mirror of
https://git.dev.opencascade.org/repos/occt.git
synced 2025-05-01 10:26:12 +03:00
Update empty method guards to new style with regex (see PR). Used clang-format 18.1.8. New actions to validate code formatting is added. Update .clang-format with disabling of include sorting. It is temporary changes, then include will be sorted. Apply formatting for /src and /tools folder. The files with .hxx,.cxx,.lxx,.h,.pxx,.hpp,*.cpp extensions.
368 lines
12 KiB
C++
Executable File
368 lines
12 KiB
C++
Executable File
// Created on: 2013-02-05
|
|
// Created by: Julia GERASIMOVA
|
|
// Copyright (c) 2001-2013 OPEN CASCADE SAS
|
|
//
|
|
// This file is part of Open CASCADE Technology software library.
|
|
//
|
|
// This library is free software; you can redistribute it and/or modify it under
|
|
// the terms of the GNU Lesser General Public License version 2.1 as published
|
|
// by the Free Software Foundation, with special exception defined in the file
|
|
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
|
|
// distribution for complete text of the license and disclaimer of any warranty.
|
|
//
|
|
// Alternatively, this file may be used under the terms of Open CASCADE
|
|
// commercial license or contractual agreement.
|
|
|
|
#include <GeomFill_DiscreteTrihedron.hxx>
|
|
|
|
#include <Adaptor3d_Curve.hxx>
|
|
#include <GeomAbs_CurveType.hxx>
|
|
#include <GeomFill_Frenet.hxx>
|
|
#include <GeomFill_HSequenceOfAx2.hxx>
|
|
#include <GeomFill_TrihedronLaw.hxx>
|
|
#include <gp_Vec.hxx>
|
|
#include <Standard_ConstructionError.hxx>
|
|
#include <Standard_Type.hxx>
|
|
#include <TColStd_Array1OfReal.hxx>
|
|
#include <TColStd_HSequenceOfReal.hxx>
|
|
|
|
IMPLEMENT_STANDARD_RTTIEXT(GeomFill_DiscreteTrihedron, GeomFill_TrihedronLaw)
|
|
|
|
static const Standard_Real TolConf = Precision::Confusion();
|
|
|
|
//=================================================================================================
|
|
|
|
GeomFill_DiscreteTrihedron::GeomFill_DiscreteTrihedron()
|
|
: myUseFrenet(Standard_False)
|
|
{
|
|
myFrenet = new GeomFill_Frenet();
|
|
myKnots = new TColStd_HSequenceOfReal();
|
|
myTrihedrons = new GeomFill_HSequenceOfAx2();
|
|
}
|
|
|
|
//=================================================================================================
|
|
|
|
Handle(GeomFill_TrihedronLaw) GeomFill_DiscreteTrihedron::Copy() const
|
|
{
|
|
Handle(GeomFill_DiscreteTrihedron) copy = new (GeomFill_DiscreteTrihedron)();
|
|
if (!myCurve.IsNull())
|
|
copy->SetCurve(myCurve);
|
|
return copy;
|
|
}
|
|
|
|
//=================================================================================================
|
|
|
|
Standard_Boolean GeomFill_DiscreteTrihedron::SetCurve(const Handle(Adaptor3d_Curve)& C)
|
|
{
|
|
GeomFill_TrihedronLaw::SetCurve(C);
|
|
if (!C.IsNull())
|
|
{
|
|
GeomAbs_CurveType type;
|
|
type = C->GetType();
|
|
switch (type)
|
|
{
|
|
case GeomAbs_Circle:
|
|
case GeomAbs_Ellipse:
|
|
case GeomAbs_Hyperbola:
|
|
case GeomAbs_Parabola:
|
|
case GeomAbs_Line: {
|
|
// No problem
|
|
myUseFrenet = Standard_True;
|
|
myFrenet->SetCurve(C);
|
|
break;
|
|
}
|
|
default: {
|
|
myUseFrenet = Standard_False;
|
|
// We have to fill <myKnots> and <myTrihedrons>
|
|
Init();
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
return myUseFrenet;
|
|
}
|
|
|
|
//=================================================================================================
|
|
|
|
void GeomFill_DiscreteTrihedron::Init()
|
|
{
|
|
Standard_Integer NbIntervals = myTrimmed->NbIntervals(GeomAbs_CN);
|
|
TColStd_Array1OfReal Knots(1, NbIntervals + 1);
|
|
myTrimmed->Intervals(Knots, GeomAbs_CN);
|
|
|
|
// Standard_Real Tol = Precision::Confusion();
|
|
Standard_Integer NbSamples = 10;
|
|
|
|
Standard_Integer i, j;
|
|
for (i = 1; i <= NbIntervals; i++)
|
|
{
|
|
Standard_Real delta = (Knots(i + 1) - Knots(i)) / NbSamples;
|
|
for (j = 0; j < NbSamples; j++)
|
|
{
|
|
Standard_Real Param = Knots(i) + j * delta;
|
|
myKnots->Append(Param);
|
|
}
|
|
}
|
|
myKnots->Append(Knots(NbIntervals + 1));
|
|
|
|
gp_Pnt Origin(0., 0., 0.), Pnt, SubPnt;
|
|
gp_Vec Tangent;
|
|
gp_Dir TangDir;
|
|
Standard_Real norm;
|
|
for (i = 1; i <= myKnots->Length(); i++)
|
|
{
|
|
Standard_Real Param = myKnots->Value(i);
|
|
myTrimmed->D1(Param, Pnt, Tangent);
|
|
norm = Tangent.Magnitude();
|
|
if (norm < TolConf)
|
|
{
|
|
Standard_Real subdelta = (myKnots->Value(i + 1) - myKnots->Value(i)) / NbSamples;
|
|
if (subdelta < Precision::PConfusion())
|
|
subdelta = myKnots->Value(i + 1) - myKnots->Value(i);
|
|
SubPnt = myTrimmed->Value(Param + subdelta);
|
|
Tangent.SetXYZ(SubPnt.XYZ() - Pnt.XYZ());
|
|
}
|
|
// Tangent.Normalize();
|
|
TangDir = Tangent; // normalize;
|
|
Tangent = TangDir;
|
|
if (i == 1) // first point
|
|
{
|
|
gp_Ax2 FirstAxis(Origin, TangDir);
|
|
myTrihedrons->Append(FirstAxis);
|
|
}
|
|
else
|
|
{
|
|
gp_Ax2 LastAxis = myTrihedrons->Value(myTrihedrons->Length());
|
|
gp_Vec LastTangent = LastAxis.Direction();
|
|
gp_Vec AxisOfRotation = LastTangent ^ Tangent;
|
|
if (AxisOfRotation.Magnitude() <= gp::Resolution()) // tangents are equal or opposite
|
|
{
|
|
Standard_Real ScalarProduct = LastTangent * Tangent;
|
|
if (ScalarProduct > 0.) // tangents are equal
|
|
myTrihedrons->Append(LastAxis);
|
|
else // tangents are opposite
|
|
{
|
|
Standard_Real NewParam = (myKnots->Value(i - 1) + myKnots->Value(i)) / 2.;
|
|
if (NewParam - myKnots->Value(i - 1) < gp::Resolution())
|
|
throw Standard_ConstructionError(
|
|
"GeomFill_DiscreteTrihedron : impassable singularities on path curve");
|
|
myKnots->InsertBefore(i, NewParam);
|
|
i--;
|
|
}
|
|
}
|
|
else // good value of angle
|
|
{
|
|
Standard_Real theAngle = LastTangent.AngleWithRef(Tangent, AxisOfRotation);
|
|
gp_Ax1 theAxisOfRotation(Origin, AxisOfRotation);
|
|
gp_Ax2 NewAxis = LastAxis.Rotated(theAxisOfRotation, theAngle);
|
|
NewAxis.SetDirection(TangDir); // to prevent accumulation of floating computations error
|
|
myTrihedrons->Append(NewAxis);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
//=================================================================================================
|
|
|
|
Standard_Boolean GeomFill_DiscreteTrihedron::D0(const Standard_Real Param,
|
|
gp_Vec& Tangent,
|
|
gp_Vec& Normal,
|
|
gp_Vec& BiNormal)
|
|
{
|
|
if (myUseFrenet)
|
|
{
|
|
myFrenet->D0(Param, Tangent, Normal, BiNormal);
|
|
}
|
|
else
|
|
{
|
|
// Locate <Param> in the sequence <myKnots>
|
|
Standard_Integer Index = -1;
|
|
constexpr Standard_Real TolPar = Precision::PConfusion();
|
|
// Standard_Real TolConf = Precision::Confusion();
|
|
Standard_Integer NbSamples = 10;
|
|
gp_Pnt Origin(0., 0., 0.);
|
|
|
|
Standard_Integer i;
|
|
// gp_Ax2 PrevAxis;
|
|
// Standard_Real PrevParam;
|
|
|
|
Standard_Integer I1, I2;
|
|
I1 = 1;
|
|
I2 = myKnots->Length();
|
|
for (;;)
|
|
{
|
|
i = (I1 + I2) / 2;
|
|
if (Param <= myKnots->Value(i))
|
|
I2 = i;
|
|
else
|
|
I1 = i;
|
|
if (I2 - I1 <= 1)
|
|
break;
|
|
}
|
|
Index = I1;
|
|
if (Abs(Param - myKnots->Value(I2)) < TolPar)
|
|
Index = I2;
|
|
|
|
Standard_Real PrevParam = myKnots->Value(Index);
|
|
gp_Ax2 PrevAxis = myTrihedrons->Value(Index);
|
|
gp_Ax2 theAxis;
|
|
if (Abs(Param - PrevParam) < TolPar)
|
|
theAxis = PrevAxis;
|
|
else //<Param> is between knots
|
|
{
|
|
myTrimmed->D1(Param, myPoint, Tangent);
|
|
Standard_Real norm = Tangent.Magnitude();
|
|
if (norm < TolConf)
|
|
{
|
|
Standard_Real subdelta = (myKnots->Value(Index + 1) - Param) / NbSamples;
|
|
if (subdelta < Precision::PConfusion())
|
|
subdelta = myKnots->Value(Index + 1) - Param;
|
|
gp_Pnt SubPnt = myTrimmed->Value(Param + subdelta);
|
|
Tangent.SetXYZ(SubPnt.XYZ() - myPoint.XYZ());
|
|
}
|
|
// Tangent.Normalize();
|
|
gp_Dir TangDir(Tangent); // normalize;
|
|
Tangent = TangDir;
|
|
gp_Vec PrevTangent = PrevAxis.Direction();
|
|
gp_Vec AxisOfRotation = PrevTangent ^ Tangent;
|
|
if (AxisOfRotation.Magnitude() <= gp::Resolution()) // tangents are equal
|
|
{
|
|
// we assume that tangents can not be opposite
|
|
theAxis = PrevAxis;
|
|
}
|
|
else // good value of angle
|
|
{
|
|
Standard_Real theAngle = PrevTangent.AngleWithRef(Tangent, AxisOfRotation);
|
|
gp_Ax1 theAxisOfRotation(Origin, AxisOfRotation);
|
|
theAxis = PrevAxis.Rotated(theAxisOfRotation, theAngle);
|
|
}
|
|
theAxis.SetDirection(TangDir); // to prevent accumulation of floating computations error
|
|
} // end of else (Param is between knots)
|
|
|
|
Tangent = theAxis.Direction();
|
|
Normal = theAxis.XDirection();
|
|
BiNormal = theAxis.YDirection();
|
|
}
|
|
return Standard_True;
|
|
}
|
|
|
|
//=================================================================================================
|
|
|
|
Standard_Boolean GeomFill_DiscreteTrihedron::D1(const Standard_Real Param,
|
|
gp_Vec& Tangent,
|
|
gp_Vec& DTangent,
|
|
gp_Vec& Normal,
|
|
gp_Vec& DNormal,
|
|
gp_Vec& BiNormal,
|
|
gp_Vec& DBiNormal)
|
|
{
|
|
if (myUseFrenet)
|
|
{
|
|
myFrenet->D1(Param, Tangent, DTangent, Normal, DNormal, BiNormal, DBiNormal);
|
|
}
|
|
else
|
|
{
|
|
D0(Param, Tangent, Normal, BiNormal);
|
|
|
|
DTangent.SetCoord(0., 0., 0.);
|
|
DNormal.SetCoord(0., 0., 0.);
|
|
DBiNormal.SetCoord(0., 0., 0.);
|
|
}
|
|
return Standard_True;
|
|
}
|
|
|
|
//=================================================================================================
|
|
|
|
Standard_Boolean GeomFill_DiscreteTrihedron::D2(const Standard_Real Param,
|
|
gp_Vec& Tangent,
|
|
gp_Vec& DTangent,
|
|
gp_Vec& D2Tangent,
|
|
gp_Vec& Normal,
|
|
gp_Vec& DNormal,
|
|
gp_Vec& D2Normal,
|
|
gp_Vec& BiNormal,
|
|
gp_Vec& DBiNormal,
|
|
gp_Vec& D2BiNormal)
|
|
{
|
|
if (myUseFrenet)
|
|
{
|
|
myFrenet->D2(Param,
|
|
Tangent,
|
|
DTangent,
|
|
D2Tangent,
|
|
Normal,
|
|
DNormal,
|
|
D2Normal,
|
|
BiNormal,
|
|
DBiNormal,
|
|
D2BiNormal);
|
|
}
|
|
else
|
|
{
|
|
D0(Param, Tangent, Normal, BiNormal);
|
|
|
|
DTangent.SetCoord(0., 0., 0.);
|
|
DNormal.SetCoord(0., 0., 0.);
|
|
DBiNormal.SetCoord(0., 0., 0.);
|
|
D2Tangent.SetCoord(0., 0., 0.);
|
|
D2Normal.SetCoord(0., 0., 0.);
|
|
D2BiNormal.SetCoord(0., 0., 0.);
|
|
}
|
|
return Standard_True;
|
|
}
|
|
|
|
//=================================================================================================
|
|
|
|
Standard_Integer GeomFill_DiscreteTrihedron::NbIntervals(const GeomAbs_Shape) const
|
|
{
|
|
return (myTrimmed->NbIntervals(GeomAbs_CN));
|
|
}
|
|
|
|
//=================================================================================================
|
|
|
|
void GeomFill_DiscreteTrihedron::Intervals(TColStd_Array1OfReal& T, const GeomAbs_Shape) const
|
|
{
|
|
myTrimmed->Intervals(T, GeomAbs_CN);
|
|
}
|
|
|
|
void GeomFill_DiscreteTrihedron::GetAverageLaw(gp_Vec& ATangent, gp_Vec& ANormal, gp_Vec& ABiNormal)
|
|
{
|
|
Standard_Integer Num = 20; // order of digitalization
|
|
gp_Vec T, N, BN;
|
|
ATangent = gp_Vec(0, 0, 0);
|
|
ANormal = gp_Vec(0, 0, 0);
|
|
ABiNormal = gp_Vec(0, 0, 0);
|
|
Standard_Real Step = (myTrimmed->LastParameter() - myTrimmed->FirstParameter()) / Num;
|
|
Standard_Real Param;
|
|
for (Standard_Integer i = 0; i <= Num; i++)
|
|
{
|
|
Param = myTrimmed->FirstParameter() + i * Step;
|
|
if (Param > myTrimmed->LastParameter())
|
|
Param = myTrimmed->LastParameter();
|
|
D0(Param, T, N, BN);
|
|
ATangent += T;
|
|
ANormal += N;
|
|
ABiNormal += BN;
|
|
}
|
|
ATangent /= Num + 1;
|
|
ANormal /= Num + 1;
|
|
|
|
ATangent.Normalize();
|
|
ABiNormal = ATangent.Crossed(ANormal).Normalized();
|
|
ANormal = ABiNormal.Crossed(ATangent);
|
|
}
|
|
|
|
//=================================================================================================
|
|
|
|
Standard_Boolean GeomFill_DiscreteTrihedron::IsConstant() const
|
|
{
|
|
return (myCurve->GetType() == GeomAbs_Line);
|
|
}
|
|
|
|
//=================================================================================================
|
|
|
|
Standard_Boolean GeomFill_DiscreteTrihedron::IsOnlyBy3dCurve() const
|
|
{
|
|
return Standard_True;
|
|
}
|