAbs_C2);
|
|
Standard_Integer NbInterv_C3 = fonct->NbIntervals(GeomAbs_C3);
|
|
TColStd_Array1OfReal CutPnts_C3(1, NbInterv_C3+1);
|
|
fonct->Intervals(CutPnts_C3,GeomAbs_C3);
|
|
AdvApprox_PrefAndRec CutTool(CutPnts_C2,CutPnts_C3);
|
|
|
|
#ifdef __OCC_DEBUG_CHRONO
|
|
InitChron(chr_approx);
|
|
#endif
|
|
|
|
Approx_CurvilinearParameter_EvalCurvOn2Surf evCOn2S (fonct, FirstS, LastS);
|
|
AdvApprox_ApproxAFunction aApprox (Num1DSS, Num2DSS, Num3DSS,
|
|
OneDTol, TwoDTolNul, ThreeDTol,
|
|
FirstS, LastS, Order,
|
|
MaxDegree, MaxSegments,
|
|
evCOn2S, CutTool);
|
|
|
|
#ifdef __OCC_DEBUG_CHRONO
|
|
ResultChron(chr_approx, t_approx);
|
|
#endif
|
|
|
|
myDone = aApprox.IsDone();
|
|
myHasResult = aApprox.HasResult();
|
|
|
|
if (myHasResult) {
|
|
Standard_Integer NbPoles = aApprox.NbPoles();
|
|
TColgp_Array1OfPnt Poles (1,NbPoles);
|
|
TColgp_Array1OfPnt2d Poles2d(1,NbPoles);
|
|
TColStd_Array1OfReal Poles1d(1,NbPoles);
|
|
aApprox.Poles(1,Poles);
|
|
aApprox.Poles1d(1,Poles1d);
|
|
for (i=1; i<=NbPoles; i++)
|
|
Poles2d(i).SetX(Poles1d(i));
|
|
aApprox.Poles1d(2,Poles1d);
|
|
for (i=1; i<=NbPoles; i++)
|
|
Poles2d(i).SetY(Poles1d(i));
|
|
Handle(TColStd_HArray1OfReal) Knots = aApprox.Knots();
|
|
Handle(TColStd_HArray1OfInteger) Mults = aApprox.Multiplicities();
|
|
Standard_Integer Degree = aApprox.Degree();
|
|
myCurve3d = new Geom_BSplineCurve(Poles, Knots->Array1(), Mults->Array1(), Degree);
|
|
myCurve2d1 = new Geom2d_BSplineCurve(Poles2d, Knots->Array1(), Mults->Array1(), Degree);
|
|
aApprox.Poles1d(3,Poles1d);
|
|
for (i=1; i<=NbPoles; i++)
|
|
Poles2d(i).SetX(Poles1d(i));
|
|
aApprox.Poles1d(4,Poles1d);
|
|
for (i=1; i<=NbPoles; i++)
|
|
Poles2d(i).SetY(Poles1d(i));
|
|
myCurve2d2 = new Geom2d_BSplineCurve(Poles2d, Knots->Array1(), Mults->Array1(), Degree);
|
|
}
|
|
myMaxError2d1 = Max (aApprox.MaxError(1,1),aApprox.MaxError(1,2));
|
|
myMaxError2d2 = Max (aApprox.MaxError(1,3),aApprox.MaxError(1,4));
|
|
myMaxError3d = aApprox.MaxError(3,1);
|
|
|
|
#ifdef __OCC_DEBUG_CHRONO
|
|
ResultChron(chr_total, t_total);
|
|
|
|
cout<<" total reparametrization time = "<<t_total<<endl;
|
|
cout<<"initialization time = "<<t_init<<endl;
|
|
cout<<"approximation time = "<<t_approx<<endl;
|
|
cout<<"total time for uparam computation = "<<t_uparam<<endl;
|
|
cout<<"number uparam calles = "<<uparam_count<<endl;
|
|
#endif
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : IsDone
|
|
//purpose :
|
|
//=======================================================================
|
|
|
|
Standard_Boolean Approx_CurvilinearParameter::IsDone() const
|
|
{
|
|
return myDone;
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : HasResult
|
|
//purpose :
|
|
//=======================================================================
|
|
|
|
Standard_Boolean Approx_CurvilinearParameter::HasResult() const
|
|
{
|
|
return myHasResult;
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : Curve3d
|
|
//purpose : returns the Bspline curve corresponding to the reparametrized 3D curve
|
|
//=======================================================================
|
|
|
|
Handle(Geom_BSplineCurve) Approx_CurvilinearParameter::Curve3d() const
|
|
{
|
|
return myCurve3d;
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : MaxError3d
|
|
//purpose : returns the maximum error on the reparametrized 3D curve
|
|
//=======================================================================
|
|
|
|
Standard_Real Approx_CurvilinearParameter::MaxError3d() const
|
|
{
|
|
return myMaxError3d;
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : Curve2d1
|
|
//purpose : returns the BsplineCurve representing the reparametrized 2D curve on the
|
|
// first surface (case of a curve on one or two surfaces)
|
|
//=======================================================================
|
|
|
|
Handle(Geom2d_BSplineCurve) Approx_CurvilinearParameter::Curve2d1() const
|
|
{
|
|
return myCurve2d1;
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : MaxError2d1
|
|
//purpose : returns the maximum error on the first reparametrized 2D curve
|
|
//=======================================================================
|
|
|
|
Standard_Real Approx_CurvilinearParameter::MaxError2d1() const
|
|
{
|
|
return myMaxError2d1;
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : Curve2d2
|
|
//purpose : returns the BsplineCurve representing the reparametrized 2D curve on the
|
|
// second surface (case of a curve on two surfaces)
|
|
//=======================================================================
|
|
|
|
Handle(Geom2d_BSplineCurve) Approx_CurvilinearParameter::Curve2d2() const
|
|
{
|
|
return myCurve2d2;
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : MaxError2d2
|
|
//purpose : returns the maximum error on the second reparametrized 2D curve
|
|
//=======================================================================
|
|
|
|
Standard_Real Approx_CurvilinearParameter::MaxError2d2() const
|
|
{
|
|
return myMaxError2d2;
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : Dump
|
|
//purpose : print the maximum errors(s)
|
|
//=======================================================================
|
|
|
|
void Approx_CurvilinearParameter::Dump(Standard_OStream& o) const
|
|
{
|
|
o << "Dump of Approx_CurvilinearParameter" << endl;
|
|
if (myCase==2 || myCase==3)
|
|
o << "myMaxError2d1 = " << myMaxError2d1 << endl;
|
|
if (myCase==3)
|
|
o << "myMaxError2d2 = " << myMaxError2d2 << endl;
|
|
o << "myMaxError3d = " << myMaxError3d << endl;
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : ToleranceComputation
|
|
//purpose :
|
|
//=======================================================================
|
|
|
|
void Approx_CurvilinearParameter::ToleranceComputation(const Handle(Adaptor2d_HCurve2d) &C2D,
|
|
const Handle(Adaptor3d_HSurface) &S,
|
|
const Standard_Integer MaxNumber,
|
|
const Standard_Real Tol,
|
|
Standard_Real &TolV, Standard_Real &TolW)
|
|
{
|
|
Standard_Real FirstU = C2D->FirstParameter(),
|
|
LastU = C2D->LastParameter();
|
|
// Standard_Real parU, Max_dS_dv=1.,Max_dS_dw=1.;
|
|
Standard_Real Max_dS_dv=1.,Max_dS_dw=1.;
|
|
gp_Pnt P;
|
|
gp_Pnt2d pntVW;
|
|
gp_Vec dS_dv,dS_dw;
|
|
|
|
for (Standard_Integer i=1; i<=MaxNumber; i++) {
|
|
pntVW = C2D->Value(FirstU + (i-1)*(LastU-FirstU)/(MaxNumber-1));
|
|
S->D1(pntVW.X(),pntVW.Y(),P,dS_dv,dS_dw);
|
|
Max_dS_dv = Max (Max_dS_dv, dS_dv.Magnitude());
|
|
Max_dS_dw = Max (Max_dS_dw, dS_dw.Magnitude());
|
|
}
|
|
TolV = Tol / (4.*Max_dS_dv);
|
|
TolW = Tol / (4.*Max_dS_dw);
|
|
|
|
#ifdef APPROX_DEB
|
|
cout << "TolV = " << TolV << endl;
|
|
cout << "TolW = " << TolW << endl;
|
|
#endif
|
|
}
|