1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-04-09 18:50:54 +03:00
occt/src/Approx/Approx_CurvilinearParameter.cxx
dbv 63c629aa3a 0025266: Debug statements in the source are getting flushed on to the console
Output to cout activated previously in Debug mode by #ifdef DEB is suppressed by using macro <PACKAGE>_DEB instead of DEB
2014-10-16 16:44:56 +04:00

667 lines
22 KiB
C++

// Created on: 1997-08-22
// Created by: Sergey SOKOLOV
// Copyright (c) 1997-1999 Matra Datavision
// Copyright (c) 1999-2014 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
#include <Approx_CurvilinearParameter.ixx>
#include <Adaptor3d_Curve.hxx>
#include <GCPnts_AbscissaPoint.hxx>
#include <gp_Pnt.hxx>
#include <gp_Pnt2d.hxx>
#include <gp_Vec.hxx>
#include <gp_Vec2d.hxx>
#include <GeomAbs_Shape.hxx>
#include <AdvApprox_ApproxAFunction.hxx>
#include <Geom_BSplineCurve.hxx>
#include <TColStd_HArray1OfReal.hxx>
#include <TColStd_HArray1OfInteger.hxx>
#include <TColgp_Array1OfPnt.hxx>
#include <GeomAdaptor_HCurve.hxx>
#include <GeomAdaptor_HSurface.hxx>
#include <TColStd_Array1OfReal.hxx>
#include <AdvApprox_PrefAndRec.hxx>
#include <Adaptor3d_CurveOnSurface.hxx>
#include <Precision.hxx>
#include <Geom2d_BSplineCurve.hxx>
#include <TColgp_Array1OfPnt2d.hxx>
#include <math_Vector.hxx>
#include <CPnts_AbscissaPoint.hxx>
#include <Approx_CurvlinFunc.hxx>
#ifdef __OCC_DEBUG_CHRONO
#include <OSD_Timer.hxx>
static OSD_Chronometer chr_total, chr_init, chr_approx;
Standard_Real t_total, t_init, t_approx;
void InitChron(OSD_Chronometer& ch)
{
ch.Reset();
ch.Start();
}
void ResultChron( OSD_Chronometer & ch, Standard_Real & time)
{
Standard_Real tch ;
ch.Stop();
ch.Show(tch);
time=time +tch;
}
Standard_IMPORT Standard_Integer uparam_count;
Standard_IMPORT Standard_Real t_uparam;
#endif
//=======================================================================
//class : Approx_CurvilinearParameter_EvalCurv
//purpose : case of a free 3D curve
//=======================================================================
class Approx_CurvilinearParameter_EvalCurv : public AdvApprox_EvaluatorFunction
{
public:
Approx_CurvilinearParameter_EvalCurv (const Handle(Approx_CurvlinFunc)& theFunc,
Standard_Real First, Standard_Real Last)
: fonct(theFunc) { StartEndSav[0] = First; StartEndSav[1] = Last; }
virtual void Evaluate (Standard_Integer *Dimension,
Standard_Real StartEnd[2],
Standard_Real *Parameter,
Standard_Integer *DerivativeRequest,
Standard_Real *Result, // [Dimension]
Standard_Integer *ErrorCode);
private:
Handle(Approx_CurvlinFunc) fonct;
Standard_Real StartEndSav[2];
};
void Approx_CurvilinearParameter_EvalCurv::Evaluate (Standard_Integer * Dimension,
Standard_Real * StartEnd,
Standard_Real * Param,
Standard_Integer * Order,
Standard_Real * Result,
Standard_Integer * ErrorCode)
{
*ErrorCode = 0;
Standard_Real S = *Param;
TColStd_Array1OfReal Res(0, 2);
Standard_Integer i;
// Dimension is incorrect
if (*Dimension != 3) {
*ErrorCode = 1;
}
// Parameter is incorrect
if ( S < StartEnd[0] || S > StartEnd[1] ) {
*ErrorCode = 2;
}
if(StartEnd[0] != StartEndSav[0] || StartEnd[1]!= StartEndSav[1])
{
fonct->Trim(StartEnd[0],StartEnd[1], Precision::Confusion());
StartEndSav[0]=StartEnd[0];
StartEndSav[1]=StartEnd[1];
}
if(!fonct->EvalCase1(S, *Order, Res)) {
*ErrorCode = 3;
}
for(i = 0; i <= 2; i++)
Result[i] = Res(i);
}
Approx_CurvilinearParameter::Approx_CurvilinearParameter(const Handle(Adaptor3d_HCurve)& C3D,
const Standard_Real Tol,
const GeomAbs_Shape Order,
const Standard_Integer MaxDegree,
const Standard_Integer MaxSegments)
{
#ifdef __OCC_DEBUG_CHRONO
t_total = t_init = t_approx = t_uparam = 0;
uparam_count = 0;
InitChron(chr_total);
#endif
myCase = 1;
// Initialisation of input parameters of AdvApprox
Standard_Integer Num1DSS=0, Num2DSS=0, Num3DSS=1;
Handle(TColStd_HArray1OfReal) OneDTolNul, TwoDTolNul;
Handle(TColStd_HArray1OfReal) ThreeDTol = new TColStd_HArray1OfReal(1,Num3DSS);
ThreeDTol->Init(Tol);
#ifdef __OCC_DEBUG_CHRONO
InitChron(chr_init);
#endif
Handle(Approx_CurvlinFunc) fonct = new Approx_CurvlinFunc(C3D, Tol/10);
#ifdef __OCC_DEBUG_CHRONO
ResultChron(chr_init, t_init);
#endif
Standard_Real FirstS = fonct->FirstParameter();
Standard_Real LastS = fonct->LastParameter();
Standard_Integer NbInterv_C2 = fonct->NbIntervals(GeomAbs_C2);
TColStd_Array1OfReal CutPnts_C2(1, NbInterv_C2+1);
fonct->Intervals(CutPnts_C2,GeomAbs_C2);
Standard_Integer NbInterv_C3 = fonct->NbIntervals(GeomAbs_C3);
TColStd_Array1OfReal CutPnts_C3(1, NbInterv_C3+1);
fonct->Intervals(CutPnts_C3,GeomAbs_C3);
AdvApprox_PrefAndRec CutTool(CutPnts_C2,CutPnts_C3);
#ifdef __OCC_DEBUG_CHRONO
InitChron(chr_approx);
#endif
Approx_CurvilinearParameter_EvalCurv evC (fonct, FirstS, LastS);
AdvApprox_ApproxAFunction aApprox (Num1DSS, Num2DSS, Num3DSS,
OneDTolNul, TwoDTolNul, ThreeDTol,
FirstS, LastS, Order,
MaxDegree, MaxSegments,
evC, CutTool);
#ifdef __OCC_DEBUG_CHRONO
ResultChron(chr_approx, t_approx);
#endif
myDone = aApprox.IsDone();
myHasResult = aApprox.HasResult();
if (myHasResult) {
TColgp_Array1OfPnt Poles(1,aApprox.NbPoles());
aApprox.Poles(1,Poles);
Handle(TColStd_HArray1OfReal) Knots = aApprox.Knots();
Handle(TColStd_HArray1OfInteger) Mults = aApprox.Multiplicities();
Standard_Integer Degree = aApprox.Degree();
myCurve3d = new Geom_BSplineCurve(Poles, Knots->Array1(), Mults->Array1(), Degree);
}
myMaxError3d = aApprox.MaxError(3,1);
#ifdef __OCC_DEBUG_CHRONO
ResultChron(chr_total, t_total);
cout<<" total reparametrization time = "<<t_total<<endl;
cout<<"initialization time = "<<t_init<<endl;
cout<<"approximation time = "<<t_approx<<endl;
cout<<"total time for uparam computation = "<<t_uparam<<endl;
cout<<"number uparam calles = "<<uparam_count<<endl;
#endif
}
//=======================================================================
//class : Approx_CurvilinearParameter_EvalCurvOnSurf
//purpose : case of a curve on one surface
//=======================================================================
class Approx_CurvilinearParameter_EvalCurvOnSurf : public AdvApprox_EvaluatorFunction
{
public:
Approx_CurvilinearParameter_EvalCurvOnSurf (const Handle(Approx_CurvlinFunc)& theFunc,
Standard_Real First, Standard_Real Last)
: fonct(theFunc) { StartEndSav[0] = First; StartEndSav[1] = Last; }
virtual void Evaluate (Standard_Integer *Dimension,
Standard_Real StartEnd[2],
Standard_Real *Parameter,
Standard_Integer *DerivativeRequest,
Standard_Real *Result, // [Dimension]
Standard_Integer *ErrorCode);
private:
Handle(Approx_CurvlinFunc) fonct;
Standard_Real StartEndSav[2];
};
void Approx_CurvilinearParameter_EvalCurvOnSurf::Evaluate (Standard_Integer * Dimension,
Standard_Real * StartEnd,
Standard_Real * Param,
Standard_Integer * Order,
Standard_Real * Result,
Standard_Integer * ErrorCode)
{
*ErrorCode = 0;
Standard_Real S = *Param;
TColStd_Array1OfReal Res(0, 4);
Standard_Integer i;
// Dimension is incorrect
if (*Dimension != 5) {
*ErrorCode = 1;
}
// Parameter is incorrect
if ( S < StartEnd[0] || S > StartEnd[1] ) {
*ErrorCode = 2;
}
if(StartEnd[0] != StartEndSav[0] || StartEnd[1]!= StartEndSav[1])
{
fonct->Trim(StartEnd[0],StartEnd[1], Precision::Confusion());
StartEndSav[0]=StartEnd[0];
StartEndSav[1]=StartEnd[1];
}
if(!fonct->EvalCase2(S, *Order, Res)) {
*ErrorCode = 3;
}
for(i = 0; i <= 4; i++)
Result[i] = Res(i);
}
Approx_CurvilinearParameter::Approx_CurvilinearParameter(const Handle(Adaptor2d_HCurve2d)& C2D,
const Handle(Adaptor3d_HSurface)& Surf,
const Standard_Real Tol,
const GeomAbs_Shape Order,
const Standard_Integer MaxDegree,
const Standard_Integer MaxSegments)
{
#ifdef __OCC_DEBUG_CHRONO
t_total = t_init = t_approx = t_uparam = 0;
uparam_count = 0;
InitChron(chr_total);
#endif
myCase = 2;
// Initialisation of input parameters of AdvApprox
Standard_Integer Num1DSS=2, Num2DSS=0, Num3DSS=1, i;
Handle(TColStd_HArray1OfReal) OneDTol = new TColStd_HArray1OfReal(1,Num1DSS);
Standard_Real TolV,TolW;
ToleranceComputation(C2D,Surf,10,Tol,TolV,TolW);
OneDTol->SetValue(1,TolV);
OneDTol->SetValue(2,TolW);
OneDTol->SetValue(1,Tol);
OneDTol->SetValue(2,Tol);
Handle(TColStd_HArray1OfReal) TwoDTolNul;
Handle(TColStd_HArray1OfReal) ThreeDTol = new TColStd_HArray1OfReal(1,Num3DSS);
ThreeDTol->Init(Tol/2.);
#ifdef __OCC_DEBUG_CHRONO
InitChron(chr_init);
#endif
Handle(Approx_CurvlinFunc) fonct = new Approx_CurvlinFunc(C2D, Surf, Tol/20);
#ifdef __OCC_DEBUG_CHRONO
ResultChron(chr_init, t_init);
#endif
Standard_Real FirstS = fonct->FirstParameter();
Standard_Real LastS = fonct->LastParameter();
Standard_Integer NbInterv_C2 = fonct->NbIntervals(GeomAbs_C2);
TColStd_Array1OfReal CutPnts_C2(1, NbInterv_C2+1);
fonct->Intervals(CutPnts_C2,GeomAbs_C2);
Standard_Integer NbInterv_C3 = fonct->NbIntervals(GeomAbs_C3);
TColStd_Array1OfReal CutPnts_C3(1, NbInterv_C3+1);
fonct->Intervals(CutPnts_C3,GeomAbs_C3);
AdvApprox_PrefAndRec CutTool(CutPnts_C2,CutPnts_C3);
#ifdef __OCC_DEBUG_CHRONO
InitChron(chr_approx);
#endif
Approx_CurvilinearParameter_EvalCurvOnSurf evCOnS (fonct, FirstS, LastS);
AdvApprox_ApproxAFunction aApprox (Num1DSS, Num2DSS, Num3DSS,
OneDTol, TwoDTolNul, ThreeDTol,
FirstS, LastS, Order,
MaxDegree, MaxSegments,
evCOnS, CutTool);
#ifdef __OCC_DEBUG_CHRONO
ResultChron(chr_approx, t_approx);
#endif
myDone = aApprox.IsDone();
myHasResult = aApprox.HasResult();
if (myHasResult) {
Standard_Integer NbPoles = aApprox.NbPoles();
TColgp_Array1OfPnt Poles (1,NbPoles);
TColgp_Array1OfPnt2d Poles2d(1,NbPoles);
TColStd_Array1OfReal Poles1d(1,NbPoles);
aApprox.Poles(1,Poles);
aApprox.Poles1d(1,Poles1d);
for (i=1; i<=NbPoles; i++)
Poles2d(i).SetX(Poles1d(i));
aApprox.Poles1d(2,Poles1d);
for (i=1; i<=NbPoles; i++)
Poles2d(i).SetY(Poles1d(i));
Handle(TColStd_HArray1OfReal) Knots = aApprox.Knots();
Handle(TColStd_HArray1OfInteger) Mults = aApprox.Multiplicities();
Standard_Integer Degree = aApprox.Degree();
myCurve3d = new Geom_BSplineCurve(Poles, Knots->Array1(), Mults->Array1(), Degree);
myCurve2d1 = new Geom2d_BSplineCurve(Poles2d, Knots->Array1(), Mults->Array1(), Degree);
}
myMaxError2d1 = Max (aApprox.MaxError(1,1),aApprox.MaxError(1,2));
myMaxError3d = aApprox.MaxError(3,1);
#ifdef __OCC_DEBUG_CHRONO
ResultChron(chr_total, t_total);
cout<<" total reparametrization time = "<<t_total<<endl;
cout<<"initialization time = "<<t_init<<endl;
cout<<"approximation time = "<<t_approx<<endl;
cout<<"total time for uparam computation = "<<t_uparam<<endl;
cout<<"number uparam calles = "<<uparam_count<<endl;
#endif
}
//=======================================================================
//function : Approx_CurvilinearParameter_EvalCurvOn2Surf
//purpose : case of a curve on two surfaces
//=======================================================================
class Approx_CurvilinearParameter_EvalCurvOn2Surf : public AdvApprox_EvaluatorFunction
{
public:
Approx_CurvilinearParameter_EvalCurvOn2Surf (const Handle(Approx_CurvlinFunc)& theFunc,
Standard_Real First, Standard_Real Last)
: fonct(theFunc) { StartEndSav[0] = First; StartEndSav[1] = Last; }
virtual void Evaluate (Standard_Integer *Dimension,
Standard_Real StartEnd[2],
Standard_Real *Parameter,
Standard_Integer *DerivativeRequest,
Standard_Real *Result, // [Dimension]
Standard_Integer *ErrorCode);
private:
Handle(Approx_CurvlinFunc) fonct;
Standard_Real StartEndSav[2];
};
void Approx_CurvilinearParameter_EvalCurvOn2Surf::Evaluate (Standard_Integer * Dimension,
Standard_Real * StartEnd,
Standard_Real * Param,
Standard_Integer * Order,
Standard_Real * Result,
Standard_Integer * ErrorCode)
{
*ErrorCode = 0;
Standard_Real S = *Param;
TColStd_Array1OfReal Res(0, 6);
Standard_Integer i;
// Dimension is incorrect
if (*Dimension != 7) {
*ErrorCode = 1;
}
// Parameter is incorrect
if ( S < StartEnd[0] || S > StartEnd[1] ) {
*ErrorCode = 2;
}
/* if(StartEnd[0] != StartEndSav[0] || StartEnd[1]!= StartEndSav[1])
{
fonct->Trim(StartEnd[0],StartEnd[1], Precision::Confusion());
StartEndSav[0]=StartEnd[0];
StartEndSav[1]=StartEnd[1];
}
*/
if(!fonct->EvalCase3(S, *Order, Res)) {
*ErrorCode = 3;
}
for(i = 0; i <= 6; i++)
Result[i] = Res(i);
}
Approx_CurvilinearParameter::Approx_CurvilinearParameter(const Handle(Adaptor2d_HCurve2d)& C2D1,
const Handle(Adaptor3d_HSurface)& Surf1,
const Handle(Adaptor2d_HCurve2d)& C2D2,
const Handle(Adaptor3d_HSurface)& Surf2,
const Standard_Real Tol,
const GeomAbs_Shape Order,
const Standard_Integer MaxDegree,
const Standard_Integer MaxSegments)
{
Standard_Integer i;
#ifdef __OCC_DEBUG_CHRONO
t_total = t_init = t_approx = t_uparam = 0;
uparam_count = 0;
InitChron(chr_total);
#endif
myCase = 3;
// Initialisation of input parameters of AdvApprox
Standard_Integer Num1DSS=4, Num2DSS=0, Num3DSS=1;
Handle(TColStd_HArray1OfReal) OneDTol = new TColStd_HArray1OfReal(1,Num1DSS);
Standard_Real TolV,TolW;
ToleranceComputation(C2D1,Surf1,10,Tol,TolV,TolW);
OneDTol->SetValue(1,TolV);
OneDTol->SetValue(2,TolW);
ToleranceComputation(C2D2,Surf2,10,Tol,TolV,TolW);
OneDTol->SetValue(3,TolV);
OneDTol->SetValue(4,TolW);
Handle(TColStd_HArray1OfReal) TwoDTolNul;
Handle(TColStd_HArray1OfReal) ThreeDTol = new TColStd_HArray1OfReal(1,Num3DSS);
ThreeDTol->Init(Tol/2);
#ifdef __OCC_DEBUG_CHRONO
InitChron(chr_init);
#endif
Handle(Approx_CurvlinFunc) fonct = new Approx_CurvlinFunc(C2D1, C2D2, Surf1, Surf2, Tol/20);
#ifdef __OCC_DEBUG_CHRONO
ResultChron(chr_init, t_init);
#endif
Standard_Real FirstS = fonct->FirstParameter();
Standard_Real LastS = fonct->LastParameter();
Standard_Integer NbInterv_C2 = fonct->NbIntervals(GeomAbs_C2);
TColStd_Array1OfReal CutPnts_C2(1, NbInterv_C2+1);
fonct->Intervals(CutPnts_C2,GeomAbs_C2);
Standard_Integer NbInterv_C3 = fonct->NbIntervals(GeomAbs_C3);
TColStd_Array1OfReal CutPnts_C3(1, NbInterv_C3+1);
fonct->Intervals(CutPnts_C3,GeomAbs_C3);
AdvApprox_PrefAndRec CutTool(CutPnts_C2,CutPnts_C3);
#ifdef __OCC_DEBUG_CHRONO
InitChron(chr_approx);
#endif
Approx_CurvilinearParameter_EvalCurvOn2Surf evCOn2S (fonct, FirstS, LastS);
AdvApprox_ApproxAFunction aApprox (Num1DSS, Num2DSS, Num3DSS,
OneDTol, TwoDTolNul, ThreeDTol,
FirstS, LastS, Order,
MaxDegree, MaxSegments,
evCOn2S, CutTool);
#ifdef __OCC_DEBUG_CHRONO
ResultChron(chr_approx, t_approx);
#endif
myDone = aApprox.IsDone();
myHasResult = aApprox.HasResult();
if (myHasResult) {
Standard_Integer NbPoles = aApprox.NbPoles();
TColgp_Array1OfPnt Poles (1,NbPoles);
TColgp_Array1OfPnt2d Poles2d(1,NbPoles);
TColStd_Array1OfReal Poles1d(1,NbPoles);
aApprox.Poles(1,Poles);
aApprox.Poles1d(1,Poles1d);
for (i=1; i<=NbPoles; i++)
Poles2d(i).SetX(Poles1d(i));
aApprox.Poles1d(2,Poles1d);
for (i=1; i<=NbPoles; i++)
Poles2d(i).SetY(Poles1d(i));
Handle(TColStd_HArray1OfReal) Knots = aApprox.Knots();
Handle(TColStd_HArray1OfInteger) Mults = aApprox.Multiplicities();
Standard_Integer Degree = aApprox.Degree();
myCurve3d = new Geom_BSplineCurve(Poles, Knots->Array1(), Mults->Array1(), Degree);
myCurve2d1 = new Geom2d_BSplineCurve(Poles2d, Knots->Array1(), Mults->Array1(), Degree);
aApprox.Poles1d(3,Poles1d);
for (i=1; i<=NbPoles; i++)
Poles2d(i).SetX(Poles1d(i));
aApprox.Poles1d(4,Poles1d);
for (i=1; i<=NbPoles; i++)
Poles2d(i).SetY(Poles1d(i));
myCurve2d2 = new Geom2d_BSplineCurve(Poles2d, Knots->Array1(), Mults->Array1(), Degree);
}
myMaxError2d1 = Max (aApprox.MaxError(1,1),aApprox.MaxError(1,2));
myMaxError2d2 = Max (aApprox.MaxError(1,3),aApprox.MaxError(1,4));
myMaxError3d = aApprox.MaxError(3,1);
#ifdef __OCC_DEBUG_CHRONO
ResultChron(chr_total, t_total);
cout<<" total reparametrization time = "<<t_total<<endl;
cout<<"initialization time = "<<t_init<<endl;
cout<<"approximation time = "<<t_approx<<endl;
cout<<"total time for uparam computation = "<<t_uparam<<endl;
cout<<"number uparam calles = "<<uparam_count<<endl;
#endif
}
//=======================================================================
//function : IsDone
//purpose :
//=======================================================================
Standard_Boolean Approx_CurvilinearParameter::IsDone() const
{
return myDone;
}
//=======================================================================
//function : HasResult
//purpose :
//=======================================================================
Standard_Boolean Approx_CurvilinearParameter::HasResult() const
{
return myHasResult;
}
//=======================================================================
//function : Curve3d
//purpose : returns the Bspline curve corresponding to the reparametrized 3D curve
//=======================================================================
Handle(Geom_BSplineCurve) Approx_CurvilinearParameter::Curve3d() const
{
return myCurve3d;
}
//=======================================================================
//function : MaxError3d
//purpose : returns the maximum error on the reparametrized 3D curve
//=======================================================================
Standard_Real Approx_CurvilinearParameter::MaxError3d() const
{
return myMaxError3d;
}
//=======================================================================
//function : Curve2d1
//purpose : returns the BsplineCurve representing the reparametrized 2D curve on the
// first surface (case of a curve on one or two surfaces)
//=======================================================================
Handle(Geom2d_BSplineCurve) Approx_CurvilinearParameter::Curve2d1() const
{
return myCurve2d1;
}
//=======================================================================
//function : MaxError2d1
//purpose : returns the maximum error on the first reparametrized 2D curve
//=======================================================================
Standard_Real Approx_CurvilinearParameter::MaxError2d1() const
{
return myMaxError2d1;
}
//=======================================================================
//function : Curve2d2
//purpose : returns the BsplineCurve representing the reparametrized 2D curve on the
// second surface (case of a curve on two surfaces)
//=======================================================================
Handle(Geom2d_BSplineCurve) Approx_CurvilinearParameter::Curve2d2() const
{
return myCurve2d2;
}
//=======================================================================
//function : MaxError2d2
//purpose : returns the maximum error on the second reparametrized 2D curve
//=======================================================================
Standard_Real Approx_CurvilinearParameter::MaxError2d2() const
{
return myMaxError2d2;
}
//=======================================================================
//function : Dump
//purpose : print the maximum errors(s)
//=======================================================================
void Approx_CurvilinearParameter::Dump(Standard_OStream& o) const
{
o << "Dump of Approx_CurvilinearParameter" << endl;
if (myCase==2 || myCase==3)
o << "myMaxError2d1 = " << myMaxError2d1 << endl;
if (myCase==3)
o << "myMaxError2d2 = " << myMaxError2d2 << endl;
o << "myMaxError3d = " << myMaxError3d << endl;
}
//=======================================================================
//function : ToleranceComputation
//purpose :
//=======================================================================
void Approx_CurvilinearParameter::ToleranceComputation(const Handle(Adaptor2d_HCurve2d) &C2D,
const Handle(Adaptor3d_HSurface) &S,
const Standard_Integer MaxNumber,
const Standard_Real Tol,
Standard_Real &TolV, Standard_Real &TolW)
{
Standard_Real FirstU = C2D->FirstParameter(),
LastU = C2D->LastParameter();
// Standard_Real parU, Max_dS_dv=1.,Max_dS_dw=1.;
Standard_Real Max_dS_dv=1.,Max_dS_dw=1.;
gp_Pnt P;
gp_Pnt2d pntVW;
gp_Vec dS_dv,dS_dw;
for (Standard_Integer i=1; i<=MaxNumber; i++) {
pntVW = C2D->Value(FirstU + (i-1)*(LastU-FirstU)/(MaxNumber-1));
S->D1(pntVW.X(),pntVW.Y(),P,dS_dv,dS_dw);
Max_dS_dv = Max (Max_dS_dv, dS_dv.Magnitude());
Max_dS_dw = Max (Max_dS_dw, dS_dw.Magnitude());
}
TolV = Tol / (4.*Max_dS_dv);
TolW = Tol / (4.*Max_dS_dw);
#ifdef APPROX_DEB
cout << "TolV = " << TolV << endl;
cout << "TolW = " << TolW << endl;
#endif
}