mirror of
https://git.dev.opencascade.org/repos/occt.git
synced 2025-04-04 18:06:22 +03:00
IntPatch_ImpImpIntersection::CyCyNoGeometric - Use the provided 3D tolerance to compare the points.
4365 lines
142 KiB
Plaintext
4365 lines
142 KiB
Plaintext
// Created on: 1992-05-07
|
|
// Created by: Jacques GOUSSARD
|
|
// Copyright (c) 1992-1999 Matra Datavision
|
|
// Copyright (c) 1999-2014 OPEN CASCADE SAS
|
|
//
|
|
// This file is part of Open CASCADE Technology software library.
|
|
//
|
|
// This library is free software; you can redistribute it and/or modify it under
|
|
// the terms of the GNU Lesser General Public License version 2.1 as published
|
|
// by the Free Software Foundation, with special exception defined in the file
|
|
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
|
|
// distribution for complete text of the license and disclaimer of any warranty.
|
|
//
|
|
// Alternatively, this file may be used under the terms of Open CASCADE
|
|
// commercial license or contractual agreement.
|
|
|
|
#include <algorithm>
|
|
#include <Bnd_Range.hxx>
|
|
#include <IntAna_ListOfCurve.hxx>
|
|
#include <math_Matrix.hxx>
|
|
#include <NCollection_IncAllocator.hxx>
|
|
#include <Standard_DivideByZero.hxx>
|
|
|
|
//If Abs(a) <= aNulValue then it is considered that a = 0.
|
|
static const Standard_Real aNulValue = 1.0e-11;
|
|
|
|
static void ShortCosForm( const Standard_Real theCosFactor,
|
|
const Standard_Real theSinFactor,
|
|
Standard_Real& theCoeff,
|
|
Standard_Real& theAngle);
|
|
//
|
|
static Standard_Boolean ExploreCurve(const gp_Cone& theCo,
|
|
IntAna_Curve& aC,
|
|
const Standard_Real aTol,
|
|
IntAna_ListOfCurve& aLC);
|
|
|
|
static Standard_Boolean InscribePoint(const Standard_Real theUfTarget,
|
|
const Standard_Real theUlTarget,
|
|
Standard_Real& theUGiven,
|
|
const Standard_Real theTol2D,
|
|
const Standard_Real thePeriod,
|
|
const Standard_Boolean theFlForce);
|
|
|
|
|
|
class ComputationMethods
|
|
{
|
|
//Every cylinder can be represented by the following equation in parametric form:
|
|
// S(U,V) = L + R*cos(U)*Xd+R*sin(U)*Yd+V*Zd,
|
|
//where location L, directions Xd, Yd and Zd have type gp_XYZ.
|
|
|
|
//Intersection points between two cylinders can be found from the following system:
|
|
// S1(U1, V1) = S2(U2, V2)
|
|
//or
|
|
// {X01 + R1*cos(U1)*Xx1 + R1*sin(U1)*Yx1 + V1*Zx1 = X02 + R2*cos(U2)*Xx2 + R2*sin(U2)*Yx2 + V2*Zx2
|
|
// {Y01 + R1*cos(U1)*Xy1 + R1*sin(U1)*Yy1 + V1*Zy1 = Y02 + R2*cos(U2)*Xy2 + R2*sin(U2)*Yy2 + V2*Zy2 (1)
|
|
// {Z01 + R1*cos(U1)*Xz1 + R1*sin(U1)*Yz1 + V1*Zz1 = Z02 + R2*cos(U2)*Xz2 + R2*sin(U2)*Yz2 + V2*Zz2
|
|
|
|
//The formula (1) can be rewritten as follows
|
|
// {C11*V1+C21*V2=A11*cos(U1)+B11*sin(U1)+A21*cos(U2)+B21*sin(U2)+D1
|
|
// {C12*V1+C22*V2=A12*cos(U1)+B12*sin(U1)+A22*cos(U2)+B22*sin(U2)+D2 (2)
|
|
// {C13*V1+C23*V2=A13*cos(U1)+B13*sin(U1)+A23*cos(U2)+B23*sin(U2)+D3
|
|
|
|
//Hereafter we consider that in system
|
|
// {C11*V1+C21*V2=A11*cos(U1)+B11*sin(U1)+A21*cos(U2)+B21*sin(U2)+D1 (3)
|
|
// {C12*V1+C22*V2=A12*cos(U1)+B12*sin(U1)+A22*cos(U2)+B22*sin(U2)+D2
|
|
//variables V1 and V2 can be found unambiguously, i.e. determinant
|
|
// |C11 C21|
|
|
// | | != 0
|
|
// |C12 C22|
|
|
//
|
|
//In this case, variables V1 and V2 can be found as follows:
|
|
// {V1 = K11*sin(U1)+K21*sin(U2)+L11*cos(U1)+L21*cos(U2)+M1 = K1*cos(U1-FIV1)+L1*cos(U2-PSIV1)+M1 (4)
|
|
// {V2 = K12*sin(U1)+K22*sin(U2)+L12*cos(U1)+L22*cos(U2)+M2 = K2*cos(U2-FIV2)+L2*cos(U2-PSIV2)+M2
|
|
|
|
//Having substituted result of (4) to the 3rd equation of (2), we will obtain equation
|
|
// cos(U2-FI2) = B*cos(U1-FI1)+C. (5)
|
|
|
|
//I.e. when U1 is taken different given values (from domain), correspond U2 value can be computed
|
|
//from equation (5). After that, V1 and V2 can be computed from the system (4) (see
|
|
//CylCylComputeParameters(...) methods).
|
|
|
|
//It is important to remark that equation (5) (in general) has two solutions: U2=FI2 +/- f(U1).
|
|
//Therefore, we are getting here two intersection lines.
|
|
|
|
public:
|
|
//Stores equations coefficients
|
|
struct stCoeffsValue
|
|
{
|
|
stCoeffsValue(const gp_Cylinder&, const gp_Cylinder&);
|
|
|
|
math_Vector mVecA1;
|
|
math_Vector mVecA2;
|
|
math_Vector mVecB1;
|
|
math_Vector mVecB2;
|
|
math_Vector mVecC1;
|
|
math_Vector mVecC2;
|
|
math_Vector mVecD;
|
|
|
|
Standard_Real mK21; //sinU2
|
|
Standard_Real mK11; //sinU1
|
|
Standard_Real mL21; //cosU2
|
|
Standard_Real mL11; //cosU1
|
|
Standard_Real mM1; //Free member
|
|
|
|
Standard_Real mK22; //sinU2
|
|
Standard_Real mK12; //sinU1
|
|
Standard_Real mL22; //cosU2
|
|
Standard_Real mL12; //cosU1
|
|
Standard_Real mM2; //Free member
|
|
|
|
Standard_Real mK1;
|
|
Standard_Real mL1;
|
|
Standard_Real mK2;
|
|
Standard_Real mL2;
|
|
|
|
Standard_Real mFIV1;
|
|
Standard_Real mPSIV1;
|
|
Standard_Real mFIV2;
|
|
Standard_Real mPSIV2;
|
|
|
|
Standard_Real mB;
|
|
Standard_Real mC;
|
|
Standard_Real mFI1;
|
|
Standard_Real mFI2;
|
|
};
|
|
|
|
|
|
//! Determines, if U2(U1) function is increasing.
|
|
static Standard_Boolean CylCylMonotonicity(const Standard_Real theU1par,
|
|
const Standard_Integer theWLIndex,
|
|
const stCoeffsValue& theCoeffs,
|
|
const Standard_Real thePeriod,
|
|
Standard_Boolean& theIsIncreasing);
|
|
|
|
//! Computes U2 (U-parameter of the 2nd cylinder) and, if theDelta != 0,
|
|
//! esimates the tolerance of U2-computing (estimation result is
|
|
//! assigned to *theDelta value).
|
|
static Standard_Boolean CylCylComputeParameters(const Standard_Real theU1par,
|
|
const Standard_Integer theWLIndex,
|
|
const stCoeffsValue& theCoeffs,
|
|
Standard_Real& theU2,
|
|
Standard_Real* const theDelta = 0);
|
|
|
|
static Standard_Boolean CylCylComputeParameters(const Standard_Real theU1,
|
|
const Standard_Real theU2,
|
|
const stCoeffsValue& theCoeffs,
|
|
Standard_Real& theV1,
|
|
Standard_Real& theV2);
|
|
|
|
static Standard_Boolean CylCylComputeParameters(const Standard_Real theU1par,
|
|
const Standard_Integer theWLIndex,
|
|
const stCoeffsValue& theCoeffs,
|
|
Standard_Real& theU2,
|
|
Standard_Real& theV1,
|
|
Standard_Real& theV2);
|
|
|
|
};
|
|
|
|
ComputationMethods::stCoeffsValue::stCoeffsValue(const gp_Cylinder& theCyl1,
|
|
const gp_Cylinder& theCyl2):
|
|
mVecA1(-theCyl1.Radius()*theCyl1.XAxis().Direction().XYZ()),
|
|
mVecA2(theCyl2.Radius()*theCyl2.XAxis().Direction().XYZ()),
|
|
mVecB1(-theCyl1.Radius()*theCyl1.YAxis().Direction().XYZ()),
|
|
mVecB2(theCyl2.Radius()*theCyl2.YAxis().Direction().XYZ()),
|
|
mVecC1(theCyl1.Axis().Direction().XYZ()),
|
|
mVecC2(theCyl2.Axis().Direction().XYZ().Reversed()),
|
|
mVecD(theCyl2.Location().XYZ() - theCyl1.Location().XYZ())
|
|
{
|
|
enum CoupleOfEquation
|
|
{
|
|
COENONE = 0,
|
|
COE12 = 1,
|
|
COE23 = 2,
|
|
COE13 = 3
|
|
}aFoundCouple = COENONE;
|
|
|
|
|
|
Standard_Real aDetV1V2 = 0.0;
|
|
|
|
const Standard_Real aDelta1 = mVecC1(1)*mVecC2(2)-mVecC1(2)*mVecC2(1); //1-2
|
|
const Standard_Real aDelta2 = mVecC1(2)*mVecC2(3)-mVecC1(3)*mVecC2(2); //2-3
|
|
const Standard_Real aDelta3 = mVecC1(1)*mVecC2(3)-mVecC1(3)*mVecC2(1); //1-3
|
|
const Standard_Real anAbsD1 = Abs(aDelta1); //1-2
|
|
const Standard_Real anAbsD2 = Abs(aDelta2); //2-3
|
|
const Standard_Real anAbsD3 = Abs(aDelta3); //1-3
|
|
|
|
if(anAbsD1 >= anAbsD2)
|
|
{
|
|
if(anAbsD3 > anAbsD1)
|
|
{
|
|
aFoundCouple = COE13;
|
|
aDetV1V2 = aDelta3;
|
|
}
|
|
else
|
|
{
|
|
aFoundCouple = COE12;
|
|
aDetV1V2 = aDelta1;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if(anAbsD3 > anAbsD2)
|
|
{
|
|
aFoundCouple = COE13;
|
|
aDetV1V2 = aDelta3;
|
|
}
|
|
else
|
|
{
|
|
aFoundCouple = COE23;
|
|
aDetV1V2 = aDelta2;
|
|
}
|
|
}
|
|
|
|
// In point of fact, every determinant (aDelta1, aDelta2 and aDelta3) is
|
|
// cross-product between directions (i.e. sine of angle).
|
|
// If sine is too small then sine is (approx.) equal to angle itself.
|
|
// Therefore, in this case we should compare sine with angular tolerance.
|
|
// This constant is used for check if axes are parallel (see constructor
|
|
// AxeOperator::AxeOperator(...) in IntAna_QuadQuadGeo.cxx file).
|
|
if(Abs(aDetV1V2) < Precision::Angular())
|
|
{
|
|
throw Standard_Failure("Error. Exception in divide by zerro (IntCyCyTrim)!!!!");
|
|
}
|
|
|
|
switch(aFoundCouple)
|
|
{
|
|
case COE12:
|
|
break;
|
|
case COE23:
|
|
{
|
|
math_Vector aVTemp(mVecA1);
|
|
mVecA1(1) = aVTemp(2);
|
|
mVecA1(2) = aVTemp(3);
|
|
mVecA1(3) = aVTemp(1);
|
|
|
|
aVTemp = mVecA2;
|
|
mVecA2(1) = aVTemp(2);
|
|
mVecA2(2) = aVTemp(3);
|
|
mVecA2(3) = aVTemp(1);
|
|
|
|
aVTemp = mVecB1;
|
|
mVecB1(1) = aVTemp(2);
|
|
mVecB1(2) = aVTemp(3);
|
|
mVecB1(3) = aVTemp(1);
|
|
|
|
aVTemp = mVecB2;
|
|
mVecB2(1) = aVTemp(2);
|
|
mVecB2(2) = aVTemp(3);
|
|
mVecB2(3) = aVTemp(1);
|
|
|
|
aVTemp = mVecC1;
|
|
mVecC1(1) = aVTemp(2);
|
|
mVecC1(2) = aVTemp(3);
|
|
mVecC1(3) = aVTemp(1);
|
|
|
|
aVTemp = mVecC2;
|
|
mVecC2(1) = aVTemp(2);
|
|
mVecC2(2) = aVTemp(3);
|
|
mVecC2(3) = aVTemp(1);
|
|
|
|
aVTemp = mVecD;
|
|
mVecD(1) = aVTemp(2);
|
|
mVecD(2) = aVTemp(3);
|
|
mVecD(3) = aVTemp(1);
|
|
|
|
break;
|
|
}
|
|
case COE13:
|
|
{
|
|
math_Vector aVTemp = mVecA1;
|
|
mVecA1(2) = aVTemp(3);
|
|
mVecA1(3) = aVTemp(2);
|
|
|
|
aVTemp = mVecA2;
|
|
mVecA2(2) = aVTemp(3);
|
|
mVecA2(3) = aVTemp(2);
|
|
|
|
aVTemp = mVecB1;
|
|
mVecB1(2) = aVTemp(3);
|
|
mVecB1(3) = aVTemp(2);
|
|
|
|
aVTemp = mVecB2;
|
|
mVecB2(2) = aVTemp(3);
|
|
mVecB2(3) = aVTemp(2);
|
|
|
|
aVTemp = mVecC1;
|
|
mVecC1(2) = aVTemp(3);
|
|
mVecC1(3) = aVTemp(2);
|
|
|
|
aVTemp = mVecC2;
|
|
mVecC2(2) = aVTemp(3);
|
|
mVecC2(3) = aVTemp(2);
|
|
|
|
aVTemp = mVecD;
|
|
mVecD(2) = aVTemp(3);
|
|
mVecD(3) = aVTemp(2);
|
|
|
|
break;
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
|
|
//------- For V1 (begin)
|
|
//sinU2
|
|
mK21 = (mVecC2(2)*mVecB2(1)-mVecC2(1)*mVecB2(2))/aDetV1V2;
|
|
//sinU1
|
|
mK11 = (mVecC2(2)*mVecB1(1)-mVecC2(1)*mVecB1(2))/aDetV1V2;
|
|
//cosU2
|
|
mL21 = (mVecC2(2)*mVecA2(1)-mVecC2(1)*mVecA2(2))/aDetV1V2;
|
|
//cosU1
|
|
mL11 = (mVecC2(2)*mVecA1(1)-mVecC2(1)*mVecA1(2))/aDetV1V2;
|
|
//Free member
|
|
mM1 = (mVecC2(2)*mVecD(1)-mVecC2(1)*mVecD(2))/aDetV1V2;
|
|
//------- For V1 (end)
|
|
|
|
//------- For V2 (begin)
|
|
//sinU2
|
|
mK22 = (mVecC1(1)*mVecB2(2)-mVecC1(2)*mVecB2(1))/aDetV1V2;
|
|
//sinU1
|
|
mK12 = (mVecC1(1)*mVecB1(2)-mVecC1(2)*mVecB1(1))/aDetV1V2;
|
|
//cosU2
|
|
mL22 = (mVecC1(1)*mVecA2(2)-mVecC1(2)*mVecA2(1))/aDetV1V2;
|
|
//cosU1
|
|
mL12 = (mVecC1(1)*mVecA1(2)-mVecC1(2)*mVecA1(1))/aDetV1V2;
|
|
//Free member
|
|
mM2 = (mVecC1(1)*mVecD(2)-mVecC1(2)*mVecD(1))/aDetV1V2;
|
|
//------- For V1 (end)
|
|
|
|
ShortCosForm(mL11, mK11, mK1, mFIV1);
|
|
ShortCosForm(mL21, mK21, mL1, mPSIV1);
|
|
ShortCosForm(mL12, mK12, mK2, mFIV2);
|
|
ShortCosForm(mL22, mK22, mL2, mPSIV2);
|
|
|
|
const Standard_Real aA1=mVecC1(3)*mK21+mVecC2(3)*mK22-mVecB2(3), //sinU2
|
|
aA2=mVecC1(3)*mL21+mVecC2(3)*mL22-mVecA2(3), //cosU2
|
|
aB1=mVecB1(3)-mVecC1(3)*mK11-mVecC2(3)*mK12, //sinU1
|
|
aB2=mVecA1(3)-mVecC1(3)*mL11-mVecC2(3)*mL12; //cosU1
|
|
|
|
mC =mVecD(3) - mVecC1(3)*mM1 -mVecC2(3)*mM2; //Free
|
|
|
|
Standard_Real aA = 0.0;
|
|
|
|
ShortCosForm(aB2,aB1,mB,mFI1);
|
|
ShortCosForm(aA2,aA1,aA,mFI2);
|
|
|
|
mB /= aA;
|
|
mC /= aA;
|
|
}
|
|
|
|
class WorkWithBoundaries
|
|
{
|
|
public:
|
|
enum SearchBoundType
|
|
{
|
|
SearchNONE = 0,
|
|
SearchV1 = 1,
|
|
SearchV2 = 2
|
|
};
|
|
|
|
struct StPInfo
|
|
{
|
|
StPInfo()
|
|
{
|
|
mySurfID = 0;
|
|
myU1 = RealLast();
|
|
myV1 = RealLast();
|
|
myU2 = RealLast();
|
|
myV2 = RealLast();
|
|
}
|
|
|
|
//Equal to 0 for 1st surface non-zero for 2nd one.
|
|
Standard_Integer mySurfID;
|
|
|
|
Standard_Real myU1;
|
|
Standard_Real myV1;
|
|
Standard_Real myU2;
|
|
Standard_Real myV2;
|
|
|
|
bool operator>(const StPInfo& theOther) const
|
|
{
|
|
return myU1 > theOther.myU1;
|
|
}
|
|
|
|
bool operator<(const StPInfo& theOther) const
|
|
{
|
|
return myU1 < theOther.myU1;
|
|
}
|
|
|
|
bool operator==(const StPInfo& theOther) const
|
|
{
|
|
return myU1 == theOther.myU1;
|
|
}
|
|
};
|
|
|
|
WorkWithBoundaries(const IntSurf_Quadric& theQuad1,
|
|
const IntSurf_Quadric& theQuad2,
|
|
const ComputationMethods::stCoeffsValue& theCoeffs,
|
|
const Bnd_Box2d& theUVSurf1,
|
|
const Bnd_Box2d& theUVSurf2,
|
|
const Standard_Integer theNbWLines,
|
|
const Standard_Real thePeriod,
|
|
const Standard_Real theTol3D,
|
|
const Standard_Real theTol2D,
|
|
const Standard_Boolean isTheReverse) :
|
|
myQuad1(theQuad1), myQuad2(theQuad2), myCoeffs(theCoeffs),
|
|
myUVSurf1(theUVSurf1), myUVSurf2(theUVSurf2), myNbWLines(theNbWLines),
|
|
myPeriod(thePeriod), myTol3D(theTol3D), myTol2D(theTol2D),
|
|
myIsReverse(isTheReverse)
|
|
{
|
|
};
|
|
|
|
// Returns parameters of system solved while finding
|
|
// intersection line
|
|
const ComputationMethods::stCoeffsValue &SICoeffs() const
|
|
{
|
|
return myCoeffs;
|
|
}
|
|
|
|
// Returns quadric correspond to the index theIdx.
|
|
const IntSurf_Quadric& GetQSurface(const Standard_Integer theIdx) const
|
|
{
|
|
if (theIdx <= 1)
|
|
return myQuad1;
|
|
|
|
return myQuad2;
|
|
}
|
|
|
|
// Returns TRUE in case of reverting surfaces
|
|
Standard_Boolean IsReversed() const
|
|
{
|
|
return myIsReverse;
|
|
}
|
|
|
|
// Returns 2D-tolerance
|
|
Standard_Real Get2dTolerance() const
|
|
{
|
|
return myTol2D;
|
|
}
|
|
|
|
// Returns 3D-tolerance
|
|
Standard_Real Get3dTolerance() const
|
|
{
|
|
return myTol3D;
|
|
}
|
|
|
|
// Returns UV-bounds of 1st surface
|
|
const Bnd_Box2d& UVS1() const
|
|
{
|
|
return myUVSurf1;
|
|
}
|
|
|
|
// Returns UV-bounds of 2nd surface
|
|
const Bnd_Box2d& UVS2() const
|
|
{
|
|
return myUVSurf2;
|
|
}
|
|
|
|
void AddBoundaryPoint(const Handle(IntPatch_WLine)& theWL,
|
|
const Standard_Real theU1,
|
|
const Standard_Real theU1Min,
|
|
const Standard_Real theU2,
|
|
const Standard_Real theV1,
|
|
const Standard_Real theV1Prev,
|
|
const Standard_Real theV2,
|
|
const Standard_Real theV2Prev,
|
|
const Standard_Integer theWLIndex,
|
|
const Standard_Boolean theFlForce,
|
|
Standard_Boolean& isTheFound1,
|
|
Standard_Boolean& isTheFound2) const;
|
|
|
|
static Standard_Boolean BoundariesComputing(const ComputationMethods::stCoeffsValue &theCoeffs,
|
|
const Standard_Real thePeriod,
|
|
Bnd_Range theURange[]);
|
|
|
|
void BoundaryEstimation(const gp_Cylinder& theCy1,
|
|
const gp_Cylinder& theCy2,
|
|
Bnd_Range& theOutBoxS1,
|
|
Bnd_Range& theOutBoxS2) const;
|
|
|
|
protected:
|
|
|
|
//Solves equation (2) (see declaration of ComputationMethods class) in case,
|
|
//when V1 or V2 (is set by theSBType argument) is known (corresponds to the boundary
|
|
//and equal to theVzad) but U1 is unknown. Computation is made by numeric methods and
|
|
//requires initial values (theVInit, theInitU2 and theInitMainVar).
|
|
Standard_Boolean
|
|
SearchOnVBounds(const SearchBoundType theSBType,
|
|
const Standard_Real theVzad,
|
|
const Standard_Real theVInit,
|
|
const Standard_Real theInitU2,
|
|
const Standard_Real theInitMainVar,
|
|
Standard_Real& theMainVariableValue) const;
|
|
|
|
const WorkWithBoundaries& operator=(const WorkWithBoundaries&);
|
|
|
|
private:
|
|
friend class ComputationMethods;
|
|
|
|
const IntSurf_Quadric& myQuad1;
|
|
const IntSurf_Quadric& myQuad2;
|
|
const ComputationMethods::stCoeffsValue& myCoeffs;
|
|
const Bnd_Box2d& myUVSurf1;
|
|
const Bnd_Box2d& myUVSurf2;
|
|
const Standard_Integer myNbWLines;
|
|
const Standard_Real myPeriod;
|
|
const Standard_Real myTol3D;
|
|
const Standard_Real myTol2D;
|
|
const Standard_Boolean myIsReverse;
|
|
};
|
|
|
|
static void SeekAdditionalPoints( const IntSurf_Quadric& theQuad1,
|
|
const IntSurf_Quadric& theQuad2,
|
|
const Handle(IntSurf_LineOn2S)& theLine,
|
|
const ComputationMethods::stCoeffsValue& theCoeffs,
|
|
const Standard_Integer theWLIndex,
|
|
const Standard_Integer theMinNbPoints,
|
|
const Standard_Integer theStartPointOnLine,
|
|
const Standard_Integer theEndPointOnLine,
|
|
const Standard_Real theTol2D,
|
|
const Standard_Real thePeriodOfSurf2,
|
|
const Standard_Boolean isTheReverse);
|
|
|
|
//=======================================================================
|
|
//function : MinMax
|
|
//purpose : Replaces theParMIN = MIN(theParMIN, theParMAX),
|
|
// theParMAX = MAX(theParMIN, theParMAX).
|
|
//=======================================================================
|
|
static inline void MinMax(Standard_Real& theParMIN, Standard_Real& theParMAX)
|
|
{
|
|
if(theParMIN > theParMAX)
|
|
{
|
|
const Standard_Real aux = theParMAX;
|
|
theParMAX = theParMIN;
|
|
theParMIN = aux;
|
|
}
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : ExtremaLineLine
|
|
//purpose : Computes extrema between the given lines. Returns parameters
|
|
// on correspond curve (see correspond method for Extrema_ExtElC class).
|
|
//=======================================================================
|
|
static inline void ExtremaLineLine(const gp_Ax1& theC1,
|
|
const gp_Ax1& theC2,
|
|
const Standard_Real theCosA,
|
|
const Standard_Real theSqSinA,
|
|
Standard_Real& thePar1,
|
|
Standard_Real& thePar2)
|
|
{
|
|
const gp_Dir &aD1 = theC1.Direction(),
|
|
&aD2 = theC2.Direction();
|
|
|
|
const gp_XYZ aL1L2 = theC2.Location().XYZ() - theC1.Location().XYZ();
|
|
const Standard_Real aD1L = aD1.XYZ().Dot(aL1L2),
|
|
aD2L = aD2.XYZ().Dot(aL1L2);
|
|
|
|
thePar1 = (aD1L - theCosA * aD2L) / theSqSinA;
|
|
thePar2 = (theCosA * aD1L - aD2L) / theSqSinA;
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : VBoundaryPrecise
|
|
//purpose : By default, we shall consider, that V1 and V2 will be increased
|
|
// if U1 is increased. But if it is not, new V1set and/or V2set
|
|
// must be computed as [V1current - DeltaV1] (analogically
|
|
// for V2). This function processes this case.
|
|
//=======================================================================
|
|
static void VBoundaryPrecise( const math_Matrix& theMatr,
|
|
const Standard_Real theV1AfterDecrByDelta,
|
|
const Standard_Real theV2AfterDecrByDelta,
|
|
Standard_Real& theV1Set,
|
|
Standard_Real& theV2Set)
|
|
{
|
|
//Now we are going to define if V1 (and V2) increases
|
|
//(or decreases) when U1 will increase.
|
|
const Standard_Integer aNbDim = 3;
|
|
math_Matrix aSyst(1, aNbDim, 1, aNbDim);
|
|
|
|
aSyst.SetCol(1, theMatr.Col(1));
|
|
aSyst.SetCol(2, theMatr.Col(2));
|
|
aSyst.SetCol(3, theMatr.Col(4));
|
|
|
|
//We have the system (see comment to StepComputing(...) function)
|
|
// {a11*dV1 + a12*dV2 + a14*dU2 = -a13*dU1
|
|
// {a21*dV1 + a22*dV2 + a24*dU2 = -a23*dU1
|
|
// {a31*dV1 + a32*dV2 + a34*dU2 = -a33*dU1
|
|
|
|
const Standard_Real aDet = aSyst.Determinant();
|
|
|
|
aSyst.SetCol(1, theMatr.Col(3));
|
|
const Standard_Real aDet1 = aSyst.Determinant();
|
|
|
|
aSyst.SetCol(1, theMatr.Col(1));
|
|
aSyst.SetCol(2, theMatr.Col(3));
|
|
|
|
const Standard_Real aDet2 = aSyst.Determinant();
|
|
|
|
//Now,
|
|
// dV1 = -dU1*aDet1/aDet
|
|
// dV2 = -dU1*aDet2/aDet
|
|
|
|
//If U1 is increased then dU1 > 0.
|
|
//If (aDet1/aDet > 0) then dV1 < 0 and
|
|
//V1 will be decreased after increasing U1.
|
|
|
|
//We have analogical situation with V2-parameter.
|
|
|
|
if(aDet*aDet1 > 0.0)
|
|
{
|
|
theV1Set = theV1AfterDecrByDelta;
|
|
}
|
|
|
|
if(aDet*aDet2 > 0.0)
|
|
{
|
|
theV2Set = theV2AfterDecrByDelta;
|
|
}
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : DeltaU1Computing
|
|
//purpose : Computes new step for U1 parameter.
|
|
//=======================================================================
|
|
static inline
|
|
Standard_Boolean DeltaU1Computing(const math_Matrix& theSyst,
|
|
const math_Vector& theFree,
|
|
Standard_Real& theDeltaU1Found)
|
|
{
|
|
Standard_Real aDet = theSyst.Determinant();
|
|
|
|
if(Abs(aDet) > aNulValue)
|
|
{
|
|
math_Matrix aSyst1(theSyst);
|
|
aSyst1.SetCol(2, theFree);
|
|
|
|
theDeltaU1Found = Abs(aSyst1.Determinant()/aDet);
|
|
return Standard_True;
|
|
}
|
|
|
|
return Standard_False;
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : StepComputing
|
|
//purpose :
|
|
//
|
|
//Attention!!!:
|
|
// theMatr must have 3*5-dimension strictly.
|
|
// For system
|
|
// {a11*V1+a12*V2+a13*dU1+a14*dU2=b1;
|
|
// {a21*V1+a22*V2+a23*dU1+a24*dU2=b2;
|
|
// {a31*V1+a32*V2+a33*dU1+a34*dU2=b3;
|
|
// theMatr must be following:
|
|
// (a11 a12 a13 a14 b1)
|
|
// (a21 a22 a23 a24 b2)
|
|
// (a31 a32 a33 a34 b3)
|
|
//=======================================================================
|
|
static Standard_Boolean StepComputing(const math_Matrix& theMatr,
|
|
const Standard_Real theV1Cur,
|
|
const Standard_Real theV2Cur,
|
|
const Standard_Real theDeltaV1,
|
|
const Standard_Real theDeltaV2,
|
|
Standard_Real& theDeltaU1Found/*,
|
|
Standard_Real& theDeltaU2Found,
|
|
Standard_Real& theV1Found,
|
|
Standard_Real& theV2Found*/)
|
|
{
|
|
#ifdef INTPATCH_IMPIMPINTERSECTION_DEBUG
|
|
bool flShow = false;
|
|
|
|
if(flShow)
|
|
{
|
|
printf("{%+10.20f*V1 + %+10.20f*V2 + %+10.20f*dU1 + %+10.20f*dU2 = %+10.20f\n",
|
|
theMatr(1,1), theMatr(1,2), theMatr(1,3), theMatr(1,4), theMatr(1,5));
|
|
printf("{%+10.20f*V1 + %+10.20f*V2 + %+10.20f*dU1 + %+10.20f*dU2 = %+10.20f\n",
|
|
theMatr(2,1), theMatr(2,2), theMatr(2,3), theMatr(2,4), theMatr(2,5));
|
|
printf("{%+10.20f*V1 + %+10.20f*V2 + %+10.20f*dU1 + %+10.20f*dU2 = %+10.20f\n",
|
|
theMatr(3,1), theMatr(3,2), theMatr(3,3), theMatr(3,4), theMatr(3,5));
|
|
}
|
|
#endif
|
|
|
|
Standard_Boolean isSuccess = Standard_False;
|
|
theDeltaU1Found/* = theDeltaU2Found*/ = RealLast();
|
|
//theV1Found = theV1set;
|
|
//theV2Found = theV2Set;
|
|
const Standard_Integer aNbDim = 3;
|
|
|
|
math_Matrix aSyst(1, aNbDim, 1, aNbDim);
|
|
math_Vector aFree(1, aNbDim);
|
|
|
|
//By default, increasing V1(U1) and V2(U1) functions is
|
|
//considered
|
|
Standard_Real aV1Set = theV1Cur + theDeltaV1,
|
|
aV2Set = theV2Cur + theDeltaV2;
|
|
|
|
//However, what is indeed?
|
|
VBoundaryPrecise( theMatr, theV1Cur - theDeltaV1,
|
|
theV2Cur - theDeltaV2, aV1Set, aV2Set);
|
|
|
|
aSyst.SetCol(2, theMatr.Col(3));
|
|
aSyst.SetCol(3, theMatr.Col(4));
|
|
|
|
for(Standard_Integer i = 0; i < 2; i++)
|
|
{
|
|
if(i == 0)
|
|
{//V1 is known
|
|
aSyst.SetCol(1, theMatr.Col(2));
|
|
aFree.Set(1, aNbDim, theMatr.Col(5)-aV1Set*theMatr.Col(1));
|
|
}
|
|
else
|
|
{//i==1 => V2 is known
|
|
aSyst.SetCol(1, theMatr.Col(1));
|
|
aFree.Set(1, aNbDim, theMatr.Col(5)-aV2Set*theMatr.Col(2));
|
|
}
|
|
|
|
Standard_Real aNewDU = theDeltaU1Found;
|
|
if(DeltaU1Computing(aSyst, aFree, aNewDU))
|
|
{
|
|
isSuccess = Standard_True;
|
|
if(aNewDU < theDeltaU1Found)
|
|
{
|
|
theDeltaU1Found = aNewDU;
|
|
}
|
|
}
|
|
}
|
|
|
|
if(!isSuccess)
|
|
{
|
|
aFree = theMatr.Col(5) - aV1Set*theMatr.Col(1) - aV2Set*theMatr.Col(2);
|
|
math_Matrix aSyst1(1, aNbDim, 1, 2);
|
|
aSyst1.SetCol(1, aSyst.Col(2));
|
|
aSyst1.SetCol(2, aSyst.Col(3));
|
|
|
|
//Now we have overdetermined system.
|
|
|
|
const Standard_Real aDet1 = theMatr(1,3)*theMatr(2,4) - theMatr(2,3)*theMatr(1,4);
|
|
const Standard_Real aDet2 = theMatr(1,3)*theMatr(3,4) - theMatr(3,3)*theMatr(1,4);
|
|
const Standard_Real aDet3 = theMatr(2,3)*theMatr(3,4) - theMatr(3,3)*theMatr(2,4);
|
|
const Standard_Real anAbsD1 = Abs(aDet1);
|
|
const Standard_Real anAbsD2 = Abs(aDet2);
|
|
const Standard_Real anAbsD3 = Abs(aDet3);
|
|
|
|
if(anAbsD1 >= anAbsD2)
|
|
{
|
|
if(anAbsD1 >= anAbsD3)
|
|
{
|
|
//Det1
|
|
if(anAbsD1 <= aNulValue)
|
|
return isSuccess;
|
|
|
|
theDeltaU1Found = Abs(aFree(1)*theMatr(2,4) - aFree(2)*theMatr(1,4))/anAbsD1;
|
|
isSuccess = Standard_True;
|
|
}
|
|
else
|
|
{
|
|
//Det3
|
|
if(anAbsD3 <= aNulValue)
|
|
return isSuccess;
|
|
|
|
theDeltaU1Found = Abs(aFree(2)*theMatr(3,4) - aFree(3)*theMatr(2,4))/anAbsD3;
|
|
isSuccess = Standard_True;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if(anAbsD2 >= anAbsD3)
|
|
{
|
|
//Det2
|
|
if(anAbsD2 <= aNulValue)
|
|
return isSuccess;
|
|
|
|
theDeltaU1Found = Abs(aFree(1)*theMatr(3,4) - aFree(3)*theMatr(1,4))/anAbsD2;
|
|
isSuccess = Standard_True;
|
|
}
|
|
else
|
|
{
|
|
//Det3
|
|
if(anAbsD3 <= aNulValue)
|
|
return isSuccess;
|
|
|
|
theDeltaU1Found = Abs(aFree(2)*theMatr(3,4) - aFree(3)*theMatr(2,4))/anAbsD3;
|
|
isSuccess = Standard_True;
|
|
}
|
|
}
|
|
}
|
|
|
|
return isSuccess;
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : ProcessBounds
|
|
//purpose :
|
|
//=======================================================================
|
|
void ProcessBounds(const Handle(IntPatch_ALine)& alig, //-- ligne courante
|
|
const IntPatch_SequenceOfLine& slin,
|
|
const IntSurf_Quadric& Quad1,
|
|
const IntSurf_Quadric& Quad2,
|
|
Standard_Boolean& procf,
|
|
const gp_Pnt& ptf, //-- Debut Ligne Courante
|
|
const Standard_Real first, //-- Paramf
|
|
Standard_Boolean& procl,
|
|
const gp_Pnt& ptl, //-- Fin Ligne courante
|
|
const Standard_Real last, //-- Paraml
|
|
Standard_Boolean& Multpoint,
|
|
const Standard_Real Tol)
|
|
{
|
|
Standard_Integer j,k;
|
|
Standard_Real U1,V1,U2,V2;
|
|
IntPatch_Point ptsol;
|
|
Standard_Real d;
|
|
|
|
if (procf && procl) {
|
|
j = slin.Length() + 1;
|
|
}
|
|
else {
|
|
j = 1;
|
|
}
|
|
|
|
|
|
//-- On prend les lignes deja enregistrees
|
|
|
|
while (j <= slin.Length()) {
|
|
if(slin.Value(j)->ArcType() == IntPatch_Analytic) {
|
|
const Handle(IntPatch_ALine)& aligold = *((Handle(IntPatch_ALine)*)&slin.Value(j));
|
|
k = 1;
|
|
|
|
//-- On prend les vertex des lignes deja enregistrees
|
|
|
|
while (k <= aligold->NbVertex()) {
|
|
ptsol = aligold->Vertex(k);
|
|
if (!procf) {
|
|
d=ptf.Distance(ptsol.Value());
|
|
if (d <= Tol) {
|
|
ptsol.SetTolerance(Tol);
|
|
if (!ptsol.IsMultiple()) {
|
|
//-- le point ptsol (de aligold) est declare multiple sur aligold
|
|
Multpoint = Standard_True;
|
|
ptsol.SetMultiple(Standard_True);
|
|
aligold->Replace(k,ptsol);
|
|
}
|
|
ptsol.SetParameter(first);
|
|
alig->AddVertex(ptsol);
|
|
alig->SetFirstPoint(alig->NbVertex());
|
|
procf = Standard_True;
|
|
|
|
//-- On restore le point avec son parametre sur aligold
|
|
ptsol = aligold->Vertex(k);
|
|
|
|
}
|
|
}
|
|
if (!procl) {
|
|
if (ptl.Distance(ptsol.Value()) <= Tol) {
|
|
ptsol.SetTolerance(Tol);
|
|
if (!ptsol.IsMultiple()) {
|
|
Multpoint = Standard_True;
|
|
ptsol.SetMultiple(Standard_True);
|
|
aligold->Replace(k,ptsol);
|
|
}
|
|
ptsol.SetParameter(last);
|
|
alig->AddVertex(ptsol);
|
|
alig->SetLastPoint(alig->NbVertex());
|
|
procl = Standard_True;
|
|
|
|
//-- On restore le point avec son parametre sur aligold
|
|
ptsol = aligold->Vertex(k);
|
|
|
|
}
|
|
}
|
|
if (procf && procl) {
|
|
k = aligold->NbVertex()+1;
|
|
}
|
|
else {
|
|
k = k+1;
|
|
}
|
|
}
|
|
if (procf && procl) {
|
|
j = slin.Length()+1;
|
|
}
|
|
else {
|
|
j = j+1;
|
|
}
|
|
}
|
|
}
|
|
|
|
ptsol.SetTolerance(Tol);
|
|
if (!procf && !procl) {
|
|
Quad1.Parameters(ptf,U1,V1);
|
|
Quad2.Parameters(ptf,U2,V2);
|
|
ptsol.SetValue(ptf,Tol,Standard_False);
|
|
ptsol.SetParameters(U1,V1,U2,V2);
|
|
ptsol.SetParameter(first);
|
|
if (ptf.Distance(ptl) <= Tol) {
|
|
ptsol.SetMultiple(Standard_True); // a voir
|
|
Multpoint = Standard_True; // a voir de meme
|
|
alig->AddVertex(ptsol);
|
|
alig->SetFirstPoint(alig->NbVertex());
|
|
|
|
ptsol.SetParameter(last);
|
|
alig->AddVertex(ptsol);
|
|
alig->SetLastPoint(alig->NbVertex());
|
|
}
|
|
else {
|
|
alig->AddVertex(ptsol);
|
|
alig->SetFirstPoint(alig->NbVertex());
|
|
Quad1.Parameters(ptl,U1,V1);
|
|
Quad2.Parameters(ptl,U2,V2);
|
|
ptsol.SetValue(ptl,Tol,Standard_False);
|
|
ptsol.SetParameters(U1,V1,U2,V2);
|
|
ptsol.SetParameter(last);
|
|
alig->AddVertex(ptsol);
|
|
alig->SetLastPoint(alig->NbVertex());
|
|
}
|
|
}
|
|
else if (!procf) {
|
|
Quad1.Parameters(ptf,U1,V1);
|
|
Quad2.Parameters(ptf,U2,V2);
|
|
ptsol.SetValue(ptf,Tol,Standard_False);
|
|
ptsol.SetParameters(U1,V1,U2,V2);
|
|
ptsol.SetParameter(first);
|
|
alig->AddVertex(ptsol);
|
|
alig->SetFirstPoint(alig->NbVertex());
|
|
}
|
|
else if (!procl) {
|
|
Quad1.Parameters(ptl,U1,V1);
|
|
Quad2.Parameters(ptl,U2,V2);
|
|
ptsol.SetValue(ptl,Tol,Standard_False);
|
|
ptsol.SetParameters(U1,V1,U2,V2);
|
|
ptsol.SetParameter(last);
|
|
alig->AddVertex(ptsol);
|
|
alig->SetLastPoint(alig->NbVertex());
|
|
}
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : CyCyAnalyticalIntersect
|
|
//purpose : Checks if intersection curve is analytical (line, circle, ellipse)
|
|
// and returns these curves.
|
|
//=======================================================================
|
|
Standard_Boolean CyCyAnalyticalIntersect( const IntSurf_Quadric& Quad1,
|
|
const IntSurf_Quadric& Quad2,
|
|
const IntAna_QuadQuadGeo& theInter,
|
|
const Standard_Real Tol,
|
|
Standard_Boolean& Empty,
|
|
Standard_Boolean& Same,
|
|
Standard_Boolean& Multpoint,
|
|
IntPatch_SequenceOfLine& slin,
|
|
IntPatch_SequenceOfPoint& spnt)
|
|
{
|
|
IntPatch_Point ptsol;
|
|
|
|
Standard_Integer i;
|
|
|
|
IntSurf_TypeTrans trans1,trans2;
|
|
IntAna_ResultType typint;
|
|
|
|
gp_Elips elipsol;
|
|
gp_Lin linsol;
|
|
|
|
gp_Cylinder Cy1(Quad1.Cylinder());
|
|
gp_Cylinder Cy2(Quad2.Cylinder());
|
|
|
|
typint = theInter.TypeInter();
|
|
Standard_Integer NbSol = theInter.NbSolutions();
|
|
Empty = Standard_False;
|
|
Same = Standard_False;
|
|
|
|
switch (typint)
|
|
{
|
|
case IntAna_Empty:
|
|
{
|
|
Empty = Standard_True;
|
|
}
|
|
break;
|
|
|
|
case IntAna_Same:
|
|
{
|
|
Same = Standard_True;
|
|
}
|
|
break;
|
|
|
|
case IntAna_Point:
|
|
{
|
|
gp_Pnt psol(theInter.Point(1));
|
|
ptsol.SetValue(psol,Tol,Standard_True);
|
|
|
|
Standard_Real U1,V1,U2,V2;
|
|
Quad1.Parameters(psol, U1, V1);
|
|
Quad2.Parameters(psol, U2, V2);
|
|
|
|
ptsol.SetParameters(U1,V1,U2,V2);
|
|
spnt.Append(ptsol);
|
|
}
|
|
break;
|
|
|
|
case IntAna_Line:
|
|
{
|
|
gp_Pnt ptref;
|
|
if (NbSol == 1)
|
|
{ // Cylinders are tangent to each other by line
|
|
linsol = theInter.Line(1);
|
|
ptref = linsol.Location();
|
|
|
|
//Radius-vectors
|
|
gp_Dir crb1(gp_Vec(ptref,Cy1.Location()));
|
|
gp_Dir crb2(gp_Vec(ptref,Cy2.Location()));
|
|
|
|
//outer normal lines
|
|
gp_Vec norm1(Quad1.Normale(ptref));
|
|
gp_Vec norm2(Quad2.Normale(ptref));
|
|
IntSurf_Situation situcyl1;
|
|
IntSurf_Situation situcyl2;
|
|
|
|
if (crb1.Dot(crb2) < 0.)
|
|
{ // centre de courbures "opposes"
|
|
//ATTENTION!!!
|
|
// Normal and Radius-vector of the 1st(!) cylinder
|
|
// is used for judging what the situation of the 2nd(!)
|
|
// cylinder is.
|
|
|
|
if (norm1.Dot(crb1) > 0.)
|
|
{
|
|
situcyl2 = IntSurf_Inside;
|
|
}
|
|
else
|
|
{
|
|
situcyl2 = IntSurf_Outside;
|
|
}
|
|
|
|
if (norm2.Dot(crb2) > 0.)
|
|
{
|
|
situcyl1 = IntSurf_Inside;
|
|
}
|
|
else
|
|
{
|
|
situcyl1 = IntSurf_Outside;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (Cy1.Radius() < Cy2.Radius())
|
|
{
|
|
if (norm1.Dot(crb1) > 0.)
|
|
{
|
|
situcyl2 = IntSurf_Inside;
|
|
}
|
|
else
|
|
{
|
|
situcyl2 = IntSurf_Outside;
|
|
}
|
|
|
|
if (norm2.Dot(crb2) > 0.)
|
|
{
|
|
situcyl1 = IntSurf_Outside;
|
|
}
|
|
else
|
|
{
|
|
situcyl1 = IntSurf_Inside;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (norm1.Dot(crb1) > 0.)
|
|
{
|
|
situcyl2 = IntSurf_Outside;
|
|
}
|
|
else
|
|
{
|
|
situcyl2 = IntSurf_Inside;
|
|
}
|
|
|
|
if (norm2.Dot(crb2) > 0.)
|
|
{
|
|
situcyl1 = IntSurf_Inside;
|
|
}
|
|
else
|
|
{
|
|
situcyl1 = IntSurf_Outside;
|
|
}
|
|
}
|
|
}
|
|
|
|
Handle(IntPatch_GLine) glig = new IntPatch_GLine(linsol, Standard_True, situcyl1, situcyl2);
|
|
slin.Append(glig);
|
|
}
|
|
else
|
|
{
|
|
for (i=1; i <= NbSol; i++)
|
|
{
|
|
linsol = theInter.Line(i);
|
|
ptref = linsol.Location();
|
|
gp_Vec lsd = linsol.Direction();
|
|
|
|
//Theoretically, qwe = +/- 1.0.
|
|
Standard_Real qwe = lsd.DotCross(Quad2.Normale(ptref),Quad1.Normale(ptref));
|
|
if (qwe >0.00000001)
|
|
{
|
|
trans1 = IntSurf_Out;
|
|
trans2 = IntSurf_In;
|
|
}
|
|
else if (qwe <-0.00000001)
|
|
{
|
|
trans1 = IntSurf_In;
|
|
trans2 = IntSurf_Out;
|
|
}
|
|
else
|
|
{
|
|
trans1=trans2=IntSurf_Undecided;
|
|
}
|
|
|
|
Handle(IntPatch_GLine) glig = new IntPatch_GLine(linsol, Standard_False,trans1,trans2);
|
|
slin.Append(glig);
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
|
|
case IntAna_Ellipse:
|
|
{
|
|
gp_Vec Tgt;
|
|
gp_Pnt ptref;
|
|
IntPatch_Point pmult1, pmult2;
|
|
|
|
elipsol = theInter.Ellipse(1);
|
|
|
|
gp_Pnt pttang1(ElCLib::Value(0.5*M_PI, elipsol));
|
|
gp_Pnt pttang2(ElCLib::Value(1.5*M_PI, elipsol));
|
|
|
|
Multpoint = Standard_True;
|
|
pmult1.SetValue(pttang1,Tol,Standard_True);
|
|
pmult2.SetValue(pttang2,Tol,Standard_True);
|
|
pmult1.SetMultiple(Standard_True);
|
|
pmult2.SetMultiple(Standard_True);
|
|
|
|
Standard_Real oU1,oV1,oU2,oV2;
|
|
Quad1.Parameters(pttang1, oU1, oV1);
|
|
Quad2.Parameters(pttang1, oU2, oV2);
|
|
|
|
pmult1.SetParameters(oU1,oV1,oU2,oV2);
|
|
Quad1.Parameters(pttang2,oU1,oV1);
|
|
Quad2.Parameters(pttang2,oU2,oV2);
|
|
|
|
pmult2.SetParameters(oU1,oV1,oU2,oV2);
|
|
|
|
// on traite la premiere ellipse
|
|
|
|
//-- Calcul de la Transition de la ligne
|
|
ElCLib::D1(0.,elipsol,ptref,Tgt);
|
|
|
|
//Theoretically, qwe = +/- |Tgt|.
|
|
Standard_Real qwe=Tgt.DotCross(Quad2.Normale(ptref),Quad1.Normale(ptref));
|
|
if (qwe>0.00000001)
|
|
{
|
|
trans1 = IntSurf_Out;
|
|
trans2 = IntSurf_In;
|
|
}
|
|
else if (qwe<-0.00000001)
|
|
{
|
|
trans1 = IntSurf_In;
|
|
trans2 = IntSurf_Out;
|
|
}
|
|
else
|
|
{
|
|
trans1=trans2=IntSurf_Undecided;
|
|
}
|
|
|
|
//-- Transition calculee au point 0 -> Trans2 , Trans1
|
|
//-- car ici, on devarit calculer en PI
|
|
Handle(IntPatch_GLine) glig = new IntPatch_GLine(elipsol,Standard_False,trans2,trans1);
|
|
//
|
|
{
|
|
Standard_Real aU1, aV1, aU2, aV2;
|
|
IntPatch_Point aIP;
|
|
gp_Pnt aP (ElCLib::Value(0., elipsol));
|
|
//
|
|
aIP.SetValue(aP,Tol,Standard_False);
|
|
aIP.SetMultiple(Standard_False);
|
|
//
|
|
Quad1.Parameters(aP, aU1, aV1);
|
|
Quad2.Parameters(aP, aU2, aV2);
|
|
|
|
aIP.SetParameters(aU1, aV1, aU2, aV2);
|
|
//
|
|
aIP.SetParameter(0.);
|
|
glig->AddVertex(aIP);
|
|
glig->SetFirstPoint(1);
|
|
//
|
|
aIP.SetParameter(2.*M_PI);
|
|
glig->AddVertex(aIP);
|
|
glig->SetLastPoint(2);
|
|
}
|
|
//
|
|
pmult1.SetParameter(0.5*M_PI);
|
|
glig->AddVertex(pmult1);
|
|
//
|
|
pmult2.SetParameter(1.5*M_PI);
|
|
glig->AddVertex(pmult2);
|
|
|
|
//
|
|
slin.Append(glig);
|
|
|
|
//-- Transitions calculee au point 0 OK
|
|
//
|
|
// on traite la deuxieme ellipse
|
|
elipsol = theInter.Ellipse(2);
|
|
|
|
Standard_Real param1 = ElCLib::Parameter(elipsol,pttang1);
|
|
Standard_Real param2 = ElCLib::Parameter(elipsol,pttang2);
|
|
Standard_Real parampourtransition = 0.0;
|
|
if (param1 < param2)
|
|
{
|
|
pmult1.SetParameter(0.5*M_PI);
|
|
pmult2.SetParameter(1.5*M_PI);
|
|
parampourtransition = M_PI;
|
|
}
|
|
else {
|
|
pmult1.SetParameter(1.5*M_PI);
|
|
pmult2.SetParameter(0.5*M_PI);
|
|
parampourtransition = 0.0;
|
|
}
|
|
|
|
//-- Calcul des transitions de ligne pour la premiere ligne
|
|
ElCLib::D1(parampourtransition,elipsol,ptref,Tgt);
|
|
|
|
//Theoretically, qwe = +/- |Tgt|.
|
|
qwe=Tgt.DotCross(Quad2.Normale(ptref),Quad1.Normale(ptref));
|
|
if(qwe> 0.00000001)
|
|
{
|
|
trans1 = IntSurf_Out;
|
|
trans2 = IntSurf_In;
|
|
}
|
|
else if(qwe< -0.00000001)
|
|
{
|
|
trans1 = IntSurf_In;
|
|
trans2 = IntSurf_Out;
|
|
}
|
|
else
|
|
{
|
|
trans1=trans2=IntSurf_Undecided;
|
|
}
|
|
|
|
//-- La transition a ete calculee sur un point de cette ligne
|
|
glig = new IntPatch_GLine(elipsol,Standard_False,trans1,trans2);
|
|
//
|
|
{
|
|
Standard_Real aU1, aV1, aU2, aV2;
|
|
IntPatch_Point aIP;
|
|
gp_Pnt aP (ElCLib::Value(0., elipsol));
|
|
//
|
|
aIP.SetValue(aP,Tol,Standard_False);
|
|
aIP.SetMultiple(Standard_False);
|
|
//
|
|
|
|
Quad1.Parameters(aP, aU1, aV1);
|
|
Quad2.Parameters(aP, aU2, aV2);
|
|
|
|
aIP.SetParameters(aU1, aV1, aU2, aV2);
|
|
//
|
|
aIP.SetParameter(0.);
|
|
glig->AddVertex(aIP);
|
|
glig->SetFirstPoint(1);
|
|
//
|
|
aIP.SetParameter(2.*M_PI);
|
|
glig->AddVertex(aIP);
|
|
glig->SetLastPoint(2);
|
|
}
|
|
//
|
|
glig->AddVertex(pmult1);
|
|
glig->AddVertex(pmult2);
|
|
//
|
|
slin.Append(glig);
|
|
}
|
|
break;
|
|
|
|
case IntAna_Parabola:
|
|
case IntAna_Hyperbola:
|
|
throw Standard_Failure("IntCyCy(): Wrong intersection type!");
|
|
|
|
case IntAna_Circle:
|
|
// Circle is useful when we will work with trimmed surfaces
|
|
// (two cylinders can be tangent by their basises, e.g. circle)
|
|
case IntAna_NoGeometricSolution:
|
|
default:
|
|
return Standard_False;
|
|
}
|
|
|
|
return Standard_True;
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : ShortCosForm
|
|
//purpose : Represents theCosFactor*cosA+theSinFactor*sinA as
|
|
// theCoeff*cos(A-theAngle) if it is possibly (all angles are
|
|
// in radians).
|
|
//=======================================================================
|
|
static void ShortCosForm( const Standard_Real theCosFactor,
|
|
const Standard_Real theSinFactor,
|
|
Standard_Real& theCoeff,
|
|
Standard_Real& theAngle)
|
|
{
|
|
theCoeff = sqrt(theCosFactor*theCosFactor+theSinFactor*theSinFactor);
|
|
theAngle = 0.0;
|
|
if(IsEqual(theCoeff, 0.0))
|
|
{
|
|
theAngle = 0.0;
|
|
return;
|
|
}
|
|
|
|
theAngle = acos(Abs(theCosFactor/theCoeff));
|
|
|
|
if(theSinFactor > 0.0)
|
|
{
|
|
if(IsEqual(theCosFactor, 0.0))
|
|
{
|
|
theAngle = M_PI/2.0;
|
|
}
|
|
else if(theCosFactor < 0.0)
|
|
{
|
|
theAngle = M_PI-theAngle;
|
|
}
|
|
}
|
|
else if(IsEqual(theSinFactor, 0.0))
|
|
{
|
|
if(theCosFactor < 0.0)
|
|
{
|
|
theAngle = M_PI;
|
|
}
|
|
}
|
|
if(theSinFactor < 0.0)
|
|
{
|
|
if(theCosFactor > 0.0)
|
|
{
|
|
theAngle = 2.0*M_PI-theAngle;
|
|
}
|
|
else if(IsEqual(theCosFactor, 0.0))
|
|
{
|
|
theAngle = 3.0*M_PI/2.0;
|
|
}
|
|
else if(theCosFactor < 0.0)
|
|
{
|
|
theAngle = M_PI+theAngle;
|
|
}
|
|
}
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : CylCylMonotonicity
|
|
//purpose : Determines, if U2(U1) function is increasing.
|
|
//=======================================================================
|
|
Standard_Boolean ComputationMethods::CylCylMonotonicity(const Standard_Real theU1par,
|
|
const Standard_Integer theWLIndex,
|
|
const stCoeffsValue& theCoeffs,
|
|
const Standard_Real thePeriod,
|
|
Standard_Boolean& theIsIncreasing)
|
|
{
|
|
// U2(U1) = FI2 + (+/-)acos(B*cos(U1 - FI1) + C);
|
|
//Accordingly,
|
|
//Func. U2(X1) = FI2 + X1;
|
|
//Func. X1(X2) = anArccosFactor*X2;
|
|
//Func. X2(X3) = acos(X3);
|
|
//Func. X3(X4) = B*X4 + C;
|
|
//Func. X4(U1) = cos(U1 - FI1).
|
|
//
|
|
//Consequently,
|
|
//U2(X1) is always increasing.
|
|
//X1(X2) is increasing if anArccosFactor > 0.0 and
|
|
//is decreasing otherwise.
|
|
//X2(X3) is always decreasing.
|
|
//Therefore, U2(X3) is decreasing if anArccosFactor > 0.0 and
|
|
//is increasing otherwise.
|
|
//X3(X4) is increasing if B > 0 and is decreasing otherwise.
|
|
//X4(U1) is increasing if U1 - FI1 in [PI, 2*PI) and
|
|
//is decreasing U1 - FI1 in [0, PI) or if (U1 - FI1 == 2PI).
|
|
//After that, we can predict behaviour of U2(U1) function:
|
|
//if it is increasing or decreasing.
|
|
|
|
//For "+/-" sign. If isPlus == TRUE, "+" is chosen, otherwise, we choose "-".
|
|
Standard_Boolean isPlus = Standard_False;
|
|
|
|
switch(theWLIndex)
|
|
{
|
|
case 0:
|
|
isPlus = Standard_True;
|
|
break;
|
|
case 1:
|
|
isPlus = Standard_False;
|
|
break;
|
|
default:
|
|
//throw Standard_Failure("Error. Range Error!!!!");
|
|
return Standard_False;
|
|
}
|
|
|
|
Standard_Real aU1Temp = theU1par - theCoeffs.mFI1;
|
|
InscribePoint(0, thePeriod, aU1Temp, 0.0, thePeriod, Standard_False);
|
|
|
|
theIsIncreasing = Standard_True;
|
|
|
|
if(((M_PI - aU1Temp) < RealSmall()) && (aU1Temp < thePeriod))
|
|
{
|
|
theIsIncreasing = Standard_False;
|
|
}
|
|
|
|
if(theCoeffs.mB < 0.0)
|
|
{
|
|
theIsIncreasing = !theIsIncreasing;
|
|
}
|
|
|
|
if(!isPlus)
|
|
{
|
|
theIsIncreasing = !theIsIncreasing;
|
|
}
|
|
|
|
return Standard_True;
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : CylCylComputeParameters
|
|
//purpose : Computes U2 (U-parameter of the 2nd cylinder) and, if theDelta != 0,
|
|
// estimates the tolerance of U2-computing (estimation result is
|
|
// assigned to *theDelta value).
|
|
//=======================================================================
|
|
Standard_Boolean ComputationMethods::CylCylComputeParameters(const Standard_Real theU1par,
|
|
const Standard_Integer theWLIndex,
|
|
const stCoeffsValue& theCoeffs,
|
|
Standard_Real& theU2,
|
|
Standard_Real* const theDelta)
|
|
{
|
|
//This formula is got from some experience and can be changed.
|
|
const Standard_Real aTol0 = Min(10.0*Epsilon(1.0)*theCoeffs.mB, aNulValue);
|
|
const Standard_Real aTol = 1.0 - aTol0;
|
|
|
|
if(theWLIndex < 0 || theWLIndex > 1)
|
|
return Standard_False;
|
|
|
|
const Standard_Real aSign = theWLIndex ? -1.0 : 1.0;
|
|
|
|
Standard_Real anArg = cos(theU1par - theCoeffs.mFI1);
|
|
anArg = theCoeffs.mB*anArg + theCoeffs.mC;
|
|
|
|
if(anArg >= aTol)
|
|
{
|
|
if(theDelta)
|
|
*theDelta = 0.0;
|
|
|
|
anArg = 1.0;
|
|
}
|
|
else if(anArg <= -aTol)
|
|
{
|
|
if(theDelta)
|
|
*theDelta = 0.0;
|
|
|
|
anArg = -1.0;
|
|
}
|
|
else if(theDelta)
|
|
{
|
|
//There is a case, when
|
|
// const double aPar = 0.99999999999721167;
|
|
// const double aFI2 = 2.3593296083566181e-006;
|
|
|
|
//Then
|
|
// aPar - cos(aFI2) == -5.10703e-015 ==> cos(aFI2) == aPar.
|
|
//Theoreticaly, in this case
|
|
// aFI2 == +/- acos(aPar).
|
|
//However,
|
|
// acos(aPar) - aFI2 == 2.16362e-009.
|
|
//Error is quite big.
|
|
|
|
//This error should be estimated. Let use following way, which is based
|
|
//on expanding to Taylor series.
|
|
|
|
// acos(p)-acos(p+x) = x/sqrt(1-p*p).
|
|
|
|
//If p == (1-d) (when p > 0) or p == (-1+d) (when p < 0) then
|
|
// acos(p)-acos(p+x) = x/sqrt(d*(2-d)).
|
|
|
|
//Here always aTol0 <= d <= 1. Max(x) is considered (!) to be equal to aTol0.
|
|
//In this case
|
|
// 8*aTol0 <= acos(p)-acos(p+x) <= sqrt(2/(2-aTol0)-1),
|
|
// because 0 < aTol0 < 1.
|
|
//E.g. when aTol0 = 1.0e-11,
|
|
// 8.0e-11 <= acos(p)-acos(p+x) < 2.24e-6.
|
|
|
|
const Standard_Real aDelta = Min(1.0-anArg, 1.0+anArg);
|
|
Standard_DivideByZero_Raise_if((aDelta*aDelta < RealSmall()) || (aDelta >= 2.0),
|
|
"IntPatch_ImpImpIntersection_4.gxx, CylCylComputeParameters()");
|
|
*theDelta = aTol0/sqrt(aDelta*(2.0-aDelta));
|
|
}
|
|
|
|
theU2 = acos(anArg);
|
|
theU2 = theCoeffs.mFI2 + aSign*theU2;
|
|
|
|
return Standard_True;
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : CylCylComputeParameters
|
|
//purpose : Computes V1 and V2 (V-parameters of the 1st and 2nd cylinder respectively).
|
|
//=======================================================================
|
|
Standard_Boolean ComputationMethods::CylCylComputeParameters(const Standard_Real theU1,
|
|
const Standard_Real theU2,
|
|
const stCoeffsValue& theCoeffs,
|
|
Standard_Real& theV1,
|
|
Standard_Real& theV2)
|
|
{
|
|
theV1 = theCoeffs.mK21 * sin(theU2) +
|
|
theCoeffs.mK11 * sin(theU1) +
|
|
theCoeffs.mL21 * cos(theU2) +
|
|
theCoeffs.mL11 * cos(theU1) + theCoeffs.mM1;
|
|
|
|
theV2 = theCoeffs.mK22 * sin(theU2) +
|
|
theCoeffs.mK12 * sin(theU1) +
|
|
theCoeffs.mL22 * cos(theU2) +
|
|
theCoeffs.mL12 * cos(theU1) + theCoeffs.mM2;
|
|
|
|
return Standard_True;
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : CylCylComputeParameters
|
|
//purpose : Computes U2 (U-parameter of the 2nd cylinder),
|
|
// V1 and V2 (V-parameters of the 1st and 2nd cylinder respectively).
|
|
//=======================================================================
|
|
Standard_Boolean ComputationMethods::CylCylComputeParameters(const Standard_Real theU1par,
|
|
const Standard_Integer theWLIndex,
|
|
const stCoeffsValue& theCoeffs,
|
|
Standard_Real& theU2,
|
|
Standard_Real& theV1,
|
|
Standard_Real& theV2)
|
|
{
|
|
if(!CylCylComputeParameters(theU1par, theWLIndex, theCoeffs, theU2))
|
|
return Standard_False;
|
|
|
|
if(!CylCylComputeParameters(theU1par, theU2, theCoeffs, theV1, theV2))
|
|
return Standard_False;
|
|
|
|
return Standard_True;
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : SearchOnVBounds
|
|
//purpose :
|
|
//=======================================================================
|
|
Standard_Boolean WorkWithBoundaries::
|
|
SearchOnVBounds(const SearchBoundType theSBType,
|
|
const Standard_Real theVzad,
|
|
const Standard_Real theVInit,
|
|
const Standard_Real theInitU2,
|
|
const Standard_Real theInitMainVar,
|
|
Standard_Real& theMainVariableValue) const
|
|
{
|
|
const Standard_Integer aNbDim = 3;
|
|
const Standard_Real aMaxError = 4.0*M_PI; // two periods
|
|
|
|
theMainVariableValue = theInitMainVar;
|
|
const Standard_Real aTol2 = 1.0e-18;
|
|
Standard_Real aMainVarPrev = theInitMainVar, aU2Prev = theInitU2, anOtherVar = theVInit;
|
|
|
|
//Structure of aMatr:
|
|
// C_{1}*U_{1} & C_{2}*U_{2} & C_{3}*V_{*},
|
|
//where C_{1}, C_{2} and C_{3} are math_Vector.
|
|
math_Matrix aMatr(1, aNbDim, 1, aNbDim);
|
|
|
|
Standard_Real anError = RealLast();
|
|
Standard_Real anErrorPrev = anError;
|
|
Standard_Integer aNbIter = 0;
|
|
do
|
|
{
|
|
if(++aNbIter > 1000)
|
|
return Standard_False;
|
|
|
|
const Standard_Real aSinU1 = sin(aMainVarPrev),
|
|
aCosU1 = cos(aMainVarPrev),
|
|
aSinU2 = sin(aU2Prev),
|
|
aCosU2 = cos(aU2Prev);
|
|
|
|
math_Vector aVecFreeMem = (myCoeffs.mVecA2 * aU2Prev +
|
|
myCoeffs.mVecB2) * aSinU2 -
|
|
(myCoeffs.mVecB2 * aU2Prev -
|
|
myCoeffs.mVecA2) * aCosU2 +
|
|
(myCoeffs.mVecA1 * aMainVarPrev +
|
|
myCoeffs.mVecB1) * aSinU1 -
|
|
(myCoeffs.mVecB1 * aMainVarPrev -
|
|
myCoeffs.mVecA1) * aCosU1 +
|
|
myCoeffs.mVecD;
|
|
|
|
math_Vector aMSum(1, 3);
|
|
|
|
switch(theSBType)
|
|
{
|
|
case SearchV1:
|
|
aMatr.SetCol(3, myCoeffs.mVecC2);
|
|
aMSum = myCoeffs.mVecC1 * theVzad;
|
|
aVecFreeMem -= aMSum;
|
|
aMSum += myCoeffs.mVecC2*anOtherVar;
|
|
break;
|
|
|
|
case SearchV2:
|
|
aMatr.SetCol(3, myCoeffs.mVecC1);
|
|
aMSum = myCoeffs.mVecC2 * theVzad;
|
|
aVecFreeMem -= aMSum;
|
|
aMSum += myCoeffs.mVecC1*anOtherVar;
|
|
break;
|
|
|
|
default:
|
|
return Standard_False;
|
|
}
|
|
|
|
aMatr.SetCol(1, myCoeffs.mVecA1 * aSinU1 - myCoeffs.mVecB1 * aCosU1);
|
|
aMatr.SetCol(2, myCoeffs.mVecA2 * aSinU2 - myCoeffs.mVecB2 * aCosU2);
|
|
|
|
Standard_Real aDetMainSyst = aMatr.Determinant();
|
|
|
|
if(Abs(aDetMainSyst) < aNulValue)
|
|
{
|
|
return Standard_False;
|
|
}
|
|
|
|
math_Matrix aM1(aMatr), aM2(aMatr), aM3(aMatr);
|
|
aM1.SetCol(1, aVecFreeMem);
|
|
aM2.SetCol(2, aVecFreeMem);
|
|
aM3.SetCol(3, aVecFreeMem);
|
|
|
|
const Standard_Real aDetMainVar = aM1.Determinant();
|
|
const Standard_Real aDetVar1 = aM2.Determinant();
|
|
const Standard_Real aDetVar2 = aM3.Determinant();
|
|
|
|
Standard_Real aDelta = aDetMainVar/aDetMainSyst-aMainVarPrev;
|
|
|
|
if(Abs(aDelta) > aMaxError)
|
|
return Standard_False;
|
|
|
|
anError = aDelta*aDelta;
|
|
aMainVarPrev += aDelta;
|
|
|
|
///
|
|
aDelta = aDetVar1/aDetMainSyst-aU2Prev;
|
|
|
|
if(Abs(aDelta) > aMaxError)
|
|
return Standard_False;
|
|
|
|
anError += aDelta*aDelta;
|
|
aU2Prev += aDelta;
|
|
|
|
///
|
|
aDelta = aDetVar2/aDetMainSyst-anOtherVar;
|
|
anError += aDelta*aDelta;
|
|
anOtherVar += aDelta;
|
|
|
|
if(anError > anErrorPrev)
|
|
{//Method diverges. Keep the best result
|
|
const Standard_Real aSinU1Last = sin(aMainVarPrev),
|
|
aCosU1Last = cos(aMainVarPrev),
|
|
aSinU2Last = sin(aU2Prev),
|
|
aCosU2Last = cos(aU2Prev);
|
|
aMSum -= (myCoeffs.mVecA1*aCosU1Last +
|
|
myCoeffs.mVecB1*aSinU1Last +
|
|
myCoeffs.mVecA2*aCosU2Last +
|
|
myCoeffs.mVecB2*aSinU2Last +
|
|
myCoeffs.mVecD);
|
|
const Standard_Real aSQNorm = aMSum.Norm2();
|
|
return (aSQNorm < aTol2);
|
|
}
|
|
else
|
|
{
|
|
theMainVariableValue = aMainVarPrev;
|
|
}
|
|
|
|
anErrorPrev = anError;
|
|
}
|
|
while(anError > aTol2);
|
|
|
|
theMainVariableValue = aMainVarPrev;
|
|
|
|
return Standard_True;
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : InscribePoint
|
|
//purpose : If theFlForce==TRUE theUGiven will be changed forcefully
|
|
// even if theUGiven is already inscibed in the boundary
|
|
// (if it is possible; i.e. if new theUGiven is inscribed
|
|
// in the boundary, too).
|
|
//=======================================================================
|
|
Standard_Boolean InscribePoint( const Standard_Real theUfTarget,
|
|
const Standard_Real theUlTarget,
|
|
Standard_Real& theUGiven,
|
|
const Standard_Real theTol2D,
|
|
const Standard_Real thePeriod,
|
|
const Standard_Boolean theFlForce)
|
|
{
|
|
if(Precision::IsInfinite(theUGiven))
|
|
{
|
|
return Standard_False;
|
|
}
|
|
|
|
if((theUfTarget - theUGiven <= theTol2D) &&
|
|
(theUGiven - theUlTarget <= theTol2D))
|
|
{//it has already inscribed
|
|
|
|
/*
|
|
Utf U Utl
|
|
+ * +
|
|
*/
|
|
|
|
if(theFlForce)
|
|
{
|
|
Standard_Real anUtemp = theUGiven + thePeriod;
|
|
if((theUfTarget - anUtemp <= theTol2D) &&
|
|
(anUtemp - theUlTarget <= theTol2D))
|
|
{
|
|
theUGiven = anUtemp;
|
|
return Standard_True;
|
|
}
|
|
|
|
anUtemp = theUGiven - thePeriod;
|
|
if((theUfTarget - anUtemp <= theTol2D) &&
|
|
(anUtemp - theUlTarget <= theTol2D))
|
|
{
|
|
theUGiven = anUtemp;
|
|
}
|
|
}
|
|
|
|
return Standard_True;
|
|
}
|
|
|
|
const Standard_Real aUf = theUfTarget - theTol2D;
|
|
const Standard_Real aUl = aUf + thePeriod;
|
|
|
|
theUGiven = ElCLib::InPeriod(theUGiven, aUf, aUl);
|
|
|
|
return ((theUfTarget - theUGiven <= theTol2D) &&
|
|
(theUGiven - theUlTarget <= theTol2D));
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : InscribeInterval
|
|
//purpose : Shifts theRange in order to make at least one of its
|
|
// boundary in the range [theUfTarget, theUlTarget]
|
|
//=======================================================================
|
|
static Standard_Boolean InscribeInterval(const Standard_Real theUfTarget,
|
|
const Standard_Real theUlTarget,
|
|
Bnd_Range &theRange,
|
|
const Standard_Real theTol2D,
|
|
const Standard_Real thePeriod)
|
|
{
|
|
Standard_Real anUpar = 0.0;
|
|
if (!theRange.GetMin(anUpar))
|
|
{
|
|
return Standard_False;
|
|
}
|
|
|
|
const Standard_Real aDelta = theRange.Delta();
|
|
if(InscribePoint(theUfTarget, theUlTarget, anUpar,
|
|
theTol2D, thePeriod, (Abs(theUlTarget-anUpar) < theTol2D)))
|
|
{
|
|
theRange.SetVoid();
|
|
theRange.Add(anUpar);
|
|
theRange.Add(anUpar + aDelta);
|
|
}
|
|
else
|
|
{
|
|
if (!theRange.GetMax (anUpar))
|
|
{
|
|
return Standard_False;
|
|
}
|
|
|
|
if(InscribePoint(theUfTarget, theUlTarget, anUpar,
|
|
theTol2D, thePeriod, (Abs(theUfTarget-anUpar) < theTol2D)))
|
|
{
|
|
theRange.SetVoid();
|
|
theRange.Add(anUpar);
|
|
theRange.Add(anUpar - aDelta);
|
|
}
|
|
else
|
|
{
|
|
return Standard_False;
|
|
}
|
|
}
|
|
|
|
return Standard_True;
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : ExcludeNearElements
|
|
//purpose : Checks if theArr contains two almost equal elements.
|
|
// If it is true then one of equal elements will be excluded
|
|
// (made infinite).
|
|
// Returns TRUE if at least one element of theArr has been changed.
|
|
//ATTENTION!!!
|
|
// 1. Every not infinite element of theArr is considered to be
|
|
// in [0, T] interval (where T is the period);
|
|
// 2. theArr must be sorted in ascending order.
|
|
//=======================================================================
|
|
static Standard_Boolean ExcludeNearElements(Standard_Real theArr[],
|
|
const Standard_Integer theNOfMembers,
|
|
const Standard_Real theUSurf1f,
|
|
const Standard_Real theUSurf1l,
|
|
const Standard_Real theTol)
|
|
{
|
|
Standard_Boolean aRetVal = Standard_False;
|
|
for(Standard_Integer i = 1; i < theNOfMembers; i++)
|
|
{
|
|
Standard_Real &anA = theArr[i],
|
|
&anB = theArr[i-1];
|
|
|
|
//Here, anA >= anB
|
|
|
|
if(Precision::IsInfinite(anA))
|
|
break;
|
|
|
|
if((anA-anB) < theTol)
|
|
{
|
|
if((anB != 0.0) && (anB != theUSurf1f) && (anB != theUSurf1l))
|
|
anA = (anA + anB)/2.0;
|
|
else
|
|
anA = anB;
|
|
|
|
//Make this element infinite an forget it
|
|
//(we will not use it in next iterations).
|
|
anB = Precision::Infinite();
|
|
aRetVal = Standard_True;
|
|
}
|
|
}
|
|
|
|
return aRetVal;
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : AddPointIntoWL
|
|
//purpose : Surf1 is a surface, whose U-par is variable.
|
|
// If theFlBefore == TRUE then we enable the U1-parameter
|
|
// of the added point to be less than U1-parameter of
|
|
// previously added point (in general U1-parameter is
|
|
// always increased; therefore, this situation is abnormal).
|
|
// If theOnlyCheck==TRUE then no point will be added to theLine.
|
|
//=======================================================================
|
|
static Standard_Boolean AddPointIntoWL( const IntSurf_Quadric& theQuad1,
|
|
const IntSurf_Quadric& theQuad2,
|
|
const ComputationMethods::stCoeffsValue& theCoeffs,
|
|
const Standard_Boolean isTheReverse,
|
|
const Standard_Boolean isThePrecise,
|
|
const gp_Pnt2d& thePntOnSurf1,
|
|
const gp_Pnt2d& thePntOnSurf2,
|
|
const Standard_Real theUfSurf1,
|
|
const Standard_Real theUlSurf1,
|
|
const Standard_Real theUfSurf2,
|
|
const Standard_Real theUlSurf2,
|
|
const Standard_Real theVfSurf1,
|
|
const Standard_Real theVlSurf1,
|
|
const Standard_Real theVfSurf2,
|
|
const Standard_Real theVlSurf2,
|
|
const Standard_Real thePeriodOfSurf1,
|
|
const Handle(IntSurf_LineOn2S)& theLine,
|
|
const Standard_Integer theWLIndex,
|
|
const Standard_Real theTol3D,
|
|
const Standard_Real theTol2D,
|
|
const Standard_Boolean theFlBefore = Standard_False,
|
|
const Standard_Boolean theOnlyCheck = Standard_False)
|
|
{
|
|
//Check if the point is in the domain or can be inscribed in the domain after adjusting.
|
|
|
|
gp_Pnt aPt1(theQuad1.Value(thePntOnSurf1.X(), thePntOnSurf1.Y())),
|
|
aPt2(theQuad2.Value(thePntOnSurf2.X(), thePntOnSurf2.Y()));
|
|
|
|
Standard_Real aU1par = thePntOnSurf1.X();
|
|
|
|
// aU1par always increases. Therefore, we must reduce its
|
|
// value in order to continue creation of WLine.
|
|
if(!InscribePoint(theUfSurf1, theUlSurf1, aU1par, theTol2D,
|
|
thePeriodOfSurf1, aU1par > 0.5*(theUfSurf1+theUlSurf1)))
|
|
return Standard_False;
|
|
|
|
if ((theLine->NbPoints() > 0) &&
|
|
((theUlSurf1 - theUfSurf1) >= thePeriodOfSurf1) &&
|
|
(((aU1par + thePeriodOfSurf1 - theUlSurf1) <= theTol2D) ||
|
|
((aU1par - thePeriodOfSurf1 - theUfSurf1) >= theTol2D)))
|
|
{
|
|
// aU1par can be adjusted to both theUlSurf1 and theUfSurf1
|
|
// with equal possibilities. This code fragment allows choosing
|
|
// correct parameter from these two variants.
|
|
|
|
Standard_Real aU1 = 0.0, aV1 = 0.0;
|
|
if (isTheReverse)
|
|
{
|
|
theLine->Value(theLine->NbPoints()).ParametersOnS2(aU1, aV1);
|
|
}
|
|
else
|
|
{
|
|
theLine->Value(theLine->NbPoints()).ParametersOnS1(aU1, aV1);
|
|
}
|
|
|
|
const Standard_Real aDelta = aU1 - aU1par;
|
|
if (2.0*Abs(aDelta) > thePeriodOfSurf1)
|
|
{
|
|
aU1par += Sign(thePeriodOfSurf1, aDelta);
|
|
}
|
|
}
|
|
|
|
Standard_Real aU2par = thePntOnSurf2.X();
|
|
if(!InscribePoint(theUfSurf2, theUlSurf2, aU2par, theTol2D,
|
|
thePeriodOfSurf1, Standard_False))
|
|
return Standard_False;
|
|
|
|
Standard_Real aV1par = thePntOnSurf1.Y();
|
|
if((aV1par - theVlSurf1 > theTol2D) || (theVfSurf1 - aV1par > theTol2D))
|
|
return Standard_False;
|
|
|
|
Standard_Real aV2par = thePntOnSurf2.Y();
|
|
if((aV2par - theVlSurf2 > theTol2D) || (theVfSurf2 - aV2par > theTol2D))
|
|
return Standard_False;
|
|
|
|
//Get intersection point and add it in the WL
|
|
IntSurf_PntOn2S aPnt;
|
|
|
|
if(isTheReverse)
|
|
{
|
|
aPnt.SetValue((aPt1.XYZ()+aPt2.XYZ())/2.0,
|
|
aU2par, aV2par,
|
|
aU1par, aV1par);
|
|
}
|
|
else
|
|
{
|
|
aPnt.SetValue((aPt1.XYZ()+aPt2.XYZ())/2.0,
|
|
aU1par, aV1par,
|
|
aU2par, aV2par);
|
|
}
|
|
|
|
Standard_Integer aNbPnts = theLine->NbPoints();
|
|
if(aNbPnts > 0)
|
|
{
|
|
Standard_Real aUl = 0.0, aVl = 0.0;
|
|
const IntSurf_PntOn2S aPlast = theLine->Value(aNbPnts);
|
|
if(isTheReverse)
|
|
aPlast.ParametersOnS2(aUl, aVl);
|
|
else
|
|
aPlast.ParametersOnS1(aUl, aVl);
|
|
|
|
if(!theFlBefore && (aU1par <= aUl))
|
|
{
|
|
//Parameter value must be increased if theFlBefore == FALSE.
|
|
|
|
aU1par += thePeriodOfSurf1;
|
|
|
|
//The condition is as same as in
|
|
//InscribePoint(...) function
|
|
if((theUfSurf1 - aU1par > theTol2D) ||
|
|
(aU1par - theUlSurf1 > theTol2D))
|
|
{
|
|
//New aU1par is out of target interval.
|
|
//Go back to old value.
|
|
|
|
return Standard_False;
|
|
}
|
|
}
|
|
|
|
if (theOnlyCheck)
|
|
return Standard_True;
|
|
|
|
//theTol2D is minimal step along parameter changed.
|
|
//Therefore, if we apply this minimal step two
|
|
//neighbour points will be always "same". Consequently,
|
|
//we should reduce tolerance for IsSame checking.
|
|
const Standard_Real aDTol = 1.0-Epsilon(1.0);
|
|
if(aPnt.IsSame(aPlast, theTol3D*aDTol, theTol2D*aDTol))
|
|
{
|
|
theLine->RemovePoint(aNbPnts);
|
|
}
|
|
}
|
|
|
|
if (theOnlyCheck)
|
|
return Standard_True;
|
|
|
|
theLine->Add(aPnt);
|
|
|
|
if(!isThePrecise)
|
|
return Standard_True;
|
|
|
|
//Try to precise existing WLine
|
|
aNbPnts = theLine->NbPoints();
|
|
if(aNbPnts >= 3)
|
|
{
|
|
Standard_Real aU1 = 0.0, aU2 = 0.0, aU3 = 0.0, aV = 0.0;
|
|
if(isTheReverse)
|
|
{
|
|
theLine->Value(aNbPnts).ParametersOnS2(aU3, aV);
|
|
theLine->Value(aNbPnts-1).ParametersOnS2(aU2, aV);
|
|
theLine->Value(aNbPnts-2).ParametersOnS2(aU1, aV);
|
|
}
|
|
else
|
|
{
|
|
theLine->Value(aNbPnts).ParametersOnS1(aU3, aV);
|
|
theLine->Value(aNbPnts-1).ParametersOnS1(aU2, aV);
|
|
theLine->Value(aNbPnts-2).ParametersOnS1(aU1, aV);
|
|
}
|
|
|
|
const Standard_Real aStepPrev = aU2-aU1;
|
|
const Standard_Real aStep = aU3-aU2;
|
|
|
|
const Standard_Integer aDeltaStep = RealToInt(aStepPrev/aStep);
|
|
|
|
if((1 < aDeltaStep) && (aDeltaStep < 2000))
|
|
{
|
|
//Add new points in case of non-uniform distribution of existing points
|
|
SeekAdditionalPoints( theQuad1, theQuad2, theLine,
|
|
theCoeffs, theWLIndex, aDeltaStep, aNbPnts-2,
|
|
aNbPnts-1, theTol2D, thePeriodOfSurf1, isTheReverse);
|
|
}
|
|
}
|
|
|
|
return Standard_True;
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : AddBoundaryPoint
|
|
//purpose : Find intersection point on V-boundary.
|
|
//=======================================================================
|
|
void WorkWithBoundaries::AddBoundaryPoint(const Handle(IntPatch_WLine)& theWL,
|
|
const Standard_Real theU1,
|
|
const Standard_Real theU1Min,
|
|
const Standard_Real theU2,
|
|
const Standard_Real theV1,
|
|
const Standard_Real theV1Prev,
|
|
const Standard_Real theV2,
|
|
const Standard_Real theV2Prev,
|
|
const Standard_Integer theWLIndex,
|
|
const Standard_Boolean theFlForce,
|
|
Standard_Boolean& isTheFound1,
|
|
Standard_Boolean& isTheFound2) const
|
|
{
|
|
Standard_Real aUSurf1f = 0.0, //const
|
|
aUSurf1l = 0.0,
|
|
aVSurf1f = 0.0,
|
|
aVSurf1l = 0.0;
|
|
Standard_Real aUSurf2f = 0.0, //const
|
|
aUSurf2l = 0.0,
|
|
aVSurf2f = 0.0,
|
|
aVSurf2l = 0.0;
|
|
|
|
myUVSurf1.Get(aUSurf1f, aVSurf1f, aUSurf1l, aVSurf1l);
|
|
myUVSurf2.Get(aUSurf2f, aVSurf2f, aUSurf2l, aVSurf2l);
|
|
|
|
const Standard_Integer aSize = 4;
|
|
const Standard_Real anArrVzad[aSize] = {aVSurf1f, aVSurf1l, aVSurf2f, aVSurf2l};
|
|
|
|
StPInfo aUVPoint[aSize];
|
|
|
|
for(Standard_Integer anIDSurf = 0; anIDSurf < 4; anIDSurf+=2)
|
|
{
|
|
const Standard_Real aVf = (anIDSurf == 0) ? theV1 : theV2,
|
|
aVl = (anIDSurf == 0) ? theV1Prev : theV2Prev;
|
|
|
|
const SearchBoundType aTS = (anIDSurf == 0) ? SearchV1 : SearchV2;
|
|
|
|
for(Standard_Integer anIDBound = 0; anIDBound < 2; anIDBound++)
|
|
{
|
|
const Standard_Integer anIndex = anIDSurf+anIDBound;
|
|
|
|
aUVPoint[anIndex].mySurfID = anIDSurf;
|
|
|
|
if((Abs(aVf-anArrVzad[anIndex]) > myTol2D) &&
|
|
((aVf-anArrVzad[anIndex])*(aVl-anArrVzad[anIndex]) > 0.0))
|
|
{
|
|
continue;
|
|
}
|
|
|
|
//Segment [aVf, aVl] intersects at least one V-boundary (first or last)
|
|
// (in general, case is possible, when aVf > aVl).
|
|
|
|
// Precise intersection point
|
|
const Standard_Boolean aRes = SearchOnVBounds(aTS, anArrVzad[anIndex],
|
|
(anIDSurf == 0) ? theV2 : theV1,
|
|
theU2, theU1,
|
|
aUVPoint[anIndex].myU1);
|
|
|
|
// aUVPoint[anIndex].myU1 is considered to be nearer to theU1 than
|
|
// to theU1+/-Period
|
|
if (!aRes || (aUVPoint[anIndex].myU1 >= theU1) ||
|
|
(aUVPoint[anIndex].myU1 < theU1Min))
|
|
{
|
|
//Intersection point is not found or out of the domain
|
|
aUVPoint[anIndex].myU1 = RealLast();
|
|
continue;
|
|
}
|
|
else
|
|
{
|
|
//intersection point is found
|
|
|
|
Standard_Real &aU1 = aUVPoint[anIndex].myU1,
|
|
&aU2 = aUVPoint[anIndex].myU2,
|
|
&aV1 = aUVPoint[anIndex].myV1,
|
|
&aV2 = aUVPoint[anIndex].myV2;
|
|
aU2 = theU2;
|
|
aV1 = theV1;
|
|
aV2 = theV2;
|
|
|
|
if(!ComputationMethods::
|
|
CylCylComputeParameters(aU1, theWLIndex, myCoeffs, aU2, aV1, aV2))
|
|
{
|
|
// Found point is wrong
|
|
aU1 = RealLast();
|
|
continue;
|
|
}
|
|
|
|
//Point on true V-boundary.
|
|
if(aTS == SearchV1)
|
|
aV1 = anArrVzad[anIndex];
|
|
else //if(aTS[anIndex] == SearchV2)
|
|
aV2 = anArrVzad[anIndex];
|
|
}
|
|
}
|
|
}
|
|
|
|
// Sort with acceding U1-parameter.
|
|
std::sort(aUVPoint, aUVPoint+aSize);
|
|
|
|
isTheFound1 = isTheFound2 = Standard_False;
|
|
|
|
//Adding found points on boundary in the WLine.
|
|
for(Standard_Integer i = 0; i < aSize; i++)
|
|
{
|
|
if(aUVPoint[i].myU1 == RealLast())
|
|
break;
|
|
|
|
if(!AddPointIntoWL(myQuad1, myQuad2, myCoeffs, myIsReverse, Standard_False,
|
|
gp_Pnt2d(aUVPoint[i].myU1, aUVPoint[i].myV1),
|
|
gp_Pnt2d(aUVPoint[i].myU2, aUVPoint[i].myV2),
|
|
aUSurf1f, aUSurf1l, aUSurf2f, aUSurf2l,
|
|
aVSurf1f, aVSurf1l, aVSurf2f, aVSurf2l, myPeriod,
|
|
theWL->Curve(), theWLIndex, myTol3D, myTol2D, theFlForce))
|
|
{
|
|
continue;
|
|
}
|
|
|
|
if(aUVPoint[i].mySurfID == 0)
|
|
{
|
|
isTheFound1 = Standard_True;
|
|
}
|
|
else
|
|
{
|
|
isTheFound2 = Standard_True;
|
|
}
|
|
}
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : SeekAdditionalPoints
|
|
//purpose : Inserts additional intersection points between neighbor points.
|
|
// This action is bone with several iterations. During every iteration,
|
|
// new point is inserted in middle of every interval.
|
|
// The process will be finished if NbPoints >= theMinNbPoints.
|
|
//=======================================================================
|
|
static void SeekAdditionalPoints( const IntSurf_Quadric& theQuad1,
|
|
const IntSurf_Quadric& theQuad2,
|
|
const Handle(IntSurf_LineOn2S)& theLine,
|
|
const ComputationMethods::stCoeffsValue& theCoeffs,
|
|
const Standard_Integer theWLIndex,
|
|
const Standard_Integer theMinNbPoints,
|
|
const Standard_Integer theStartPointOnLine,
|
|
const Standard_Integer theEndPointOnLine,
|
|
const Standard_Real theTol2D,
|
|
const Standard_Real thePeriodOfSurf2,
|
|
const Standard_Boolean isTheReverse)
|
|
{
|
|
if(theLine.IsNull())
|
|
return;
|
|
|
|
Standard_Integer aNbPoints = theEndPointOnLine - theStartPointOnLine + 1;
|
|
if(aNbPoints >= theMinNbPoints)
|
|
{
|
|
return;
|
|
}
|
|
|
|
Standard_Real aMinDeltaParam = theTol2D;
|
|
|
|
{
|
|
Standard_Real u1 = 0.0, v1 = 0.0, u2 = 0.0, v2 = 0.0;
|
|
|
|
if(isTheReverse)
|
|
{
|
|
theLine->Value(theStartPointOnLine).ParametersOnS2(u1, v1);
|
|
theLine->Value(theEndPointOnLine).ParametersOnS2(u2, v2);
|
|
}
|
|
else
|
|
{
|
|
theLine->Value(theStartPointOnLine).ParametersOnS1(u1, v1);
|
|
theLine->Value(theEndPointOnLine).ParametersOnS1(u2, v2);
|
|
}
|
|
|
|
aMinDeltaParam = Max(Abs(u2 - u1)/IntToReal(theMinNbPoints), aMinDeltaParam);
|
|
}
|
|
|
|
Standard_Integer aLastPointIndex = theEndPointOnLine;
|
|
Standard_Real U1prec = 0.0, V1prec = 0.0, U2prec = 0.0, V2prec = 0.0;
|
|
|
|
Standard_Integer aNbPointsPrev = 0;
|
|
while(aNbPoints < theMinNbPoints && (aNbPoints != aNbPointsPrev))
|
|
{
|
|
aNbPointsPrev = aNbPoints;
|
|
for(Standard_Integer fp = theStartPointOnLine, lp = 0; fp < aLastPointIndex; fp = lp + 1)
|
|
{
|
|
Standard_Real U1f = 0.0, V1f = 0.0; //first point in 1st suraface
|
|
Standard_Real U1l = 0.0, V1l = 0.0; //last point in 1st suraface
|
|
|
|
Standard_Real U2f = 0.0, V2f = 0.0; //first point in 2nd suraface
|
|
Standard_Real U2l = 0.0, V2l = 0.0; //last point in 2nd suraface
|
|
|
|
lp = fp+1;
|
|
|
|
if(isTheReverse)
|
|
{
|
|
theLine->Value(fp).ParametersOnS2(U1f, V1f);
|
|
theLine->Value(lp).ParametersOnS2(U1l, V1l);
|
|
|
|
theLine->Value(fp).ParametersOnS1(U2f, V2f);
|
|
theLine->Value(lp).ParametersOnS1(U2l, V2l);
|
|
}
|
|
else
|
|
{
|
|
theLine->Value(fp).ParametersOnS1(U1f, V1f);
|
|
theLine->Value(lp).ParametersOnS1(U1l, V1l);
|
|
|
|
theLine->Value(fp).ParametersOnS2(U2f, V2f);
|
|
theLine->Value(lp).ParametersOnS2(U2l, V2l);
|
|
}
|
|
|
|
if(Abs(U1l - U1f) <= aMinDeltaParam)
|
|
{
|
|
//Step is minimal. It is not necessary to divide it.
|
|
continue;
|
|
}
|
|
|
|
U1prec = 0.5*(U1f+U1l);
|
|
|
|
if(!ComputationMethods::
|
|
CylCylComputeParameters(U1prec, theWLIndex, theCoeffs, U2prec, V1prec, V2prec))
|
|
{
|
|
continue;
|
|
}
|
|
|
|
MinMax(U2f, U2l);
|
|
if(!InscribePoint(U2f, U2l, U2prec, theTol2D, thePeriodOfSurf2, Standard_False))
|
|
{
|
|
continue;
|
|
}
|
|
|
|
const gp_Pnt aP1(theQuad1.Value(U1prec, V1prec)), aP2(theQuad2.Value(U2prec, V2prec));
|
|
const gp_Pnt aPInt(0.5*(aP1.XYZ() + aP2.XYZ()));
|
|
|
|
#ifdef INTPATCH_IMPIMPINTERSECTION_DEBUG
|
|
std::cout << "|P1Pi| = " << aP1.SquareDistance(aPInt) << "; |P2Pi| = " << aP2.SquareDistance(aPInt) << std::endl;
|
|
#endif
|
|
|
|
IntSurf_PntOn2S anIP;
|
|
if(isTheReverse)
|
|
{
|
|
anIP.SetValue(aPInt, U2prec, V2prec, U1prec, V1prec);
|
|
}
|
|
else
|
|
{
|
|
anIP.SetValue(aPInt, U1prec, V1prec, U2prec, V2prec);
|
|
}
|
|
|
|
theLine->InsertBefore(lp, anIP);
|
|
|
|
aNbPoints++;
|
|
aLastPointIndex++;
|
|
}
|
|
|
|
if(aNbPoints >= theMinNbPoints)
|
|
{
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : BoundariesComputing
|
|
//purpose : Computes true domain of future intersection curve (allows
|
|
// avoiding excess iterations)
|
|
//=======================================================================
|
|
Standard_Boolean WorkWithBoundaries::
|
|
BoundariesComputing(const ComputationMethods::stCoeffsValue &theCoeffs,
|
|
const Standard_Real thePeriod,
|
|
Bnd_Range theURange[])
|
|
{
|
|
//All comments to this method is related to the comment
|
|
//to ComputationMethods class
|
|
|
|
//So, we have the equation
|
|
// cos(U2-FI2)=B*cos(U1-FI1)+C
|
|
//Evidently,
|
|
// -1 <= B*cos(U1-FI1)+C <= 1
|
|
|
|
if (theCoeffs.mB > 0.0)
|
|
{
|
|
// -(1+C)/B <= cos(U1-FI1) <= (1-C)/B
|
|
|
|
if (theCoeffs.mB + Abs(theCoeffs.mC) < -1.0)
|
|
{
|
|
//(1-C)/B < -1 or -(1+C)/B > 1 ==> No solution
|
|
|
|
return Standard_False;
|
|
}
|
|
else if (theCoeffs.mB + Abs(theCoeffs.mC) <= 1.0)
|
|
{
|
|
//(1-C)/B >= 1 and -(1+C)/B <= -1 ==> U=[0;2*PI]+aFI1
|
|
theURange[0].Add(theCoeffs.mFI1);
|
|
theURange[0].Add(thePeriod + theCoeffs.mFI1);
|
|
}
|
|
else if ((1 + theCoeffs.mC <= theCoeffs.mB) &&
|
|
(theCoeffs.mB <= 1 - theCoeffs.mC))
|
|
{
|
|
//(1-C)/B >= 1 and -(1+C)/B >= -1 ==>
|
|
//(U=[0;aDAngle]+aFI1) || (U=[2*PI-aDAngle;2*PI]+aFI1),
|
|
//where aDAngle = acos(-(myCoeffs.mC + 1) / myCoeffs.mB)
|
|
|
|
Standard_Real anArg = -(theCoeffs.mC + 1) / theCoeffs.mB;
|
|
if(anArg > 1.0)
|
|
anArg = 1.0;
|
|
if(anArg < -1.0)
|
|
anArg = -1.0;
|
|
|
|
const Standard_Real aDAngle = acos(anArg);
|
|
theURange[0].Add(theCoeffs.mFI1);
|
|
theURange[0].Add(aDAngle + theCoeffs.mFI1);
|
|
theURange[1].Add(thePeriod - aDAngle + theCoeffs.mFI1);
|
|
theURange[1].Add(thePeriod + theCoeffs.mFI1);
|
|
}
|
|
else if ((1 - theCoeffs.mC <= theCoeffs.mB) &&
|
|
(theCoeffs.mB <= 1 + theCoeffs.mC))
|
|
{
|
|
//(1-C)/B <= 1 and -(1+C)/B <= -1 ==> U=[aDAngle;2*PI-aDAngle]+aFI1
|
|
//where aDAngle = acos((1 - myCoeffs.mC) / myCoeffs.mB)
|
|
|
|
Standard_Real anArg = (1 - theCoeffs.mC) / theCoeffs.mB;
|
|
if(anArg > 1.0)
|
|
anArg = 1.0;
|
|
if(anArg < -1.0)
|
|
anArg = -1.0;
|
|
|
|
const Standard_Real aDAngle = acos(anArg);
|
|
theURange[0].Add(aDAngle + theCoeffs.mFI1);
|
|
theURange[0].Add(thePeriod - aDAngle + theCoeffs.mFI1);
|
|
}
|
|
else if (theCoeffs.mB - Abs(theCoeffs.mC) >= 1.0)
|
|
{
|
|
//(1-C)/B <= 1 and -(1+C)/B >= -1 ==>
|
|
//(U=[aDAngle1;aDAngle2]+aFI1) ||
|
|
//(U=[2*PI-aDAngle2;2*PI-aDAngle1]+aFI1)
|
|
//where aDAngle1 = acos((1 - myCoeffs.mC) / myCoeffs.mB),
|
|
// aDAngle2 = acos(-(myCoeffs.mC + 1) / myCoeffs.mB).
|
|
|
|
Standard_Real anArg1 = (1 - theCoeffs.mC) / theCoeffs.mB,
|
|
anArg2 = -(theCoeffs.mC + 1) / theCoeffs.mB;
|
|
if(anArg1 > 1.0)
|
|
anArg1 = 1.0;
|
|
if(anArg1 < -1.0)
|
|
anArg1 = -1.0;
|
|
|
|
if(anArg2 > 1.0)
|
|
anArg2 = 1.0;
|
|
if(anArg2 < -1.0)
|
|
anArg2 = -1.0;
|
|
|
|
const Standard_Real aDAngle1 = acos(anArg1), aDAngle2 = acos(anArg2);
|
|
//(U=[aDAngle1;aDAngle2]+aFI1) ||
|
|
//(U=[2*PI-aDAngle2;2*PI-aDAngle1]+aFI1)
|
|
theURange[0].Add(aDAngle1 + theCoeffs.mFI1);
|
|
theURange[0].Add(aDAngle2 + theCoeffs.mFI1);
|
|
theURange[1].Add(thePeriod - aDAngle2 + theCoeffs.mFI1);
|
|
theURange[1].Add(thePeriod - aDAngle1 + theCoeffs.mFI1);
|
|
}
|
|
else
|
|
{
|
|
return Standard_False;
|
|
}
|
|
}
|
|
else if (theCoeffs.mB < 0.0)
|
|
{
|
|
// (1-C)/B <= cos(U1-FI1) <= -(1+C)/B
|
|
|
|
if (theCoeffs.mB + Abs(theCoeffs.mC) > 1.0)
|
|
{
|
|
// -(1+C)/B < -1 or (1-C)/B > 1 ==> No solutions
|
|
return Standard_False;
|
|
}
|
|
else if (-theCoeffs.mB + Abs(theCoeffs.mC) <= 1.0)
|
|
{
|
|
// -(1+C)/B >= 1 and (1-C)/B <= -1 ==> U=[0;2*PI]+aFI1
|
|
theURange[0].Add(theCoeffs.mFI1);
|
|
theURange[0].Add(thePeriod + theCoeffs.mFI1);
|
|
}
|
|
else if ((-theCoeffs.mC - 1 <= theCoeffs.mB) &&
|
|
(theCoeffs.mB <= theCoeffs.mC - 1))
|
|
{
|
|
// -(1+C)/B >= 1 and (1-C)/B >= -1 ==>
|
|
//(U=[0;aDAngle]+aFI1) || (U=[2*PI-aDAngle;2*PI]+aFI1),
|
|
//where aDAngle = acos((1 - myCoeffs.mC) / myCoeffs.mB)
|
|
|
|
Standard_Real anArg = (1 - theCoeffs.mC) / theCoeffs.mB;
|
|
if(anArg > 1.0)
|
|
anArg = 1.0;
|
|
if(anArg < -1.0)
|
|
anArg = -1.0;
|
|
|
|
const Standard_Real aDAngle = acos(anArg);
|
|
theURange[0].Add(theCoeffs.mFI1);
|
|
theURange[0].Add(aDAngle + theCoeffs.mFI1);
|
|
theURange[1].Add(thePeriod - aDAngle + theCoeffs.mFI1);
|
|
theURange[1].Add(thePeriod + theCoeffs.mFI1);
|
|
}
|
|
else if ((theCoeffs.mC - 1 <= theCoeffs.mB) &&
|
|
(theCoeffs.mB <= -theCoeffs.mB - 1))
|
|
{
|
|
// -(1+C)/B <= 1 and (1-C)/B <= -1 ==> U=[aDAngle;2*PI-aDAngle]+aFI1,
|
|
//where aDAngle = acos(-(myCoeffs.mC + 1) / myCoeffs.mB).
|
|
|
|
Standard_Real anArg = -(theCoeffs.mC + 1) / theCoeffs.mB;
|
|
if(anArg > 1.0)
|
|
anArg = 1.0;
|
|
if(anArg < -1.0)
|
|
anArg = -1.0;
|
|
|
|
const Standard_Real aDAngle = acos(anArg);
|
|
theURange[0].Add(aDAngle + theCoeffs.mFI1);
|
|
theURange[0].Add(thePeriod - aDAngle + theCoeffs.mFI1);
|
|
}
|
|
else if (-theCoeffs.mB - Abs(theCoeffs.mC) >= 1.0)
|
|
{
|
|
// -(1+C)/B <= 1 and (1-C)/B >= -1 ==>
|
|
//(U=[aDAngle1;aDAngle2]+aFI1) || (U=[2*PI-aDAngle2;2*PI-aDAngle1]+aFI1),
|
|
//where aDAngle1 = acos(-(myCoeffs.mC + 1) / myCoeffs.mB),
|
|
// aDAngle2 = acos((1 - myCoeffs.mC) / myCoeffs.mB)
|
|
|
|
Standard_Real anArg1 = -(theCoeffs.mC + 1) / theCoeffs.mB,
|
|
anArg2 = (1 - theCoeffs.mC) / theCoeffs.mB;
|
|
if(anArg1 > 1.0)
|
|
anArg1 = 1.0;
|
|
if(anArg1 < -1.0)
|
|
anArg1 = -1.0;
|
|
|
|
if(anArg2 > 1.0)
|
|
anArg2 = 1.0;
|
|
if(anArg2 < -1.0)
|
|
anArg2 = -1.0;
|
|
|
|
const Standard_Real aDAngle1 = acos(anArg1), aDAngle2 = acos(anArg2);
|
|
theURange[0].Add(aDAngle1 + theCoeffs.mFI1);
|
|
theURange[0].Add(aDAngle2 + theCoeffs.mFI1);
|
|
theURange[1].Add(thePeriod - aDAngle2 + theCoeffs.mFI1);
|
|
theURange[1].Add(thePeriod - aDAngle1 + theCoeffs.mFI1);
|
|
}
|
|
else
|
|
{
|
|
return Standard_False;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
return Standard_False;
|
|
}
|
|
|
|
return Standard_True;
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : CriticalPointsComputing
|
|
//purpose : theNbCritPointsMax contains true number of critical points.
|
|
// It must be initialized correctly before function calling
|
|
//=======================================================================
|
|
static void CriticalPointsComputing(const ComputationMethods::stCoeffsValue& theCoeffs,
|
|
const Standard_Real theUSurf1f,
|
|
const Standard_Real theUSurf1l,
|
|
const Standard_Real theUSurf2f,
|
|
const Standard_Real theUSurf2l,
|
|
const Standard_Real thePeriod,
|
|
const Standard_Real theTol2D,
|
|
Standard_Integer& theNbCritPointsMax,
|
|
Standard_Real theU1crit[])
|
|
{
|
|
//[0...1] - in these points parameter U1 goes through
|
|
// the seam-edge of the first cylinder.
|
|
//[2...3] - First and last U1 parameter.
|
|
//[4...5] - in these points parameter U2 goes through
|
|
// the seam-edge of the second cylinder.
|
|
//[6...9] - in these points an intersection line goes through
|
|
// U-boundaries of the second surface.
|
|
//[10...11] - Boundary of monotonicity interval of U2(U1) function
|
|
// (see CylCylMonotonicity() function)
|
|
|
|
theU1crit[0] = 0.0;
|
|
theU1crit[1] = thePeriod;
|
|
theU1crit[2] = theUSurf1f;
|
|
theU1crit[3] = theUSurf1l;
|
|
|
|
const Standard_Real aCOS = cos(theCoeffs.mFI2);
|
|
const Standard_Real aBSB = Abs(theCoeffs.mB);
|
|
if((theCoeffs.mC - aBSB <= aCOS) && (aCOS <= theCoeffs.mC + aBSB))
|
|
{
|
|
Standard_Real anArg = (aCOS - theCoeffs.mC) / theCoeffs.mB;
|
|
if(anArg > 1.0)
|
|
anArg = 1.0;
|
|
if(anArg < -1.0)
|
|
anArg = -1.0;
|
|
|
|
theU1crit[4] = -acos(anArg) + theCoeffs.mFI1;
|
|
theU1crit[5] = acos(anArg) + theCoeffs.mFI1;
|
|
}
|
|
|
|
Standard_Real aSf = cos(theUSurf2f - theCoeffs.mFI2);
|
|
Standard_Real aSl = cos(theUSurf2l - theCoeffs.mFI2);
|
|
MinMax(aSf, aSl);
|
|
|
|
//In accorance with pure mathematic, theU1crit[6] and [8]
|
|
//must be -Precision::Infinite() instead of used +Precision::Infinite()
|
|
theU1crit[6] = Abs((aSl - theCoeffs.mC) / theCoeffs.mB) < 1.0 ?
|
|
-acos((aSl - theCoeffs.mC) / theCoeffs.mB) + theCoeffs.mFI1 :
|
|
Precision::Infinite();
|
|
theU1crit[7] = Abs((aSf - theCoeffs.mC) / theCoeffs.mB) < 1.0 ?
|
|
-acos((aSf - theCoeffs.mC) / theCoeffs.mB) + theCoeffs.mFI1 :
|
|
Precision::Infinite();
|
|
theU1crit[8] = Abs((aSf - theCoeffs.mC) / theCoeffs.mB) < 1.0 ?
|
|
acos((aSf - theCoeffs.mC) / theCoeffs.mB) + theCoeffs.mFI1 :
|
|
Precision::Infinite();
|
|
theU1crit[9] = Abs((aSl - theCoeffs.mC) / theCoeffs.mB) < 1.0 ?
|
|
acos((aSl - theCoeffs.mC) / theCoeffs.mB) + theCoeffs.mFI1 :
|
|
Precision::Infinite();
|
|
|
|
theU1crit[10] = theCoeffs.mFI1;
|
|
theU1crit[11] = M_PI+theCoeffs.mFI1;
|
|
|
|
//preparative treatment of array. This array must have faled to contain negative
|
|
//infinity number
|
|
|
|
for(Standard_Integer i = 0; i < theNbCritPointsMax; i++)
|
|
{
|
|
if(Precision::IsInfinite(theU1crit[i]))
|
|
{
|
|
continue;
|
|
}
|
|
|
|
theU1crit[i] = fmod(theU1crit[i], thePeriod);
|
|
if(theU1crit[i] < 0.0)
|
|
theU1crit[i] += thePeriod;
|
|
}
|
|
|
|
//Here all not infinite elements of theU1crit are in [0, thePeriod) range
|
|
|
|
do
|
|
{
|
|
std::sort(theU1crit, theU1crit + theNbCritPointsMax);
|
|
}
|
|
while(ExcludeNearElements(theU1crit, theNbCritPointsMax,
|
|
theUSurf1f, theUSurf1l, theTol2D));
|
|
|
|
//Here all not infinite elements in theU1crit are different and sorted.
|
|
|
|
while(theNbCritPointsMax > 0)
|
|
{
|
|
Standard_Real &anB = theU1crit[theNbCritPointsMax-1];
|
|
if(Precision::IsInfinite(anB))
|
|
{
|
|
theNbCritPointsMax--;
|
|
continue;
|
|
}
|
|
|
|
//1st not infinte element is found
|
|
|
|
if(theNbCritPointsMax == 1)
|
|
break;
|
|
|
|
//Here theNbCritPointsMax > 1
|
|
|
|
Standard_Real &anA = theU1crit[0];
|
|
|
|
//Compare 1st and last significant elements of theU1crit
|
|
//They may still differs by period.
|
|
|
|
if (Abs(anB - anA - thePeriod) < theTol2D)
|
|
{//E.g. anA == 2.0e-17, anB == (thePeriod-1.0e-18)
|
|
anA = (anA + anB - thePeriod)/2.0;
|
|
anB = Precision::Infinite();
|
|
theNbCritPointsMax--;
|
|
}
|
|
|
|
//Out of "while(theNbCritPointsMax > 0)" cycle.
|
|
break;
|
|
}
|
|
|
|
//Attention! Here theU1crit may be unsorted.
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : BoundaryEstimation
|
|
//purpose : Rough estimation of the parameter range.
|
|
//=======================================================================
|
|
void WorkWithBoundaries::BoundaryEstimation(const gp_Cylinder& theCy1,
|
|
const gp_Cylinder& theCy2,
|
|
Bnd_Range& theOutBoxS1,
|
|
Bnd_Range& theOutBoxS2) const
|
|
{
|
|
const gp_Dir &aD1 = theCy1.Axis().Direction(),
|
|
&aD2 = theCy2.Axis().Direction();
|
|
const Standard_Real aR1 = theCy1.Radius(),
|
|
aR2 = theCy2.Radius();
|
|
|
|
//Let consider a parallelogram. Its edges are parallel to aD1 and aD2.
|
|
//Its altitudes are equal to 2*aR1 and 2*aR2 (diameters of the cylinders).
|
|
//In fact, this parallelogram is a projection of the cylinders to the plane
|
|
//created by the intersected axes aD1 and aD2 (if the axes are skewed then
|
|
//one axis can be translated by parallel shifting till intersection).
|
|
|
|
const Standard_Real aCosA = aD1.Dot(aD2);
|
|
const Standard_Real aSqSinA = aD1.XYZ().CrossSquareMagnitude(aD2.XYZ());
|
|
|
|
//If sine is small then it can be compared with angle.
|
|
if (aSqSinA < Precision::Angular()*Precision::Angular())
|
|
return;
|
|
|
|
//Half of delta V. Delta V is a distance between
|
|
//projections of two opposite parallelogram vertices
|
|
//(joined by the maximal diagonal) to the cylinder axis.
|
|
const Standard_Real aSinA = sqrt(aSqSinA);
|
|
const Standard_Real anAbsCosA = Abs(aCosA);
|
|
const Standard_Real aHDV1 = (aR1 * anAbsCosA + aR2) / aSinA,
|
|
aHDV2 = (aR2 * anAbsCosA + aR1) / aSinA;
|
|
|
|
#ifdef INTPATCH_IMPIMPINTERSECTION_DEBUG
|
|
//The code in this block is created for test only.It is stupidly to create
|
|
//OCCT-test for the method, which will be changed possibly never.
|
|
std::cout << "Reference values: aHDV1 = " << aHDV1 << "; aHDV2 = " << aHDV2 << std::endl;
|
|
#endif
|
|
|
|
//V-parameters of intersection point of the axes (in case of skewed axes,
|
|
//see comment above).
|
|
Standard_Real aV01 = 0.0, aV02 = 0.0;
|
|
ExtremaLineLine(theCy1.Axis(), theCy2.Axis(), aCosA, aSqSinA, aV01, aV02);
|
|
|
|
theOutBoxS1.Add(aV01 - aHDV1);
|
|
theOutBoxS1.Add(aV01 + aHDV1);
|
|
|
|
theOutBoxS2.Add(aV02 - aHDV2);
|
|
theOutBoxS2.Add(aV02 + aHDV2);
|
|
|
|
theOutBoxS1.Enlarge(Precision::Confusion());
|
|
theOutBoxS2.Enlarge(Precision::Confusion());
|
|
|
|
Standard_Real aU1 = 0.0, aV1 = 0.0, aU2 = 0.0, aV2 = 0.0;
|
|
myUVSurf1.Get(aU1, aV1, aU2, aV2);
|
|
theOutBoxS1.Common(Bnd_Range(aV1, aV2));
|
|
|
|
myUVSurf2.Get(aU1, aV1, aU2, aV2);
|
|
theOutBoxS2.Common(Bnd_Range(aV1, aV2));
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : CyCyNoGeometric
|
|
//purpose :
|
|
//=======================================================================
|
|
static IntPatch_ImpImpIntersection::IntStatus
|
|
CyCyNoGeometric(const gp_Cylinder &theCyl1,
|
|
const gp_Cylinder &theCyl2,
|
|
const WorkWithBoundaries &theBW,
|
|
Bnd_Range theRange[],
|
|
const Standard_Integer theNbOfRanges /*=2*/,
|
|
Standard_Boolean& isTheEmpty,
|
|
IntPatch_SequenceOfLine& theSlin,
|
|
IntPatch_SequenceOfPoint& theSPnt)
|
|
{
|
|
Standard_Real aUSurf1f = 0.0, aUSurf1l = 0.0,
|
|
aUSurf2f = 0.0, aUSurf2l = 0.0,
|
|
aVSurf1f = 0.0, aVSurf1l = 0.0,
|
|
aVSurf2f = 0.0, aVSurf2l = 0.0;
|
|
|
|
theBW.UVS1().Get(aUSurf1f, aVSurf1f, aUSurf1l, aVSurf1l);
|
|
theBW.UVS2().Get(aUSurf2f, aVSurf2f, aUSurf2l, aVSurf2l);
|
|
|
|
Bnd_Range aRangeS1, aRangeS2;
|
|
theBW.BoundaryEstimation(theCyl1, theCyl2, aRangeS1, aRangeS2);
|
|
if (aRangeS1.IsVoid() || aRangeS2.IsVoid())
|
|
return IntPatch_ImpImpIntersection::IntStatus_OK;
|
|
|
|
{
|
|
//Quotation of the message from issue #26894 (author MSV):
|
|
//"We should return fail status from intersector if the result should be an
|
|
//infinite curve of non-analytical type... I propose to define the limit for the
|
|
//extent as the radius divided by 1e+2 and multiplied by 1e+7.
|
|
//Thus, taking into account the number of valuable digits (15), we provide reliable
|
|
//computations with an error not exceeding R/100."
|
|
const Standard_Real aF = 1.0e+5;
|
|
const Standard_Real aMaxV1Range = aF*theCyl1.Radius(), aMaxV2Range = aF*theCyl2.Radius();
|
|
if ((aRangeS1.Delta() > aMaxV1Range) || (aRangeS2.Delta() > aMaxV2Range))
|
|
return IntPatch_ImpImpIntersection::IntStatus_InfiniteSectionCurve;
|
|
}
|
|
|
|
const ComputationMethods::stCoeffsValue &anEquationCoeffs = theBW.SICoeffs();
|
|
const IntSurf_Quadric& aQuad1 = theBW.GetQSurface(1);
|
|
const IntSurf_Quadric& aQuad2 = theBW.GetQSurface(2);
|
|
const Standard_Boolean isReversed = theBW.IsReversed();
|
|
const Standard_Real aTol2D = theBW.Get2dTolerance();
|
|
const Standard_Real aTol3D = theBW.Get3dTolerance();
|
|
const Standard_Real aPeriod = 2.0*M_PI;
|
|
const Standard_Integer aNbMaxPoints = 2000;
|
|
const Standard_Integer aNbMinPoints = 200;
|
|
const Standard_Integer aNbPoints = Min(Max(aNbMinPoints,
|
|
RealToInt(20.0*theCyl1.Radius())), aNbMaxPoints);
|
|
const Standard_Real aStepMin = aTol2D,
|
|
aStepMax = (aUSurf1l - aUSurf1f > M_PI / 100.0) ?
|
|
(aUSurf1l - aUSurf1f) / IntToReal(aNbPoints) :
|
|
aUSurf1l - aUSurf1f;
|
|
|
|
//The main idea of the algorithm is to change U1-parameter
|
|
//(U-parameter of theCyl1) from aU1f to aU1l with some step
|
|
//(step is adaptive) and to obtain set of intersection points.
|
|
|
|
for (Standard_Integer i = 0; i < theNbOfRanges; i++)
|
|
{
|
|
if (theRange[i].IsVoid())
|
|
continue;
|
|
|
|
InscribeInterval(aUSurf1f, aUSurf1l, theRange[i], aTol2D, aPeriod);
|
|
}
|
|
|
|
if (theRange[0].Union(theRange[1]))
|
|
{
|
|
// Works only if (theNbOfRanges == 2).
|
|
theRange[1].SetVoid();
|
|
}
|
|
|
|
//Critical points are the value of U1-parameter in the points
|
|
//where WL must be decomposed.
|
|
|
|
//When U1 goes through critical points its value is set up to this
|
|
//parameter forcefully and the intersection point is added in the line.
|
|
//After that, the WL is broken (next U1 value will be correspond to the new WL).
|
|
|
|
//See CriticalPointsComputing(...) function to get detail information about this array.
|
|
const Standard_Integer aNbCritPointsMax = 12;
|
|
Standard_Real anU1crit[aNbCritPointsMax] = { Precision::Infinite(),
|
|
Precision::Infinite(),
|
|
Precision::Infinite(),
|
|
Precision::Infinite(),
|
|
Precision::Infinite(),
|
|
Precision::Infinite(),
|
|
Precision::Infinite(),
|
|
Precision::Infinite(),
|
|
Precision::Infinite(),
|
|
Precision::Infinite(),
|
|
Precision::Infinite(),
|
|
Precision::Infinite() };
|
|
|
|
//This list of critical points is not full because it does not contain any points
|
|
//which intersection line goes through V-bounds of cylinders in.
|
|
//They are computed by numerical methods on - line (during algorithm working).
|
|
//The moment is caught, when intersection line goes through V-bounds of any cylinder.
|
|
|
|
Standard_Integer aNbCritPoints = aNbCritPointsMax;
|
|
CriticalPointsComputing(anEquationCoeffs, aUSurf1f, aUSurf1l, aUSurf2f, aUSurf2l,
|
|
aPeriod, aTol2D, aNbCritPoints, anU1crit);
|
|
|
|
//Getting Walking-line
|
|
|
|
enum WLFStatus
|
|
{
|
|
// No points have been added in WL
|
|
WLFStatus_Absent = 0,
|
|
// WL contains at least one point
|
|
WLFStatus_Exist = 1,
|
|
// WL has been finished in some critical point
|
|
// We should start new line
|
|
WLFStatus_Broken = 2
|
|
};
|
|
|
|
const Standard_Integer aNbWLines = 2;
|
|
for (Standard_Integer aCurInterval = 0; aCurInterval < theNbOfRanges; aCurInterval++)
|
|
{
|
|
//Process every continuous region
|
|
Standard_Boolean isAddedIntoWL[aNbWLines];
|
|
for (Standard_Integer i = 0; i < aNbWLines; i++)
|
|
isAddedIntoWL[i] = Standard_False;
|
|
|
|
Standard_Real anUf = 1.0, anUl = 0.0;
|
|
if (!theRange[aCurInterval].GetBounds(anUf, anUl))
|
|
continue;
|
|
|
|
const Standard_Boolean isDeltaPeriod = IsEqual(anUl - anUf, aPeriod);
|
|
|
|
//Inscribe and sort critical points
|
|
for (Standard_Integer i = 0; i < aNbCritPoints; i++)
|
|
{
|
|
InscribePoint(anUf, anUl, anU1crit[i], 0.0, aPeriod, Standard_False);
|
|
}
|
|
|
|
std::sort(anU1crit, anU1crit + aNbCritPoints);
|
|
|
|
while (anUf < anUl)
|
|
{
|
|
//Change value of U-parameter on the 1st surface from anUf to anUl
|
|
//(anUf will be modified in the cycle body).
|
|
//Step is computed adaptively (see comments below).
|
|
|
|
Standard_Real aU2[aNbWLines], aV1[aNbWLines], aV2[aNbWLines];
|
|
WLFStatus aWLFindStatus[aNbWLines];
|
|
Standard_Real aV1Prev[aNbWLines], aV2Prev[aNbWLines];
|
|
Standard_Real anUexpect[aNbWLines];
|
|
Standard_Boolean isAddingWLEnabled[aNbWLines];
|
|
|
|
Handle(IntSurf_LineOn2S) aL2S[aNbWLines];
|
|
Handle(IntPatch_WLine) aWLine[aNbWLines];
|
|
for (Standard_Integer i = 0; i < aNbWLines; i++)
|
|
{
|
|
aL2S[i] = new IntSurf_LineOn2S();
|
|
aWLine[i] = new IntPatch_WLine(aL2S[i], Standard_False);
|
|
aWLine[i]->SetCreatingWayInfo(IntPatch_WLine::IntPatch_WLImpImp);
|
|
aWLFindStatus[i] = WLFStatus_Absent;
|
|
isAddingWLEnabled[i] = Standard_True;
|
|
aU2[i] = aV1[i] = aV2[i] = 0.0;
|
|
aV1Prev[i] = aV2Prev[i] = 0.0;
|
|
anUexpect[i] = anUf;
|
|
}
|
|
|
|
Standard_Real aCriticalDelta[aNbCritPointsMax] = { 0 };
|
|
for (Standard_Integer aCritPID = 0; aCritPID < aNbCritPoints; aCritPID++)
|
|
{ //We are not interested in elements of aCriticalDelta array
|
|
//if their index is greater than or equal to aNbCritPoints
|
|
|
|
aCriticalDelta[aCritPID] = anUf - anU1crit[aCritPID];
|
|
}
|
|
|
|
Standard_Real anU1 = anUf, aMinCriticalParam = anUf;
|
|
Standard_Boolean isFirst = Standard_True;
|
|
|
|
while (anU1 <= anUl)
|
|
{
|
|
//Change value of U-parameter on the 1st surface from anUf to anUl
|
|
//(anUf will be modified in the cycle body). However, this cycle
|
|
//can be broken if WL goes though some critical point.
|
|
//Step is computed adaptively (see comments below).
|
|
|
|
for (Standard_Integer i = 0; i < aNbCritPoints; i++)
|
|
{
|
|
if ((anU1 - anU1crit[i])*aCriticalDelta[i] < 0.0)
|
|
{
|
|
//WL has gone through i-th critical point
|
|
anU1 = anU1crit[i];
|
|
|
|
for (Standard_Integer j = 0; j < aNbWLines; j++)
|
|
{
|
|
aWLFindStatus[j] = WLFStatus_Broken;
|
|
anUexpect[j] = anU1;
|
|
}
|
|
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (IsEqual(anU1, anUl))
|
|
{
|
|
for (Standard_Integer i = 0; i < aNbWLines; i++)
|
|
{
|
|
aWLFindStatus[i] = WLFStatus_Broken;
|
|
anUexpect[i] = anU1;
|
|
|
|
if (isDeltaPeriod)
|
|
{
|
|
//if isAddedIntoWL[i] == TRUE WLine contains only one point
|
|
//(which was end point of previous WLine). If we will
|
|
//add point found on the current step WLine will contain only
|
|
//two points. At that both these points will be equal to the
|
|
//points found earlier. Therefore, new WLine will repeat
|
|
//already existing WLine. Consequently, it is necessary
|
|
//to forbid building new line in this case.
|
|
|
|
isAddingWLEnabled[i] = (!isAddedIntoWL[i]);
|
|
}
|
|
else
|
|
{
|
|
isAddingWLEnabled[i] = ((aTol2D >= (anUexpect[i] - anU1)) ||
|
|
(aWLFindStatus[i] == WLFStatus_Absent));
|
|
}
|
|
}//for(Standard_Integer i = 0; i < aNbWLines; i++)
|
|
}
|
|
else
|
|
{
|
|
for (Standard_Integer i = 0; i < aNbWLines; i++)
|
|
{
|
|
isAddingWLEnabled[i] = ((aTol2D >= (anUexpect[i] - anU1)) ||
|
|
(aWLFindStatus[i] == WLFStatus_Absent));
|
|
}//for(Standard_Integer i = 0; i < aNbWLines; i++)
|
|
}
|
|
|
|
for (Standard_Integer i = 0; i < aNbWLines; i++)
|
|
{
|
|
const Standard_Integer aNbPntsWL = aWLine[i].IsNull() ? 0 :
|
|
aWLine[i]->Curve()->NbPoints();
|
|
|
|
if ((aWLFindStatus[i] == WLFStatus_Broken) ||
|
|
(aWLFindStatus[i] == WLFStatus_Absent))
|
|
{//Begin and end of WLine must be on boundary point
|
|
//or on seam-edge strictly (if it is possible).
|
|
|
|
Standard_Real aTol = aTol2D;
|
|
ComputationMethods::CylCylComputeParameters(anU1, i, anEquationCoeffs,
|
|
aU2[i], &aTol);
|
|
InscribePoint(aUSurf2f, aUSurf2l, aU2[i], aTol2D, aPeriod, Standard_False);
|
|
|
|
aTol = Max(aTol, aTol2D);
|
|
|
|
if (Abs(aU2[i]) <= aTol)
|
|
aU2[i] = 0.0;
|
|
else if (Abs(aU2[i] - aPeriod) <= aTol)
|
|
aU2[i] = aPeriod;
|
|
else if (Abs(aU2[i] - aUSurf2f) <= aTol)
|
|
aU2[i] = aUSurf2f;
|
|
else if (Abs(aU2[i] - aUSurf2l) <= aTol)
|
|
aU2[i] = aUSurf2l;
|
|
}
|
|
else
|
|
{
|
|
ComputationMethods::CylCylComputeParameters(anU1, i, anEquationCoeffs, aU2[i]);
|
|
InscribePoint(aUSurf2f, aUSurf2l, aU2[i], aTol2D, aPeriod, Standard_False);
|
|
}
|
|
|
|
if (aNbPntsWL == 0)
|
|
{//the line has not contained any points yet
|
|
if (((aUSurf2f + aPeriod - aUSurf2l) <= 2.0*aTol2D) &&
|
|
((Abs(aU2[i] - aUSurf2f) < aTol2D) ||
|
|
(Abs(aU2[i] - aUSurf2l) < aTol2D)))
|
|
{
|
|
//In this case aU2[i] can have two values: current aU2[i] or
|
|
//aU2[i]+aPeriod (aU2[i]-aPeriod). It is necessary to choose
|
|
//correct value.
|
|
|
|
Standard_Boolean isIncreasing = Standard_True;
|
|
ComputationMethods::CylCylMonotonicity(anU1+aStepMin, i, anEquationCoeffs,
|
|
aPeriod, isIncreasing);
|
|
|
|
//If U2(U1) is increasing and U2 is considered to be equal aUSurf2l
|
|
//then after the next step (when U1 will be increased) U2 will be
|
|
//increased too. And we will go out of surface boundary.
|
|
//Therefore, If U2(U1) is increasing then U2 must be equal aUSurf2f.
|
|
//Analogically, if U2(U1) is decreasing.
|
|
if (isIncreasing)
|
|
{
|
|
aU2[i] = aUSurf2f;
|
|
}
|
|
else
|
|
{
|
|
aU2[i] = aUSurf2l;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{//aNbPntsWL > 0
|
|
if (((aUSurf2l - aUSurf2f) >= aPeriod) &&
|
|
((Abs(aU2[i] - aUSurf2f) < aTol2D) ||
|
|
(Abs(aU2[i] - aUSurf2l) < aTol2D)))
|
|
{//end of the line
|
|
Standard_Real aU2prev = 0.0, aV2prev = 0.0;
|
|
if (isReversed)
|
|
aWLine[i]->Curve()->Value(aNbPntsWL).ParametersOnS1(aU2prev, aV2prev);
|
|
else
|
|
aWLine[i]->Curve()->Value(aNbPntsWL).ParametersOnS2(aU2prev, aV2prev);
|
|
|
|
if (2.0*Abs(aU2prev - aU2[i]) > aPeriod)
|
|
{
|
|
if (aU2prev > aU2[i])
|
|
aU2[i] += aPeriod;
|
|
else
|
|
aU2[i] -= aPeriod;
|
|
}
|
|
}
|
|
}
|
|
|
|
ComputationMethods::CylCylComputeParameters(anU1, aU2[i], anEquationCoeffs,
|
|
aV1[i], aV2[i]);
|
|
|
|
if (isFirst)
|
|
{
|
|
aV1Prev[i] = aV1[i];
|
|
aV2Prev[i] = aV2[i];
|
|
}
|
|
}//for(Standard_Integer i = 0; i < aNbWLines; i++)
|
|
|
|
isFirst = Standard_False;
|
|
|
|
//Looking for points into WLine
|
|
Standard_Boolean isBroken = Standard_False;
|
|
for (Standard_Integer i = 0; i < aNbWLines; i++)
|
|
{
|
|
if (!isAddingWLEnabled[i])
|
|
{
|
|
Standard_Boolean isBoundIntersect = Standard_False;
|
|
if ((Abs(aV1[i] - aVSurf1f) <= aTol2D) ||
|
|
((aV1[i] - aVSurf1f)*(aV1Prev[i] - aVSurf1f) < 0.0))
|
|
{
|
|
isBoundIntersect = Standard_True;
|
|
}
|
|
else if ((Abs(aV1[i] - aVSurf1l) <= aTol2D) ||
|
|
((aV1[i] - aVSurf1l)*(aV1Prev[i] - aVSurf1l) < 0.0))
|
|
{
|
|
isBoundIntersect = Standard_True;
|
|
}
|
|
else if ((Abs(aV2[i] - aVSurf2f) <= aTol2D) ||
|
|
((aV2[i] - aVSurf2f)*(aV2Prev[i] - aVSurf2f) < 0.0))
|
|
{
|
|
isBoundIntersect = Standard_True;
|
|
}
|
|
else if ((Abs(aV2[i] - aVSurf2l) <= aTol2D) ||
|
|
((aV2[i] - aVSurf2l)*(aV2Prev[i] - aVSurf2l) < 0.0))
|
|
{
|
|
isBoundIntersect = Standard_True;
|
|
}
|
|
|
|
if (aWLFindStatus[i] == WLFStatus_Broken)
|
|
isBroken = Standard_True;
|
|
|
|
if (!isBoundIntersect)
|
|
{
|
|
continue;
|
|
}
|
|
else
|
|
{
|
|
anUexpect[i] = anU1;
|
|
}
|
|
}
|
|
|
|
// True if the current point already in the domain
|
|
const Standard_Boolean isInscribe =
|
|
((aUSurf2f - aU2[i]) <= aTol2D) && ((aU2[i] - aUSurf2l) <= aTol2D) &&
|
|
((aVSurf1f - aV1[i]) <= aTol2D) && ((aV1[i] - aVSurf1l) <= aTol2D) &&
|
|
((aVSurf2f - aV2[i]) <= aTol2D) && ((aV2[i] - aVSurf2l) <= aTol2D);
|
|
|
|
//isVIntersect == TRUE if intersection line intersects two (!)
|
|
//V-bounds of cylinder (1st or 2nd - no matter)
|
|
const Standard_Boolean isVIntersect =
|
|
(((aVSurf1f - aV1[i])*(aVSurf1f - aV1Prev[i]) < RealSmall()) &&
|
|
((aVSurf1l - aV1[i])*(aVSurf1l - aV1Prev[i]) < RealSmall())) ||
|
|
(((aVSurf2f - aV2[i])*(aVSurf2f - aV2Prev[i]) < RealSmall()) &&
|
|
((aVSurf2l - aV2[i])*(aVSurf2l - aV2Prev[i]) < RealSmall()));
|
|
|
|
//isFound1 == TRUE if intersection line intersects V-bounds
|
|
// (First or Last - no matter) of the 1st cylynder
|
|
//isFound2 == TRUE if intersection line intersects V-bounds
|
|
// (First or Last - no matter) of the 2nd cylynder
|
|
Standard_Boolean isFound1 = Standard_False, isFound2 = Standard_False;
|
|
Standard_Boolean isForce = Standard_False;
|
|
|
|
if (aWLFindStatus[i] == WLFStatus_Absent)
|
|
{
|
|
if (((aUSurf2l - aUSurf2f) >= aPeriod) && (Abs(anU1 - aUSurf1l) < aTol2D))
|
|
{
|
|
isForce = Standard_True;
|
|
}
|
|
}
|
|
|
|
theBW.AddBoundaryPoint(aWLine[i], anU1, aMinCriticalParam, aU2[i],
|
|
aV1[i], aV1Prev[i], aV2[i], aV2Prev[i], i, isForce,
|
|
isFound1, isFound2);
|
|
|
|
const Standard_Boolean isPrevVBound = !isVIntersect &&
|
|
((Abs(aV1Prev[i] - aVSurf1f) <= aTol2D) ||
|
|
(Abs(aV1Prev[i] - aVSurf1l) <= aTol2D) ||
|
|
(Abs(aV2Prev[i] - aVSurf2f) <= aTol2D) ||
|
|
(Abs(aV2Prev[i] - aVSurf2l) <= aTol2D));
|
|
|
|
aV1Prev[i] = aV1[i];
|
|
aV2Prev[i] = aV2[i];
|
|
|
|
if ((aWLFindStatus[i] == WLFStatus_Exist) && (isFound1 || isFound2) && !isPrevVBound)
|
|
{
|
|
aWLFindStatus[i] = WLFStatus_Broken; //start a new line
|
|
}
|
|
else if (isInscribe)
|
|
{
|
|
if ((aWLFindStatus[i] == WLFStatus_Absent) && (isFound1 || isFound2))
|
|
{
|
|
aWLFindStatus[i] = WLFStatus_Exist;
|
|
}
|
|
|
|
if ((aWLFindStatus[i] != WLFStatus_Broken) ||
|
|
(aWLine[i]->NbPnts() >= 1) || IsEqual(anU1, anUl))
|
|
{
|
|
if (aWLine[i]->NbPnts() > 0)
|
|
{
|
|
Standard_Real aU2p = 0.0, aV2p = 0.0;
|
|
if (isReversed)
|
|
aWLine[i]->Point(aWLine[i]->NbPnts()).ParametersOnS1(aU2p, aV2p);
|
|
else
|
|
aWLine[i]->Point(aWLine[i]->NbPnts()).ParametersOnS2(aU2p, aV2p);
|
|
|
|
const Standard_Real aDelta = aU2[i] - aU2p;
|
|
|
|
if (2.0 * Abs(aDelta) > aPeriod)
|
|
{
|
|
if (aDelta > 0.0)
|
|
{
|
|
aU2[i] -= aPeriod;
|
|
}
|
|
else
|
|
{
|
|
aU2[i] += aPeriod;
|
|
}
|
|
}
|
|
}
|
|
|
|
if(AddPointIntoWL(aQuad1, aQuad2, anEquationCoeffs, isReversed, Standard_True,
|
|
gp_Pnt2d(anU1, aV1[i]), gp_Pnt2d(aU2[i], aV2[i]),
|
|
aUSurf1f, aUSurf1l, aUSurf2f, aUSurf2l,
|
|
aVSurf1f, aVSurf1l, aVSurf2f, aVSurf2l, aPeriod,
|
|
aWLine[i]->Curve(), i, aTol3D, aTol2D, isForce))
|
|
{
|
|
if (aWLFindStatus[i] == WLFStatus_Absent)
|
|
{
|
|
aWLFindStatus[i] = WLFStatus_Exist;
|
|
}
|
|
}
|
|
else if (!isFound1 && !isFound2)
|
|
{//We do not add any point while doing this iteration
|
|
if (aWLFindStatus[i] == WLFStatus_Exist)
|
|
{
|
|
aWLFindStatus[i] = WLFStatus_Broken;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{//We do not add any point while doing this iteration
|
|
if (aWLFindStatus[i] == WLFStatus_Exist)
|
|
{
|
|
aWLFindStatus[i] = WLFStatus_Broken;
|
|
}
|
|
}
|
|
|
|
if (aWLFindStatus[i] == WLFStatus_Broken)
|
|
isBroken = Standard_True;
|
|
}//for(Standard_Integer i = 0; i < aNbWLines; i++)
|
|
|
|
if (isBroken)
|
|
{//current lines are filled. Go to the next lines
|
|
anUf = anU1;
|
|
|
|
Standard_Boolean isAdded = Standard_True;
|
|
|
|
for (Standard_Integer i = 0; i < aNbWLines; i++)
|
|
{
|
|
if (isAddingWLEnabled[i])
|
|
{
|
|
continue;
|
|
}
|
|
|
|
isAdded = Standard_False;
|
|
|
|
Standard_Boolean isFound1 = Standard_False, isFound2 = Standard_False;
|
|
|
|
theBW.AddBoundaryPoint(aWLine[i], anU1, aMinCriticalParam, aU2[i],
|
|
aV1[i], aV1Prev[i], aV2[i], aV2Prev[i], i,
|
|
Standard_False, isFound1, isFound2);
|
|
|
|
if (isFound1 || isFound2)
|
|
{
|
|
isAdded = Standard_True;
|
|
}
|
|
|
|
if (aWLine[i]->NbPnts() > 0)
|
|
{
|
|
Standard_Real aU2p = 0.0, aV2p = 0.0;
|
|
if (isReversed)
|
|
aWLine[i]->Point(aWLine[i]->NbPnts()).ParametersOnS1(aU2p, aV2p);
|
|
else
|
|
aWLine[i]->Point(aWLine[i]->NbPnts()).ParametersOnS2(aU2p, aV2p);
|
|
|
|
const Standard_Real aDelta = aU2[i] - aU2p;
|
|
|
|
if (2 * Abs(aDelta) > aPeriod)
|
|
{
|
|
if (aDelta > 0.0)
|
|
{
|
|
aU2[i] -= aPeriod;
|
|
}
|
|
else
|
|
{
|
|
aU2[i] += aPeriod;
|
|
}
|
|
}
|
|
}
|
|
|
|
if(AddPointIntoWL(aQuad1, aQuad2, anEquationCoeffs, isReversed,
|
|
Standard_True, gp_Pnt2d(anU1, aV1[i]),
|
|
gp_Pnt2d(aU2[i], aV2[i]), aUSurf1f, aUSurf1l,
|
|
aUSurf2f, aUSurf2l, aVSurf1f, aVSurf1l,
|
|
aVSurf2f, aVSurf2l, aPeriod, aWLine[i]->Curve(),
|
|
i, aTol3D, aTol2D, Standard_False))
|
|
{
|
|
isAdded = Standard_True;
|
|
}
|
|
}
|
|
|
|
if (!isAdded)
|
|
{
|
|
//Before breaking WL, we must complete it correctly
|
|
//(e.g. to prolong to the surface boundary).
|
|
//Therefore, we take the point last added in some WL
|
|
//(have maximal U1-parameter) and try to add it in
|
|
//the current WL.
|
|
Standard_Real anUmaxAdded = RealFirst();
|
|
|
|
{
|
|
Standard_Boolean isChanged = Standard_False;
|
|
for (Standard_Integer i = 0; i < aNbWLines; i++)
|
|
{
|
|
if ((aWLFindStatus[i] == WLFStatus_Absent) || (aWLine[i]->NbPnts() == 0))
|
|
continue;
|
|
|
|
Standard_Real aU1c = 0.0, aV1c = 0.0;
|
|
if (isReversed)
|
|
aWLine[i]->Curve()->Value(aWLine[i]->NbPnts()).ParametersOnS2(aU1c, aV1c);
|
|
else
|
|
aWLine[i]->Curve()->Value(aWLine[i]->NbPnts()).ParametersOnS1(aU1c, aV1c);
|
|
|
|
anUmaxAdded = Max(anUmaxAdded, aU1c);
|
|
isChanged = Standard_True;
|
|
}
|
|
|
|
if (!isChanged)
|
|
{ //If anUmaxAdded were not changed in previous cycle then
|
|
//we would break existing WLines.
|
|
break;
|
|
}
|
|
}
|
|
|
|
for (Standard_Integer i = 0; i < aNbWLines; i++)
|
|
{
|
|
if (isAddingWLEnabled[i])
|
|
{
|
|
continue;
|
|
}
|
|
|
|
ComputationMethods::CylCylComputeParameters(anUmaxAdded, i, anEquationCoeffs,
|
|
aU2[i], aV1[i], aV2[i]);
|
|
|
|
AddPointIntoWL(aQuad1, aQuad2, anEquationCoeffs, isReversed,
|
|
Standard_True, gp_Pnt2d(anUmaxAdded, aV1[i]),
|
|
gp_Pnt2d(aU2[i], aV2[i]), aUSurf1f, aUSurf1l,
|
|
aUSurf2f, aUSurf2l, aVSurf1f, aVSurf1l,
|
|
aVSurf2f, aVSurf2l, aPeriod, aWLine[i]->Curve(),
|
|
i, aTol3D, aTol2D, Standard_False);
|
|
}
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
//Step computing
|
|
|
|
{
|
|
//Step of aU1-parameter is computed adaptively. The algorithm
|
|
//aims to provide given aDeltaV1 and aDeltaV2 values (if it is
|
|
//possible because the intersection line can go along V-isoline)
|
|
//in every iteration. It allows avoiding "flying" intersection
|
|
//points too far each from other (see issue #24915).
|
|
|
|
const Standard_Real aDeltaV1 = aRangeS1.Delta() / IntToReal(aNbPoints),
|
|
aDeltaV2 = aRangeS2.Delta() / IntToReal(aNbPoints);
|
|
|
|
math_Matrix aMatr(1, 3, 1, 5);
|
|
|
|
Standard_Real aMinUexp = RealLast();
|
|
|
|
for (Standard_Integer i = 0; i < aNbWLines; i++)
|
|
{
|
|
if (aTol2D < (anUexpect[i] - anU1))
|
|
{
|
|
continue;
|
|
}
|
|
|
|
if (aWLFindStatus[i] == WLFStatus_Absent)
|
|
{
|
|
anUexpect[i] += aStepMax;
|
|
aMinUexp = Min(aMinUexp, anUexpect[i]);
|
|
continue;
|
|
}
|
|
|
|
Standard_Real aStepTmp = aStepMax;
|
|
|
|
const Standard_Real aSinU1 = sin(anU1),
|
|
aCosU1 = cos(anU1),
|
|
aSinU2 = sin(aU2[i]),
|
|
aCosU2 = cos(aU2[i]);
|
|
|
|
aMatr.SetCol(1, anEquationCoeffs.mVecC1);
|
|
aMatr.SetCol(2, anEquationCoeffs.mVecC2);
|
|
aMatr.SetCol(3, anEquationCoeffs.mVecA1*aSinU1 - anEquationCoeffs.mVecB1*aCosU1);
|
|
aMatr.SetCol(4, anEquationCoeffs.mVecA2*aSinU2 - anEquationCoeffs.mVecB2*aCosU2);
|
|
aMatr.SetCol(5, anEquationCoeffs.mVecA1*aCosU1 + anEquationCoeffs.mVecB1*aSinU1 +
|
|
anEquationCoeffs.mVecA2*aCosU2 + anEquationCoeffs.mVecB2*aSinU2 +
|
|
anEquationCoeffs.mVecD);
|
|
|
|
//The main idea is in solving of linearized system (2)
|
|
//(see description to ComputationMethods class) in order to find new U1-value
|
|
//to provide new value V1 or V2, which differs from current one by aDeltaV1 or
|
|
//aDeltaV2 respectively.
|
|
|
|
//While linearizing, following Taylor formulas are used:
|
|
// cos(x0+dx) = cos(x0) - sin(x0)*dx
|
|
// sin(x0+dx) = sin(x0) + cos(x0)*dx
|
|
|
|
//Consequently cos(U1), cos(U2), sin(U1) and sin(U2) in the system (2)
|
|
//must be substituted by corresponding values.
|
|
|
|
//ATTENTION!!!
|
|
//The solution is approximate. More over, all requirements to the
|
|
//linearization must be satisfied in order to obtain quality result.
|
|
|
|
if (!StepComputing(aMatr, aV1[i], aV2[i], aDeltaV1, aDeltaV2, aStepTmp))
|
|
{
|
|
//To avoid cycling-up
|
|
anUexpect[i] += aStepMax;
|
|
aMinUexp = Min(aMinUexp, anUexpect[i]);
|
|
|
|
continue;
|
|
}
|
|
|
|
if (aStepTmp < aStepMin)
|
|
aStepTmp = aStepMin;
|
|
|
|
if (aStepTmp > aStepMax)
|
|
aStepTmp = aStepMax;
|
|
|
|
anUexpect[i] = anU1 + aStepTmp;
|
|
aMinUexp = Min(aMinUexp, anUexpect[i]);
|
|
}
|
|
|
|
anU1 = aMinUexp;
|
|
}
|
|
|
|
if (Precision::PConfusion() >= (anUl - anU1))
|
|
anU1 = anUl;
|
|
|
|
anUf = anU1;
|
|
|
|
for (Standard_Integer i = 0; i < aNbWLines; i++)
|
|
{
|
|
if (aWLine[i]->NbPnts() != 1)
|
|
isAddedIntoWL[i] = Standard_False;
|
|
|
|
if (anU1 == anUl)
|
|
{//strictly equal. Tolerance is considered above.
|
|
anUexpect[i] = anUl;
|
|
}
|
|
}
|
|
}
|
|
|
|
for (Standard_Integer i = 0; i < aNbWLines; i++)
|
|
{
|
|
if ((aWLine[i]->NbPnts() == 1) && (!isAddedIntoWL[i]))
|
|
{
|
|
isTheEmpty = Standard_False;
|
|
Standard_Real u1, v1, u2, v2;
|
|
aWLine[i]->Point(1).Parameters(u1, v1, u2, v2);
|
|
IntPatch_Point aP;
|
|
aP.SetParameter(u1);
|
|
aP.SetParameters(u1, v1, u2, v2);
|
|
aP.SetTolerance(aTol3D);
|
|
aP.SetValue(aWLine[i]->Point(1).Value());
|
|
|
|
//Check whether the added point exists.
|
|
//It is enough to check the last point.
|
|
if (theSPnt.IsEmpty() ||
|
|
!theSPnt.Last().PntOn2S().IsSame(aP.PntOn2S(), Precision::Confusion()))
|
|
{
|
|
theSPnt.Append(aP);
|
|
}
|
|
}
|
|
else if (aWLine[i]->NbPnts() > 1)
|
|
{
|
|
Standard_Boolean isGood = Standard_True;
|
|
|
|
if (aWLine[i]->NbPnts() == 2)
|
|
{
|
|
const IntSurf_PntOn2S& aPf = aWLine[i]->Point(1);
|
|
const IntSurf_PntOn2S& aPl = aWLine[i]->Point(2);
|
|
|
|
if (aPf.IsSame(aPl, Precision::Confusion()))
|
|
isGood = Standard_False;
|
|
}
|
|
else if (aWLine[i]->NbPnts() > 2)
|
|
{
|
|
// Sometimes points of the WLine are distributed
|
|
// linearly and uniformly. However, such position
|
|
// of the points does not always describe the real intersection
|
|
// curve. I.e. real tangents at the ends of the intersection
|
|
// curve can significantly deviate from this "line" direction.
|
|
// Here we are processing this case by inserting additional points
|
|
// to the beginning/end of the WLine to make it more precise.
|
|
// See description to the issue #30082.
|
|
|
|
const Standard_Real aSqTol3D = aTol3D*aTol3D;
|
|
for (Standard_Integer j = 0; j < 2; j++)
|
|
{
|
|
// If j == 0 ==> add point at begin of WLine.
|
|
// If j == 1 ==> add point at end of WLine.
|
|
|
|
for (;;)
|
|
{
|
|
if (aWLine[i]->NbPnts() >= aNbMaxPoints)
|
|
{
|
|
break;
|
|
}
|
|
|
|
// Take 1st and 2nd point to compute the "line" direction.
|
|
// For our convenience, we make 2nd point be the ends of the WLine
|
|
// because it will be used for computation of the normals
|
|
// to the surfaces.
|
|
const Standard_Integer anIdx1 = j ? aWLine[i]->NbPnts() - 1 : 2;
|
|
const Standard_Integer anIdx2 = j ? aWLine[i]->NbPnts() : 1;
|
|
|
|
const gp_Pnt &aP1 = aWLine[i]->Point(anIdx1).Value();
|
|
const gp_Pnt &aP2 = aWLine[i]->Point(anIdx2).Value();
|
|
|
|
const gp_Vec aDir(aP1, aP2);
|
|
|
|
if (aDir.SquareMagnitude() < aSqTol3D)
|
|
{
|
|
break;
|
|
}
|
|
|
|
// Compute tangent in first/last point of the WLine.
|
|
// We do not take into account the flag "isReversed"
|
|
// because strict direction of the tangent is not
|
|
// important here (we are interested in the tangent
|
|
// line itself and nothing to fear if its direction
|
|
// is reversed).
|
|
const gp_Vec aN1 = aQuad1.Normale(aP2);
|
|
const gp_Vec aN2 = aQuad2.Normale(aP2);
|
|
const gp_Vec aTg(aN1.Crossed(aN2));
|
|
|
|
if (aTg.SquareMagnitude() < Precision::SquareConfusion())
|
|
{
|
|
// Tangent zone
|
|
break;
|
|
}
|
|
|
|
// Check of the bending
|
|
Standard_Real anAngle = aDir.Angle(aTg);
|
|
|
|
if (anAngle > M_PI_2)
|
|
anAngle -= M_PI;
|
|
|
|
if (Abs(anAngle) > 0.25) // ~ 14deg.
|
|
{
|
|
const Standard_Integer aNbPntsPrev = aWLine[i]->NbPnts();
|
|
SeekAdditionalPoints(aQuad1, aQuad2, aWLine[i]->Curve(),
|
|
anEquationCoeffs, i, 3, anIdx1, anIdx2,
|
|
aTol2D, aPeriod, isReversed);
|
|
|
|
if (aWLine[i]->NbPnts() == aNbPntsPrev)
|
|
{
|
|
// No points have been added. ==> Exit from a loop.
|
|
break;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// Good result has been achieved. ==> Exit from a loop.
|
|
break;
|
|
}
|
|
} // for (;;)
|
|
}
|
|
}
|
|
|
|
if (isGood)
|
|
{
|
|
isTheEmpty = Standard_False;
|
|
isAddedIntoWL[i] = Standard_True;
|
|
SeekAdditionalPoints(aQuad1, aQuad2, aWLine[i]->Curve(),
|
|
anEquationCoeffs, i, aNbPoints, 1,
|
|
aWLine[i]->NbPnts(), aTol2D, aPeriod,
|
|
isReversed);
|
|
|
|
aWLine[i]->ComputeVertexParameters(aTol3D);
|
|
theSlin.Append(aWLine[i]);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
isAddedIntoWL[i] = Standard_False;
|
|
}
|
|
|
|
#ifdef INTPATCH_IMPIMPINTERSECTION_DEBUG
|
|
//aWLine[i]->Dump();
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
//Delete the points in theSPnt, which
|
|
//lie at least in one of the line in theSlin.
|
|
for (Standard_Integer aNbPnt = 1; aNbPnt <= theSPnt.Length(); aNbPnt++)
|
|
{
|
|
for (Standard_Integer aNbLin = 1; aNbLin <= theSlin.Length(); aNbLin++)
|
|
{
|
|
Handle(IntPatch_WLine) aWLine1(Handle(IntPatch_WLine)::
|
|
DownCast(theSlin.Value(aNbLin)));
|
|
|
|
const IntSurf_PntOn2S& aPntFWL1 = aWLine1->Point(1);
|
|
const IntSurf_PntOn2S& aPntLWL1 = aWLine1->Point(aWLine1->NbPnts());
|
|
|
|
const IntSurf_PntOn2S aPntCur = theSPnt.Value(aNbPnt).PntOn2S();
|
|
if (aPntCur.IsSame(aPntFWL1, aTol3D) ||
|
|
aPntCur.IsSame(aPntLWL1, aTol3D))
|
|
{
|
|
theSPnt.Remove(aNbPnt);
|
|
aNbPnt--;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
//Try to add new points in the neighborhood of existing point
|
|
for (Standard_Integer aNbPnt = 1; aNbPnt <= theSPnt.Length(); aNbPnt++)
|
|
{
|
|
// Standard algorithm (implemented above) could not find any
|
|
// continuous curve in neighborhood of aPnt2S (e.g. because
|
|
// this curve is too small; see tests\bugs\modalg_5\bug25292_35 and _36).
|
|
// Here, we will try to find several new points nearer to aPnt2S.
|
|
|
|
// The algorithm below tries to find two points in every
|
|
// intervals [u1 - aStepMax, u1] and [u1, u1 + aStepMax]
|
|
// and every new point will be in maximal distance from
|
|
// u1. If these two points exist they will be joined
|
|
// by the intersection curve.
|
|
|
|
const IntPatch_Point& aPnt2S = theSPnt.Value(aNbPnt);
|
|
|
|
Standard_Real u1, v1, u2, v2;
|
|
aPnt2S.Parameters(u1, v1, u2, v2);
|
|
|
|
Handle(IntSurf_LineOn2S) aL2S = new IntSurf_LineOn2S();
|
|
Handle(IntPatch_WLine) aWLine = new IntPatch_WLine(aL2S, Standard_False);
|
|
aWLine->SetCreatingWayInfo(IntPatch_WLine::IntPatch_WLImpImp);
|
|
|
|
//Define the index of WLine, which lies the point aPnt2S in.
|
|
Standard_Integer anIndex = 0;
|
|
|
|
Standard_Real anUf = 0.0, anUl = 0.0, aCurU2 = 0.0;
|
|
if (isReversed)
|
|
{
|
|
anUf = Max(u2 - aStepMax, aUSurf1f);
|
|
anUl = Min(u2 + aStepMax, aUSurf1l);
|
|
aCurU2 = u1;
|
|
}
|
|
else
|
|
{
|
|
anUf = Max(u1 - aStepMax, aUSurf1f);
|
|
anUl = Min(u1 + aStepMax, aUSurf1l);
|
|
aCurU2 = u2;
|
|
}
|
|
|
|
const Standard_Real anUinf = anUf, anUsup = anUl, anUmid = 0.5*(anUf + anUl);
|
|
|
|
{
|
|
//Find the value of anIndex variable.
|
|
Standard_Real aDelta = RealLast();
|
|
for (Standard_Integer i = 0; i < aNbWLines; i++)
|
|
{
|
|
Standard_Real anU2t = 0.0;
|
|
if (!ComputationMethods::CylCylComputeParameters(anUmid, i, anEquationCoeffs, anU2t))
|
|
continue;
|
|
|
|
Standard_Real aDU2 = fmod(Abs(anU2t - aCurU2), aPeriod);
|
|
aDU2 = Min(aDU2, Abs(aDU2 - aPeriod));
|
|
if (aDU2 < aDelta)
|
|
{
|
|
aDelta = aDU2;
|
|
anIndex = i;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Bisection method is used in order to find every new point.
|
|
// I.e. if we need to find intersection point in the interval [anUinf, anUmid]
|
|
// we check the point anUC = 0.5*(anUinf+anUmid). If it is an intersection point
|
|
// we try to find another point in the interval [anUinf, anUC] (because we find the point in
|
|
// maximal distance from anUmid). If it is not then we try to find another point in the
|
|
// interval [anUC, anUmid]. Next iterations will be made analogically.
|
|
// When we find intersection point in the interval [anUmid, anUsup] we try to find
|
|
// another point in the interval [anUC, anUsup] if anUC is intersection point and
|
|
// in the interval [anUmid, anUC], otherwise.
|
|
|
|
Standard_Real anAddedPar[2] = {isReversed ? u2 : u1, isReversed ? u2 : u1};
|
|
|
|
for (Standard_Integer aParID = 0; aParID < 2; aParID++)
|
|
{
|
|
if (aParID == 0)
|
|
{
|
|
anUf = anUinf;
|
|
anUl = anUmid;
|
|
}
|
|
else // if(aParID == 1)
|
|
{
|
|
anUf = anUmid;
|
|
anUl = anUsup;
|
|
}
|
|
|
|
Standard_Real &aPar1 = (aParID == 0) ? anUf : anUl,
|
|
&aPar2 = (aParID == 0) ? anUl : anUf;
|
|
|
|
while (Abs(aPar2 - aPar1) > aStepMin)
|
|
{
|
|
Standard_Real anUC = 0.5*(anUf + anUl);
|
|
Standard_Real aU2 = 0.0, aV1 = 0.0, aV2 = 0.0;
|
|
Standard_Boolean isDone = ComputationMethods::
|
|
CylCylComputeParameters(anUC, anIndex, anEquationCoeffs, aU2, aV1, aV2);
|
|
|
|
if (isDone)
|
|
{
|
|
if (Abs(aV1 - aVSurf1f) <= aTol2D)
|
|
aV1 = aVSurf1f;
|
|
|
|
if (Abs(aV1 - aVSurf1l) <= aTol2D)
|
|
aV1 = aVSurf1l;
|
|
|
|
if (Abs(aV2 - aVSurf2f) <= aTol2D)
|
|
aV2 = aVSurf2f;
|
|
|
|
if (Abs(aV2 - aVSurf2l) <= aTol2D)
|
|
aV2 = aVSurf2l;
|
|
|
|
isDone = AddPointIntoWL(aQuad1, aQuad2, anEquationCoeffs, isReversed,
|
|
Standard_True, gp_Pnt2d(anUC, aV1), gp_Pnt2d(aU2, aV2),
|
|
aUSurf1f, aUSurf1l, aUSurf2f, aUSurf2l,
|
|
aVSurf1f, aVSurf1l, aVSurf2f, aVSurf2l,
|
|
aPeriod, aWLine->Curve(), anIndex, aTol3D,
|
|
aTol2D, Standard_False, Standard_True);
|
|
}
|
|
|
|
if (isDone)
|
|
{
|
|
anAddedPar[0] = Min(anAddedPar[0], anUC);
|
|
anAddedPar[1] = Max(anAddedPar[1], anUC);
|
|
aPar2 = anUC;
|
|
}
|
|
else
|
|
{
|
|
aPar1 = anUC;
|
|
}
|
|
}
|
|
}
|
|
|
|
//Fill aWLine by additional points
|
|
if (anAddedPar[1] - anAddedPar[0] > aStepMin)
|
|
{
|
|
for (Standard_Integer aParID = 0; aParID < 2; aParID++)
|
|
{
|
|
Standard_Real aU2 = 0.0, aV1 = 0.0, aV2 = 0.0;
|
|
ComputationMethods::CylCylComputeParameters(anAddedPar[aParID], anIndex,
|
|
anEquationCoeffs, aU2, aV1, aV2);
|
|
|
|
AddPointIntoWL(aQuad1, aQuad2, anEquationCoeffs, isReversed, Standard_True,
|
|
gp_Pnt2d(anAddedPar[aParID], aV1), gp_Pnt2d(aU2, aV2),
|
|
aUSurf1f, aUSurf1l, aUSurf2f, aUSurf2l,
|
|
aVSurf1f, aVSurf1l, aVSurf2f, aVSurf2l, aPeriod, aWLine->Curve(),
|
|
anIndex, aTol3D, aTol2D, Standard_False, Standard_False);
|
|
}
|
|
|
|
SeekAdditionalPoints(aQuad1, aQuad2, aWLine->Curve(),
|
|
anEquationCoeffs, anIndex, aNbMinPoints,
|
|
1, aWLine->NbPnts(), aTol2D, aPeriod,
|
|
isReversed);
|
|
|
|
aWLine->ComputeVertexParameters(aTol3D);
|
|
theSlin.Append(aWLine);
|
|
|
|
theSPnt.Remove(aNbPnt);
|
|
aNbPnt--;
|
|
}
|
|
}
|
|
|
|
return IntPatch_ImpImpIntersection::IntStatus_OK;
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : IntCyCy
|
|
//purpose :
|
|
//=======================================================================
|
|
IntPatch_ImpImpIntersection::IntStatus IntCyCy(const IntSurf_Quadric& theQuad1,
|
|
const IntSurf_Quadric& theQuad2,
|
|
const Standard_Real theTol3D,
|
|
const Standard_Real theTol2D,
|
|
const Bnd_Box2d& theUVSurf1,
|
|
const Bnd_Box2d& theUVSurf2,
|
|
Standard_Boolean& isTheEmpty,
|
|
Standard_Boolean& isTheSameSurface,
|
|
Standard_Boolean& isTheMultiplePoint,
|
|
IntPatch_SequenceOfLine& theSlin,
|
|
IntPatch_SequenceOfPoint& theSPnt)
|
|
{
|
|
isTheEmpty = Standard_True;
|
|
isTheSameSurface = Standard_False;
|
|
isTheMultiplePoint = Standard_False;
|
|
theSlin.Clear();
|
|
theSPnt.Clear();
|
|
|
|
const gp_Cylinder aCyl1 = theQuad1.Cylinder(),
|
|
aCyl2 = theQuad2.Cylinder();
|
|
|
|
IntAna_QuadQuadGeo anInter(aCyl1,aCyl2,theTol3D);
|
|
|
|
if (!anInter.IsDone())
|
|
{
|
|
return IntPatch_ImpImpIntersection::IntStatus_Fail;
|
|
}
|
|
|
|
if(anInter.TypeInter() != IntAna_NoGeometricSolution)
|
|
{
|
|
if (CyCyAnalyticalIntersect(theQuad1, theQuad2, anInter,
|
|
theTol3D, isTheEmpty,
|
|
isTheSameSurface, isTheMultiplePoint,
|
|
theSlin, theSPnt))
|
|
{
|
|
return IntPatch_ImpImpIntersection::IntStatus_OK;
|
|
}
|
|
}
|
|
|
|
//Here, intersection line is not an analytical curve(line, circle, ellipsis etc.)
|
|
|
|
Standard_Real aUSBou[2][2], aVSBou[2][2]; //const
|
|
|
|
theUVSurf1.Get(aUSBou[0][0], aVSBou[0][0], aUSBou[0][1], aVSBou[0][1]);
|
|
theUVSurf2.Get(aUSBou[1][0], aVSBou[1][0], aUSBou[1][1], aVSBou[1][1]);
|
|
|
|
const Standard_Real aPeriod = 2.0*M_PI;
|
|
const Standard_Integer aNbWLines = 2;
|
|
|
|
const ComputationMethods::stCoeffsValue anEquationCoeffs1(aCyl1, aCyl2);
|
|
const ComputationMethods::stCoeffsValue anEquationCoeffs2(aCyl2, aCyl1);
|
|
|
|
//Boundaries.
|
|
//Intersection result can include two non-connected regions
|
|
//(see WorkWithBoundaries::BoundariesComputing(...) method).
|
|
const Standard_Integer aNbOfBoundaries = 2;
|
|
Bnd_Range anURange[2][aNbOfBoundaries]; //const
|
|
|
|
if (!WorkWithBoundaries::BoundariesComputing(anEquationCoeffs1, aPeriod, anURange[0]))
|
|
return IntPatch_ImpImpIntersection::IntStatus_OK;
|
|
|
|
if (!WorkWithBoundaries::BoundariesComputing(anEquationCoeffs2, aPeriod, anURange[1]))
|
|
return IntPatch_ImpImpIntersection::IntStatus_OK;
|
|
|
|
//anURange[*] can be in different periodic regions in
|
|
//compare with First-Last surface. E.g. the surface
|
|
//is full cylinder [0, 2*PI] but anURange is [5, 7].
|
|
//Trivial common range computation returns [5, 2*PI] and
|
|
//its summary length is 2*PI-5 == 1.28... only. That is wrong.
|
|
//This problem can be solved by the following
|
|
//algorithm:
|
|
// 1. split anURange[*] by the surface boundary;
|
|
// 2. shift every new range in order to inscribe it
|
|
// in [Ufirst, Ulast] of cylinder;
|
|
// 3. consider only common ranges between [Ufirst, Ulast]
|
|
// and new ranges.
|
|
//
|
|
// In above example, we obtain following:
|
|
// 1. two ranges: [5, 2*PI] and [2*PI, 7];
|
|
// 2. after shifting: [5, 2*PI] and [0, 7-2*PI];
|
|
// 3. Common ranges: ([5, 2*PI] and [0, 2*PI]) == [5, 2*PI],
|
|
// ([0, 7-2*PI] and [0, 2*PI]) == [0, 7-2*PI];
|
|
// 4. Their summary length is (2*PI-5)+(7-2*PI-0)==7-5==2 ==> GOOD.
|
|
|
|
Standard_Real aSumRange[2] = { 0.0, 0.0 };
|
|
Handle(NCollection_IncAllocator) anAlloc = new NCollection_IncAllocator;
|
|
for (Standard_Integer aCID = 0; aCID < 2; aCID++)
|
|
{
|
|
anAlloc->Reset();
|
|
NCollection_List<Bnd_Range> aListOfRng(anAlloc);
|
|
|
|
aListOfRng.Append(anURange[aCID][0]);
|
|
aListOfRng.Append(anURange[aCID][1]);
|
|
|
|
const Standard_Real aSplitArr[3] = {aUSBou[aCID][0], aUSBou[aCID][1], 0.0};
|
|
|
|
NCollection_List<Bnd_Range>::Iterator anITrRng;
|
|
for (Standard_Integer aSInd = 0; aSInd < 3; aSInd++)
|
|
{
|
|
NCollection_List<Bnd_Range> aLstTemp(aListOfRng);
|
|
aListOfRng.Clear();
|
|
for (anITrRng.Init(aLstTemp); anITrRng.More(); anITrRng.Next())
|
|
{
|
|
Bnd_Range& aRng = anITrRng.Value();
|
|
aRng.Split(aSplitArr[aSInd], aListOfRng, aPeriod);
|
|
}
|
|
}
|
|
|
|
anITrRng.Init(aListOfRng);
|
|
for (; anITrRng.More(); anITrRng.Next())
|
|
{
|
|
Bnd_Range& aCurrRange = anITrRng.Value();
|
|
|
|
Bnd_Range aBoundR;
|
|
aBoundR.Add(aUSBou[aCID][0]);
|
|
aBoundR.Add(aUSBou[aCID][1]);
|
|
|
|
if (!InscribeInterval(aUSBou[aCID][0], aUSBou[aCID][1],
|
|
aCurrRange, theTol2D, aPeriod))
|
|
{
|
|
//If aCurrRange does not have common block with
|
|
//[Ufirst, Ulast] of cylinder then we will try
|
|
//to inscribe [Ufirst, Ulast] in the boundaries of aCurrRange.
|
|
Standard_Real aF = 1.0, aL = 0.0;
|
|
if (!aCurrRange.GetBounds(aF, aL))
|
|
continue;
|
|
|
|
if ((aL < aUSBou[aCID][0]))
|
|
{
|
|
aCurrRange.Shift(aPeriod);
|
|
}
|
|
else if (aF > aUSBou[aCID][1])
|
|
{
|
|
aCurrRange.Shift(-aPeriod);
|
|
}
|
|
}
|
|
|
|
aBoundR.Common(aCurrRange);
|
|
|
|
const Standard_Real aDelta = aBoundR.Delta();
|
|
|
|
if (aDelta > 0.0)
|
|
{
|
|
aSumRange[aCID] += aDelta;
|
|
}
|
|
}
|
|
}
|
|
|
|
//The bigger range the bigger number of points in Walking-line (WLine)
|
|
//we will be able to add and consequently we will obtain more
|
|
//precise intersection line.
|
|
//Every point of WLine is determined as function from U1-parameter,
|
|
//where U1 is U-parameter on 1st quadric.
|
|
//Therefore, we should use quadric with bigger range as 1st parameter
|
|
//in IntCyCy() function.
|
|
//On the other hand, there is no point in reversing in case of
|
|
//analytical intersection (when result is line, ellipse, point...).
|
|
//This result is independent of the arguments order.
|
|
const Standard_Boolean isToReverse = (aSumRange[1] > aSumRange[0]);
|
|
|
|
if (isToReverse)
|
|
{
|
|
const WorkWithBoundaries aBoundWork(theQuad2, theQuad1, anEquationCoeffs2,
|
|
theUVSurf2, theUVSurf1, aNbWLines,
|
|
aPeriod, theTol3D, theTol2D, Standard_True);
|
|
|
|
return CyCyNoGeometric(aCyl2, aCyl1, aBoundWork, anURange[1], aNbOfBoundaries,
|
|
isTheEmpty, theSlin, theSPnt);
|
|
}
|
|
else
|
|
{
|
|
const WorkWithBoundaries aBoundWork(theQuad1, theQuad2, anEquationCoeffs1,
|
|
theUVSurf1, theUVSurf2, aNbWLines,
|
|
aPeriod, theTol3D, theTol2D, Standard_False);
|
|
|
|
return CyCyNoGeometric(aCyl1, aCyl2, aBoundWork, anURange[0], aNbOfBoundaries,
|
|
isTheEmpty, theSlin, theSPnt);
|
|
}
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : IntCySp
|
|
//purpose :
|
|
//=======================================================================
|
|
Standard_Boolean IntCySp(const IntSurf_Quadric& Quad1,
|
|
const IntSurf_Quadric& Quad2,
|
|
const Standard_Real Tol,
|
|
const Standard_Boolean Reversed,
|
|
Standard_Boolean& Empty,
|
|
Standard_Boolean& Multpoint,
|
|
IntPatch_SequenceOfLine& slin,
|
|
IntPatch_SequenceOfPoint& spnt)
|
|
|
|
{
|
|
Standard_Integer i;
|
|
|
|
IntSurf_TypeTrans trans1,trans2;
|
|
IntAna_ResultType typint;
|
|
IntPatch_Point ptsol;
|
|
gp_Circ cirsol;
|
|
|
|
gp_Cylinder Cy;
|
|
gp_Sphere Sp;
|
|
|
|
if (!Reversed) {
|
|
Cy = Quad1.Cylinder();
|
|
Sp = Quad2.Sphere();
|
|
}
|
|
else {
|
|
Cy = Quad2.Cylinder();
|
|
Sp = Quad1.Sphere();
|
|
}
|
|
IntAna_QuadQuadGeo inter(Cy,Sp,Tol);
|
|
|
|
if (!inter.IsDone()) {return Standard_False;}
|
|
|
|
typint = inter.TypeInter();
|
|
Standard_Integer NbSol = inter.NbSolutions();
|
|
Empty = Standard_False;
|
|
|
|
switch (typint) {
|
|
|
|
case IntAna_Empty :
|
|
{
|
|
Empty = Standard_True;
|
|
}
|
|
break;
|
|
|
|
case IntAna_Point :
|
|
{
|
|
gp_Pnt psol(inter.Point(1));
|
|
Standard_Real U1,V1,U2,V2;
|
|
Quad1.Parameters(psol,U1,V1);
|
|
Quad2.Parameters(psol,U2,V2);
|
|
ptsol.SetValue(psol,Tol,Standard_True);
|
|
ptsol.SetParameters(U1,V1,U2,V2);
|
|
spnt.Append(ptsol);
|
|
}
|
|
break;
|
|
|
|
case IntAna_Circle:
|
|
{
|
|
cirsol = inter.Circle(1);
|
|
gp_Vec Tgt;
|
|
gp_Pnt ptref;
|
|
ElCLib::D1(0.,cirsol,ptref,Tgt);
|
|
|
|
if (NbSol == 1) {
|
|
gp_Vec TestCurvature(ptref,Sp.Location());
|
|
gp_Vec Normsp,Normcyl;
|
|
if (!Reversed) {
|
|
Normcyl = Quad1.Normale(ptref);
|
|
Normsp = Quad2.Normale(ptref);
|
|
}
|
|
else {
|
|
Normcyl = Quad2.Normale(ptref);
|
|
Normsp = Quad1.Normale(ptref);
|
|
}
|
|
|
|
IntSurf_Situation situcyl;
|
|
IntSurf_Situation situsp;
|
|
|
|
if (Normcyl.Dot(TestCurvature) > 0.) {
|
|
situsp = IntSurf_Outside;
|
|
if (Normsp.Dot(Normcyl) > 0.) {
|
|
situcyl = IntSurf_Inside;
|
|
}
|
|
else {
|
|
situcyl = IntSurf_Outside;
|
|
}
|
|
}
|
|
else {
|
|
situsp = IntSurf_Inside;
|
|
if (Normsp.Dot(Normcyl) > 0.) {
|
|
situcyl = IntSurf_Outside;
|
|
}
|
|
else {
|
|
situcyl = IntSurf_Inside;
|
|
}
|
|
}
|
|
Handle(IntPatch_GLine) glig;
|
|
if (!Reversed) {
|
|
glig = new IntPatch_GLine(cirsol, Standard_True, situcyl, situsp);
|
|
}
|
|
else {
|
|
glig = new IntPatch_GLine(cirsol, Standard_True, situsp, situcyl);
|
|
}
|
|
slin.Append(glig);
|
|
}
|
|
else {
|
|
if (Tgt.DotCross(Quad2.Normale(ptref),Quad1.Normale(ptref)) > 0.0) {
|
|
trans1 = IntSurf_Out;
|
|
trans2 = IntSurf_In;
|
|
}
|
|
else {
|
|
trans1 = IntSurf_In;
|
|
trans2 = IntSurf_Out;
|
|
}
|
|
Handle(IntPatch_GLine) glig = new IntPatch_GLine(cirsol,Standard_False,trans1,trans2);
|
|
slin.Append(glig);
|
|
|
|
cirsol = inter.Circle(2);
|
|
ElCLib::D1(0.,cirsol,ptref,Tgt);
|
|
Standard_Real qwe = Tgt.DotCross(Quad2.Normale(ptref),Quad1.Normale(ptref));
|
|
if(qwe> 0.0000001) {
|
|
trans1 = IntSurf_Out;
|
|
trans2 = IntSurf_In;
|
|
}
|
|
else if(qwe<-0.0000001) {
|
|
trans1 = IntSurf_In;
|
|
trans2 = IntSurf_Out;
|
|
}
|
|
else {
|
|
trans1=trans2=IntSurf_Undecided;
|
|
}
|
|
glig = new IntPatch_GLine(cirsol,Standard_False,trans1,trans2);
|
|
slin.Append(glig);
|
|
}
|
|
}
|
|
break;
|
|
|
|
case IntAna_NoGeometricSolution:
|
|
{
|
|
gp_Pnt psol;
|
|
Standard_Real U1,V1,U2,V2;
|
|
IntAna_IntQuadQuad anaint(Cy,Sp,Tol);
|
|
if (!anaint.IsDone()) {
|
|
return Standard_False;
|
|
}
|
|
|
|
if (anaint.NbPnt()==0 && anaint.NbCurve()==0) {
|
|
Empty = Standard_True;
|
|
}
|
|
else {
|
|
|
|
NbSol = anaint.NbPnt();
|
|
for (i = 1; i <= NbSol; i++) {
|
|
psol = anaint.Point(i);
|
|
Quad1.Parameters(psol,U1,V1);
|
|
Quad2.Parameters(psol,U2,V2);
|
|
ptsol.SetValue(psol,Tol,Standard_True);
|
|
ptsol.SetParameters(U1,V1,U2,V2);
|
|
spnt.Append(ptsol);
|
|
}
|
|
|
|
gp_Pnt ptvalid,ptf,ptl;
|
|
gp_Vec tgvalid;
|
|
Standard_Real first,last,para;
|
|
IntAna_Curve curvsol;
|
|
Standard_Boolean tgfound;
|
|
Standard_Integer kount;
|
|
|
|
NbSol = anaint.NbCurve();
|
|
for (i = 1; i <= NbSol; i++) {
|
|
curvsol = anaint.Curve(i);
|
|
curvsol.Domain(first,last);
|
|
ptf = curvsol.Value(first);
|
|
ptl = curvsol.Value(last);
|
|
|
|
para = last;
|
|
kount = 1;
|
|
tgfound = Standard_False;
|
|
|
|
while (!tgfound) {
|
|
para = (1.123*first + para)/2.123;
|
|
tgfound = curvsol.D1u(para,ptvalid,tgvalid);
|
|
if (!tgfound) {
|
|
kount ++;
|
|
tgfound = kount > 5;
|
|
}
|
|
}
|
|
Handle(IntPatch_ALine) alig;
|
|
if (kount <= 5) {
|
|
Standard_Real qwe = tgvalid.DotCross(Quad2.Normale(ptvalid),
|
|
Quad1.Normale(ptvalid));
|
|
if(qwe> 0.00000001) {
|
|
trans1 = IntSurf_Out;
|
|
trans2 = IntSurf_In;
|
|
}
|
|
else if(qwe<-0.00000001) {
|
|
trans1 = IntSurf_In;
|
|
trans2 = IntSurf_Out;
|
|
}
|
|
else {
|
|
trans1=trans2=IntSurf_Undecided;
|
|
}
|
|
alig = new IntPatch_ALine(curvsol,Standard_False,trans1,trans2);
|
|
}
|
|
else {
|
|
alig = new IntPatch_ALine(curvsol,Standard_False);
|
|
}
|
|
Standard_Boolean TempFalse1a = Standard_False;
|
|
Standard_Boolean TempFalse2a = Standard_False;
|
|
|
|
//-- ptf et ptl : points debut et fin de alig
|
|
|
|
ProcessBounds(alig,slin,Quad1,Quad2,TempFalse1a,ptf,first,
|
|
TempFalse2a,ptl,last,Multpoint,Tol);
|
|
slin.Append(alig);
|
|
} //-- boucle sur les lignes
|
|
} //-- solution avec au moins une lihne
|
|
}
|
|
break;
|
|
|
|
default:
|
|
{
|
|
return Standard_False;
|
|
}
|
|
}
|
|
return Standard_True;
|
|
}
|
|
//=======================================================================
|
|
//function : IntCyCo
|
|
//purpose :
|
|
//=======================================================================
|
|
Standard_Boolean IntCyCo(const IntSurf_Quadric& Quad1,
|
|
const IntSurf_Quadric& Quad2,
|
|
const Standard_Real Tol,
|
|
const Standard_Boolean Reversed,
|
|
Standard_Boolean& Empty,
|
|
Standard_Boolean& Multpoint,
|
|
IntPatch_SequenceOfLine& slin,
|
|
IntPatch_SequenceOfPoint& spnt)
|
|
|
|
{
|
|
IntPatch_Point ptsol;
|
|
|
|
Standard_Integer i;
|
|
|
|
IntSurf_TypeTrans trans1,trans2;
|
|
IntAna_ResultType typint;
|
|
gp_Circ cirsol;
|
|
|
|
gp_Cylinder Cy;
|
|
gp_Cone Co;
|
|
|
|
if (!Reversed) {
|
|
Cy = Quad1.Cylinder();
|
|
Co = Quad2.Cone();
|
|
}
|
|
else {
|
|
Cy = Quad2.Cylinder();
|
|
Co = Quad1.Cone();
|
|
}
|
|
IntAna_QuadQuadGeo inter(Cy,Co,Tol);
|
|
|
|
if (!inter.IsDone()) {return Standard_False;}
|
|
|
|
typint = inter.TypeInter();
|
|
Standard_Integer NbSol = inter.NbSolutions();
|
|
Empty = Standard_False;
|
|
|
|
switch (typint) {
|
|
|
|
case IntAna_Empty : {
|
|
Empty = Standard_True;
|
|
}
|
|
break;
|
|
|
|
case IntAna_Point :{
|
|
gp_Pnt psol(inter.Point(1));
|
|
Standard_Real U1,V1,U2,V2;
|
|
Quad1.Parameters(psol,U1,V1);
|
|
Quad1.Parameters(psol,U2,V2);
|
|
ptsol.SetValue(psol,Tol,Standard_True);
|
|
ptsol.SetParameters(U1,V1,U2,V2);
|
|
spnt.Append(ptsol);
|
|
}
|
|
break;
|
|
|
|
case IntAna_Circle: {
|
|
gp_Vec Tgt;
|
|
gp_Pnt ptref;
|
|
Standard_Integer j;
|
|
Standard_Real qwe;
|
|
//
|
|
for(j=1; j<=2; ++j) {
|
|
cirsol = inter.Circle(j);
|
|
ElCLib::D1(0.,cirsol,ptref,Tgt);
|
|
qwe = Tgt.DotCross(Quad2.Normale(ptref),Quad1.Normale(ptref));
|
|
if(qwe> 0.00000001) {
|
|
trans1 = IntSurf_Out;
|
|
trans2 = IntSurf_In;
|
|
}
|
|
else if(qwe<-0.00000001) {
|
|
trans1 = IntSurf_In;
|
|
trans2 = IntSurf_Out;
|
|
}
|
|
else {
|
|
trans1=trans2=IntSurf_Undecided;
|
|
}
|
|
Handle(IntPatch_GLine) glig = new IntPatch_GLine(cirsol,Standard_False,trans1,trans2);
|
|
slin.Append(glig);
|
|
}
|
|
}
|
|
break;
|
|
|
|
case IntAna_NoGeometricSolution: {
|
|
gp_Pnt psol;
|
|
Standard_Real U1,V1,U2,V2;
|
|
IntAna_IntQuadQuad anaint(Cy,Co,Tol);
|
|
if (!anaint.IsDone()) {
|
|
return Standard_False;
|
|
}
|
|
|
|
if (anaint.NbPnt() == 0 && anaint.NbCurve() == 0) {
|
|
Empty = Standard_True;
|
|
}
|
|
else {
|
|
NbSol = anaint.NbPnt();
|
|
for (i = 1; i <= NbSol; i++) {
|
|
psol = anaint.Point(i);
|
|
Quad1.Parameters(psol,U1,V1);
|
|
Quad2.Parameters(psol,U2,V2);
|
|
ptsol.SetValue(psol,Tol,Standard_True);
|
|
ptsol.SetParameters(U1,V1,U2,V2);
|
|
spnt.Append(ptsol);
|
|
}
|
|
|
|
gp_Pnt ptvalid, ptf, ptl;
|
|
gp_Vec tgvalid;
|
|
//
|
|
Standard_Real first,last,para;
|
|
Standard_Boolean tgfound,firstp,lastp,kept;
|
|
Standard_Integer kount;
|
|
//
|
|
//
|
|
//IntAna_Curve curvsol;
|
|
IntAna_Curve aC;
|
|
IntAna_ListOfCurve aLC;
|
|
IntAna_ListIteratorOfListOfCurve aIt;
|
|
|
|
//
|
|
NbSol = anaint.NbCurve();
|
|
for (i = 1; i <= NbSol; ++i) {
|
|
kept = Standard_False;
|
|
//curvsol = anaint.Curve(i);
|
|
aC=anaint.Curve(i);
|
|
aLC.Clear();
|
|
ExploreCurve(Co, aC, 10.*Tol, aLC);
|
|
//
|
|
aIt.Initialize(aLC);
|
|
for (; aIt.More(); aIt.Next()) {
|
|
IntAna_Curve& curvsol=aIt.Value();
|
|
//
|
|
curvsol.Domain(first, last);
|
|
firstp = !curvsol.IsFirstOpen();
|
|
lastp = !curvsol.IsLastOpen();
|
|
if (firstp) {
|
|
ptf = curvsol.Value(first);
|
|
}
|
|
if (lastp) {
|
|
ptl = curvsol.Value(last);
|
|
}
|
|
para = last;
|
|
kount = 1;
|
|
tgfound = Standard_False;
|
|
|
|
while (!tgfound) {
|
|
para = (1.123*first + para)/2.123;
|
|
tgfound = curvsol.D1u(para,ptvalid,tgvalid);
|
|
if (!tgfound) {
|
|
kount ++;
|
|
tgfound = kount > 5;
|
|
}
|
|
}
|
|
Handle(IntPatch_ALine) alig;
|
|
if (kount <= 5) {
|
|
Standard_Real qwe = tgvalid.DotCross(Quad2.Normale(ptvalid),
|
|
Quad1.Normale(ptvalid));
|
|
if(qwe> 0.00000001) {
|
|
trans1 = IntSurf_Out;
|
|
trans2 = IntSurf_In;
|
|
}
|
|
else if(qwe<-0.00000001) {
|
|
trans1 = IntSurf_In;
|
|
trans2 = IntSurf_Out;
|
|
}
|
|
else {
|
|
trans1=trans2=IntSurf_Undecided;
|
|
}
|
|
alig = new IntPatch_ALine(curvsol,Standard_False,trans1,trans2);
|
|
kept = Standard_True;
|
|
}
|
|
else {
|
|
ptvalid = curvsol.Value(para);
|
|
alig = new IntPatch_ALine(curvsol,Standard_False);
|
|
kept = Standard_True;
|
|
//-- std::cout << "Transition indeterminee" << std::endl;
|
|
}
|
|
if (kept) {
|
|
Standard_Boolean Nfirstp = !firstp;
|
|
Standard_Boolean Nlastp = !lastp;
|
|
ProcessBounds(alig,slin,Quad1,Quad2,Nfirstp,ptf,first,
|
|
Nlastp,ptl,last,Multpoint,Tol);
|
|
slin.Append(alig);
|
|
}
|
|
} // for (; aIt.More(); aIt.Next())
|
|
} // for (i = 1; i <= NbSol; ++i)
|
|
}
|
|
}
|
|
break;
|
|
|
|
default:
|
|
return Standard_False;
|
|
|
|
} // switch (typint)
|
|
|
|
return Standard_True;
|
|
}
|
|
//=======================================================================
|
|
//function : ExploreCurve
|
|
//purpose : Splits aC on several curves in the cone apex points.
|
|
//=======================================================================
|
|
Standard_Boolean ExploreCurve(const gp_Cone& theCo,
|
|
IntAna_Curve& theCrv,
|
|
const Standard_Real theTol,
|
|
IntAna_ListOfCurve& theLC)
|
|
{
|
|
const Standard_Real aSqTol = theTol*theTol;
|
|
const gp_Pnt aPapx(theCo.Apex());
|
|
|
|
Standard_Real aT1, aT2;
|
|
theCrv.Domain(aT1, aT2);
|
|
|
|
theLC.Clear();
|
|
//
|
|
TColStd_ListOfReal aLParams;
|
|
theCrv.FindParameter(aPapx, aLParams);
|
|
if (aLParams.IsEmpty())
|
|
{
|
|
theLC.Append(theCrv);
|
|
return Standard_False;
|
|
}
|
|
|
|
for (TColStd_ListIteratorOfListOfReal anItr(aLParams); anItr.More(); anItr.Next())
|
|
{
|
|
Standard_Real aPrm = anItr.Value();
|
|
|
|
if ((aPrm - aT1) < Precision::PConfusion())
|
|
continue;
|
|
|
|
Standard_Boolean isLast = Standard_False;
|
|
if ((aT2 - aPrm) < Precision::PConfusion())
|
|
{
|
|
aPrm = aT2;
|
|
isLast = Standard_True;
|
|
}
|
|
|
|
const gp_Pnt aP = theCrv.Value(aPrm);
|
|
const Standard_Real aSqD = aP.SquareDistance(aPapx);
|
|
if (aSqD < aSqTol)
|
|
{
|
|
IntAna_Curve aC1 = theCrv;
|
|
aC1.SetDomain(aT1, aPrm);
|
|
aT1 = aPrm;
|
|
theLC.Append(aC1);
|
|
}
|
|
|
|
if (isLast)
|
|
break;
|
|
}
|
|
|
|
if (theLC.IsEmpty())
|
|
{
|
|
theLC.Append(theCrv);
|
|
return Standard_False;
|
|
}
|
|
|
|
if ((aT2 - aT1) > Precision::PConfusion())
|
|
{
|
|
IntAna_Curve aC1 = theCrv;
|
|
aC1.SetDomain(aT1, aT2);
|
|
theLC.Append(aC1);
|
|
}
|
|
|
|
return Standard_True;
|
|
}
|