mirror of
https://git.dev.opencascade.org/repos/occt.git
synced 2025-06-20 11:54:07 +03:00
"endl" manipulator for Message_Messenger is renamed to "Message_EndLine". The following entities from std namespace are now used with std:: explicitly specified (from Standard_Stream.hxx): std::istream,std::ostream,std::ofstream,std::ifstream,std::fstream, std::filebuf,std::streambuf,std::streampos,std::ios,std::cout,std::cerr, std::cin,std::endl,std::ends,std::flush,std::setw,std::setprecision, std::hex,std::dec.
90 lines
2.8 KiB
C++
90 lines
2.8 KiB
C++
// Copyright (c) 1995-1999 Matra Datavision
|
|
// Copyright (c) 1999-2014 OPEN CASCADE SAS
|
|
//
|
|
// This file is part of Open CASCADE Technology software library.
|
|
//
|
|
// This library is free software; you can redistribute it and/or modify it under
|
|
// the terms of the GNU Lesser General Public License version 2.1 as published
|
|
// by the Free Software Foundation, with special exception defined in the file
|
|
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
|
|
// distribution for complete text of the license and disclaimer of any warranty.
|
|
//
|
|
// Alternatively, this file may be used under the terms of Open CASCADE
|
|
// commercial license or contractual agreement.
|
|
|
|
//============================================ IntAna2d_AnaIntersection_5.cxx
|
|
//============================================================================
|
|
|
|
#include <gp_Circ2d.hxx>
|
|
#include <gp_Elips2d.hxx>
|
|
#include <gp_Hypr2d.hxx>
|
|
#include <gp_Lin2d.hxx>
|
|
#include <gp_Parab2d.hxx>
|
|
#include <IntAna2d_AnaIntersection.hxx>
|
|
#include <IntAna2d_Conic.hxx>
|
|
#include <IntAna2d_IntPoint.hxx>
|
|
#include <IntAna2d_Outils.hxx>
|
|
#include <Standard_OutOfRange.hxx>
|
|
#include <StdFail_NotDone.hxx>
|
|
|
|
void IntAna2d_AnaIntersection::Perform(const gp_Circ2d& Circle,
|
|
const IntAna2d_Conic& Conic)
|
|
{
|
|
Standard_Boolean CIsDirect = Circle.IsDirect();
|
|
Standard_Real A,B,C,D,E,F;
|
|
Standard_Real pcc,pss,p2sc,pc,ps,pcte;
|
|
Standard_Real radius=Circle.Radius();
|
|
Standard_Real radius_P2=radius*radius;
|
|
Standard_Integer i;
|
|
Standard_Real tx,ty,S;
|
|
|
|
done = Standard_False;
|
|
nbp = 0;
|
|
para = Standard_False;
|
|
empt = Standard_False;
|
|
iden = Standard_False;
|
|
|
|
gp_Ax2d Axe_rep(Circle.XAxis());
|
|
|
|
Conic.Coefficients(A,B,C,D,E,F);
|
|
Conic.NewCoefficients(A,B,C,D,E,F,Axe_rep);
|
|
|
|
// Parametre a avec x=Radius Cos(a) et y=Radius Sin(a)
|
|
|
|
pss = B*radius_P2;
|
|
pcc = A*radius_P2 - pss; // COS ^2
|
|
p2sc =C*radius_P2; // 2 SIN COS
|
|
pc = 2.0*D*radius; // COS
|
|
ps = 2.0*E*radius; // SIN
|
|
pcte= F + pss; // 1
|
|
|
|
math_TrigonometricFunctionRoots Sol(pcc,p2sc,pc,ps,pcte,0.0,2.0*M_PI);
|
|
|
|
if(!Sol.IsDone()) {
|
|
std::cout << "\n\nmath_TrigonometricFunctionRoots -> NotDone\n\n"<<std::endl;
|
|
done=Standard_False;
|
|
return;
|
|
}
|
|
else {
|
|
if(Sol.InfiniteRoots()) {
|
|
iden=Standard_True;
|
|
done=Standard_True;
|
|
return;
|
|
}
|
|
nbp=Sol.NbSolutions();
|
|
for(i=1;i<=nbp;i++) {
|
|
S = Sol.Value(i);
|
|
tx= radius*Cos(S);
|
|
ty= radius*Sin(S);
|
|
Coord_Ancien_Repere(tx,ty,Axe_rep);
|
|
if(!CIsDirect)
|
|
S = M_PI+M_PI-S;
|
|
lpnt[i-1].SetValue(tx,ty,S);
|
|
}
|
|
Traitement_Points_Confondus(nbp,lpnt);
|
|
}
|
|
done=Standard_True;
|
|
}
|
|
|
|
|