mirror of
https://git.dev.opencascade.org/repos/occt.git
synced 2025-04-03 17:56:21 +03:00
3012 lines
95 KiB
C++
3012 lines
95 KiB
C++
// Created on: 1993-07-07
|
|
// Created by: Jean Claude VAUTHIER
|
|
// Copyright (c) 1993-1999 Matra Datavision
|
|
// Copyright (c) 1999-2014 OPEN CASCADE SAS
|
|
//
|
|
// This file is part of Open CASCADE Technology software library.
|
|
//
|
|
// This library is free software; you can redistribute it and/or modify it under
|
|
// the terms of the GNU Lesser General Public License version 2.1 as published
|
|
// by the Free Software Foundation, with special exception defined in the file
|
|
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
|
|
// distribution for complete text of the license and disclaimer of any warranty.
|
|
//
|
|
// Alternatively, this file may be used under the terms of Open CASCADE
|
|
// commercial license or contractual agreement.
|
|
|
|
// Version:
|
|
//pmn 24/09/96 Ajout du prolongement de courbe.
|
|
// jct 15/04/97 Ajout du prolongement de surface.
|
|
// jct 24/04/97 simplification ou suppression de calculs
|
|
// inutiles dans ExtendSurfByLength
|
|
// correction de Tbord et Continuity=0 accepte
|
|
// correction du calcul de lambda et appel a
|
|
// TangExtendToConstraint avec lambmin au lieu de 1.
|
|
// correction du passage Sr rat --> BSp nD
|
|
// xab 26/06/97 treatement partiel anulation des derivees
|
|
// partiels du denonimateur des Surfaces BSplines Rationnelles
|
|
// dans le cas de valeurs proportionnelles des denominateurs
|
|
// en umin umax et/ou vmin vmax.
|
|
// pmn 4/07/97 Gestion de la continuite dans BuildCurve3d (PRO9097)
|
|
// xab 10/07/97 on revient en arriere sur l'ajout du 26/06/97
|
|
// pmn 26/09/97 Ajout des parametres d'approx dans BuildCurve3d
|
|
// xab 29/09/97 on reintegre l'ajout du 26/06/97
|
|
// pmn 31/10/97 Ajoute AdjustExtremity
|
|
// jct 26/11/98 blindage dans ExtendSurf qd NTgte = 0 (CTS21288)
|
|
// jct 19/01/99 traitement de la periodicite dans ExtendSurf
|
|
// Design:
|
|
// Warning: None
|
|
// References: None
|
|
// Language: C++2.0
|
|
// Purpose:
|
|
// Declarations:
|
|
|
|
#include <Adaptor2d_HCurve2d.hxx>
|
|
#include <Adaptor3d_Curve.hxx>
|
|
#include <Adaptor3d_CurveOnSurface.hxx>
|
|
#include <Adaptor3d_HCurve.hxx>
|
|
#include <Adaptor3d_HSurface.hxx>
|
|
#include <AdvApprox_ApproxAFunction.hxx>
|
|
#include <AdvApprox_PrefAndRec.hxx>
|
|
#include <Approx_CurveOnSurface.hxx>
|
|
#include <BSplCLib.hxx>
|
|
#include <BSplSLib.hxx>
|
|
#include <CSLib.hxx>
|
|
#include <CSLib_NormalStatus.hxx>
|
|
#include <ElCLib.hxx>
|
|
#include <Geom2d_BezierCurve.hxx>
|
|
#include <Geom2d_BSplineCurve.hxx>
|
|
#include <Geom2d_Circle.hxx>
|
|
#include <Geom2d_Curve.hxx>
|
|
#include <Geom2d_Ellipse.hxx>
|
|
#include <Geom2d_Hyperbola.hxx>
|
|
#include <Geom2d_Line.hxx>
|
|
#include <Geom2d_OffsetCurve.hxx>
|
|
#include <Geom2d_Parabola.hxx>
|
|
#include <Geom2d_TrimmedCurve.hxx>
|
|
#include <Geom2dAdaptor_Curve.hxx>
|
|
#include <Geom2dAdaptor_GHCurve.hxx>
|
|
#include <Geom2dAdaptor_HCurve.hxx>
|
|
#include <Geom2dConvert.hxx>
|
|
#include <Geom_BezierCurve.hxx>
|
|
#include <Geom_BezierSurface.hxx>
|
|
#include <Geom_BoundedCurve.hxx>
|
|
#include <Geom_BoundedSurface.hxx>
|
|
#include <Geom_BSplineCurve.hxx>
|
|
#include <Geom_BSplineSurface.hxx>
|
|
#include <Geom_Circle.hxx>
|
|
#include <Geom_Curve.hxx>
|
|
#include <Geom_Ellipse.hxx>
|
|
#include <Geom_Hyperbola.hxx>
|
|
#include <Geom_Line.hxx>
|
|
#include <Geom_OffsetCurve.hxx>
|
|
#include <Geom_Parabola.hxx>
|
|
#include <Geom_Plane.hxx>
|
|
#include <Geom_RectangularTrimmedSurface.hxx>
|
|
#include <Geom_Surface.hxx>
|
|
#include <Geom_TrimmedCurve.hxx>
|
|
#include <GeomAdaptor_HSurface.hxx>
|
|
#include <GeomAdaptor_Surface.hxx>
|
|
#include <GeomConvert.hxx>
|
|
#include <GeomConvert_ApproxSurface.hxx>
|
|
#include <GeomConvert_CompCurveToBSplineCurve.hxx>
|
|
#include <GeomLib.hxx>
|
|
#include <GeomLib_DenominatorMultiplier.hxx>
|
|
#include <GeomLib_DenominatorMultiplierPtr.hxx>
|
|
#include <GeomLib_LogSample.hxx>
|
|
#include <GeomLib_MakeCurvefromApprox.hxx>
|
|
#include <GeomLib_PolyFunc.hxx>
|
|
#include <gp_Ax2.hxx>
|
|
#include <gp_Circ.hxx>
|
|
#include <gp_Circ2d.hxx>
|
|
#include <gp_Dir.hxx>
|
|
#include <gp_Elips.hxx>
|
|
#include <gp_Elips2d.hxx>
|
|
#include <gp_GTrsf2d.hxx>
|
|
#include <gp_Hypr.hxx>
|
|
#include <gp_Hypr2d.hxx>
|
|
#include <gp_Lin.hxx>
|
|
#include <gp_Lin2d.hxx>
|
|
#include <gp_Parab.hxx>
|
|
#include <gp_Parab2d.hxx>
|
|
#include <gp_Pnt.hxx>
|
|
#include <gp_Pnt2d.hxx>
|
|
#include <gp_Trsf2d.hxx>
|
|
#include <gp_TrsfForm.hxx>
|
|
#include <gp_Vec.hxx>
|
|
#include <Hermit.hxx>
|
|
#include <math.hxx>
|
|
#include <math_FunctionAllRoots.hxx>
|
|
#include <math_FunctionSample.hxx>
|
|
#include <math_Jacobi.hxx>
|
|
#include <math_Matrix.hxx>
|
|
#include <math_Vector.hxx>
|
|
#include <PLib.hxx>
|
|
#include <Precision.hxx>
|
|
#include <Standard_ConstructionError.hxx>
|
|
#include <Standard_NotImplemented.hxx>
|
|
#include <TColgp_Array1OfPnt.hxx>
|
|
#include <TColgp_Array1OfPnt2d.hxx>
|
|
#include <TColgp_Array1OfVec.hxx>
|
|
#include <TColgp_Array1OfXYZ.hxx>
|
|
#include <TColgp_Array2OfPnt.hxx>
|
|
#include <TColgp_HArray2OfPnt.hxx>
|
|
#include <TColStd_Array1OfInteger.hxx>
|
|
#include <TColStd_Array1OfReal.hxx>
|
|
#include <TColStd_Array2OfReal.hxx>
|
|
#include <TColStd_HArray1OfReal.hxx>
|
|
#include <TColStd_HArray2OfReal.hxx>
|
|
//
|
|
static Standard_Boolean CompareWeightPoles(const TColgp_Array1OfPnt& thePoles1,
|
|
const TColStd_Array1OfReal* const theW1,
|
|
const TColgp_Array1OfPnt& thePoles2,
|
|
const TColStd_Array1OfReal* const theW2,
|
|
const Standard_Real theTol);
|
|
|
|
//=======================================================================
|
|
//function : ComputeLambda
|
|
//purpose : Calcul le facteur lambda qui minimise la variation de vittesse
|
|
// sur une interpolation d'hermite d'ordre (i,0)
|
|
//=======================================================================
|
|
static void ComputeLambda(const math_Matrix& Constraint,
|
|
const math_Matrix& Hermit,
|
|
const Standard_Real Length,
|
|
Standard_Real& Lambda )
|
|
{
|
|
Standard_Integer size = Hermit.RowNumber();
|
|
Standard_Integer Continuity = size-2;
|
|
Standard_Integer ii, jj, ip, pp;
|
|
|
|
//Minimization
|
|
math_Matrix HDer(1, size-1, 1, size);
|
|
for (jj=1; jj<=size; jj++) {
|
|
for (ii=1; ii<size;ii++) {
|
|
HDer(ii, jj) = ii*Hermit(jj, ii+1);
|
|
}
|
|
}
|
|
|
|
math_Vector V(1, size);
|
|
math_Vector Vec1(1, Constraint.RowNumber());
|
|
math_Vector Vec2(1, Constraint.RowNumber());
|
|
math_Vector Vec3(1, Constraint.RowNumber());
|
|
math_Vector Vec4(1, Constraint.RowNumber());
|
|
|
|
Standard_Real * polynome = &HDer(1,1);
|
|
Standard_Real * valhder = &V(1);
|
|
Vec2 = Constraint.Col(2);
|
|
Vec2 /= Length;
|
|
Standard_Real t, squared1 = Vec2.Norm2(), GW;
|
|
// math_Matrix Vec(1, Constraint.RowNumber(), 1, size-1);
|
|
// gp_Vec Vfirst(p0.XYZ()), Vlast(Point.XYZ());
|
|
// TColgp_Array1OfVec Der(2, 4);
|
|
// Der(2) = d1; Der(3) = d2; Der(4) = d3;
|
|
|
|
Standard_Integer GOrdre = 4 + 4*Continuity,
|
|
DDim=Continuity*(Continuity+2);
|
|
math_Vector GaussP(1, GOrdre), GaussW(1, GOrdre),
|
|
pol2(1, 2*Continuity+1),
|
|
pol4(1, 4*Continuity+1);
|
|
math::GaussPoints(GOrdre, GaussP);
|
|
math::GaussWeights (GOrdre, GaussW);
|
|
pol4.Init(0.);
|
|
|
|
for (ip=1; ip<=GOrdre; ip++) {
|
|
t = (GaussP(ip)+1.)/2;
|
|
GW = GaussW(ip);
|
|
PLib::NoDerivativeEvalPolynomial(t , Continuity, Continuity+2, DDim,
|
|
polynome[0], valhder[0]);
|
|
V /= Length; //Normalisation
|
|
|
|
// i
|
|
// C'(t) = SUM Vi*Lambda
|
|
Vec1 = Constraint.Col(1);
|
|
Vec1 *= V(1);
|
|
Vec1 += V(size)*Constraint.Col(size);
|
|
Vec2 = Constraint.Col(2);
|
|
Vec2 *= V(2);
|
|
if (Continuity > 1) {
|
|
Vec3 = Constraint.Col(3);
|
|
Vec3 *= V(3);
|
|
if (Continuity > 2) {
|
|
Vec4 = Constraint.Col(4);
|
|
Vec4 *= V(4);
|
|
}
|
|
}
|
|
|
|
|
|
// 2 2
|
|
// C'(t) - C'(0)
|
|
|
|
pol2(1) = Vec1.Norm2();
|
|
pol2(2) = 2*(Vec1.Multiplied(Vec2));
|
|
pol2(3) = Vec2.Norm2() - squared1;
|
|
if (Continuity>1) {
|
|
pol2(3) += 2*(Vec1.Multiplied(Vec3));
|
|
pol2(4) = 2*(Vec2.Multiplied(Vec3));
|
|
pol2(5) = Vec3.Norm2();
|
|
if (Continuity>2) {
|
|
pol2(4)+= 2*(Vec1.Multiplied(Vec4));
|
|
pol2(5)+= 2*(Vec2.Multiplied(Vec4));
|
|
pol2(6) = 2*(Vec3.Multiplied(Vec4));
|
|
pol2(7) = Vec4.Norm2();
|
|
}
|
|
}
|
|
|
|
// 2 2 2
|
|
// Integrale de ( C'(t) - C'(0) )
|
|
for (ii=1; ii<=pol2.Length(); ii++) {
|
|
pp = ii;
|
|
for(jj=1; jj<ii; jj++, pp++) {
|
|
pol4(pp) += 2*GW*pol2(ii)*pol2(jj);
|
|
}
|
|
pol4(2*ii-1) += GW*Pow(pol2(ii), 2);
|
|
}
|
|
}
|
|
|
|
Standard_Real EMin, E;
|
|
PLib::NoDerivativeEvalPolynomial(Lambda , pol4.Length()-1, 1,
|
|
pol4.Length()-1,
|
|
pol4(1), EMin);
|
|
|
|
if (EMin > Precision::Confusion()) {
|
|
// Recheche des extrema de la fonction
|
|
GeomLib_PolyFunc FF(pol4);
|
|
GeomLib_LogSample S(Lambda/1000, 50*Lambda, 100);
|
|
math_FunctionAllRoots Solve(FF, S, Precision::Confusion(),
|
|
Precision::Confusion()*(Length+1),
|
|
1.e-15);
|
|
if (Solve.IsDone()) {
|
|
for (ii=1; ii<=Solve.NbPoints(); ii++) {
|
|
t = Solve.GetPoint(ii);
|
|
PLib::NoDerivativeEvalPolynomial(t , pol4.Length()-1, 1,
|
|
pol4.Length()-1,
|
|
pol4(1), E);
|
|
if (E < EMin) {
|
|
Lambda = t;
|
|
EMin = E;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#include <Extrema_LocateExtPC.hxx>
|
|
#include <Geom2d_Curve.hxx>
|
|
//=======================================================================
|
|
//function : RemovePointsFromArray
|
|
//purpose :
|
|
//=======================================================================
|
|
|
|
void GeomLib::RemovePointsFromArray(const Standard_Integer NumPoints,
|
|
const TColStd_Array1OfReal& InParameters,
|
|
Handle(TColStd_HArray1OfReal)& OutParameters)
|
|
{
|
|
Standard_Integer ii,
|
|
jj,
|
|
add_one_point,
|
|
loc_num_points,
|
|
num_points,
|
|
index ;
|
|
Standard_Real delta,
|
|
current_parameter ;
|
|
|
|
loc_num_points = Max(0,NumPoints-2) ;
|
|
delta = InParameters(InParameters.Upper()) - InParameters(InParameters.Lower()) ;
|
|
delta /= (Standard_Real) (loc_num_points + 1) ;
|
|
num_points = 1 ;
|
|
current_parameter = InParameters(InParameters.Lower()) + delta * 0.5e0 ;
|
|
ii = InParameters.Lower() + 1 ;
|
|
for (jj = 0 ; ii < InParameters.Upper() && jj < NumPoints ; jj++) {
|
|
add_one_point = 0 ;
|
|
while ( ii < InParameters.Upper() && InParameters(ii) < current_parameter) {
|
|
ii += 1 ;
|
|
add_one_point = 1 ;
|
|
}
|
|
num_points += add_one_point ;
|
|
current_parameter += delta ;
|
|
}
|
|
if (NumPoints <= 2) {
|
|
num_points = 2 ;
|
|
}
|
|
index = 2 ;
|
|
current_parameter = InParameters(InParameters.Lower()) + delta * 0.5e0 ;
|
|
OutParameters =
|
|
new TColStd_HArray1OfReal(1,num_points) ;
|
|
OutParameters->ChangeArray1()(1) = InParameters(InParameters.Lower()) ;
|
|
ii = InParameters.Lower() + 1 ;
|
|
for (jj = 0 ; ii < InParameters.Upper() && jj < NumPoints ; jj++) {
|
|
add_one_point = 0 ;
|
|
while (ii < InParameters.Upper() && InParameters(ii) < current_parameter) {
|
|
ii += 1 ;
|
|
add_one_point = 1 ;
|
|
}
|
|
if (add_one_point && index <= num_points) {
|
|
OutParameters->ChangeArray1()(index) = InParameters(ii-1) ;
|
|
index += 1 ;
|
|
}
|
|
current_parameter += delta ;
|
|
}
|
|
OutParameters->ChangeArray1()(num_points) = InParameters(InParameters.Upper()) ;
|
|
}
|
|
//=======================================================================
|
|
//function : DensifyArray1OfReal
|
|
//purpose :
|
|
//=======================================================================
|
|
|
|
void GeomLib::DensifyArray1OfReal(const Standard_Integer MinNumPoints,
|
|
const TColStd_Array1OfReal& InParameters,
|
|
Handle(TColStd_HArray1OfReal)& OutParameters)
|
|
{
|
|
Standard_Integer ii,
|
|
in_order,
|
|
num_points,
|
|
num_parameters_to_add,
|
|
index ;
|
|
Standard_Real delta,
|
|
current_parameter ;
|
|
|
|
in_order = 1 ;
|
|
if (MinNumPoints > InParameters.Length()) {
|
|
|
|
//
|
|
// checks the paramaters are in increasing order
|
|
//
|
|
for (ii = InParameters.Lower() ; ii < InParameters.Upper() ; ii++) {
|
|
if (InParameters(ii) > InParameters(ii+1)) {
|
|
in_order = 0 ;
|
|
break ;
|
|
}
|
|
}
|
|
if (in_order) {
|
|
num_parameters_to_add = MinNumPoints - InParameters.Length() ;
|
|
delta = InParameters(InParameters.Upper()) - InParameters(InParameters.Lower()) ;
|
|
delta /= (Standard_Real) (num_parameters_to_add + 1) ;
|
|
num_points = MinNumPoints ;
|
|
OutParameters =
|
|
new TColStd_HArray1OfReal(1,num_points) ;
|
|
index = 1 ;
|
|
current_parameter = InParameters(InParameters.Lower()) ;
|
|
OutParameters->ChangeArray1()(index) = current_parameter ;
|
|
index += 1 ;
|
|
current_parameter += delta ;
|
|
for (ii = InParameters.Lower() + 1 ; index <= num_points && ii <= InParameters.Upper() ; ii++) {
|
|
while (current_parameter < InParameters(ii) && index <= num_points) {
|
|
OutParameters->ChangeArray1()(index) = current_parameter ;
|
|
index += 1 ;
|
|
current_parameter += delta ;
|
|
}
|
|
if (index <= num_points) {
|
|
OutParameters->ChangeArray1()(index) = InParameters(ii) ;
|
|
}
|
|
index += 1 ;
|
|
}
|
|
//
|
|
// beware of roundoff !
|
|
//
|
|
OutParameters->ChangeArray1()(num_points) = InParameters(InParameters.Upper()) ;
|
|
}
|
|
else {
|
|
index = 1 ;
|
|
num_points = InParameters.Length() ;
|
|
OutParameters =
|
|
new TColStd_HArray1OfReal(1,num_points) ;
|
|
for (ii = InParameters.Lower() ; ii <= InParameters.Upper() ; ii++) {
|
|
OutParameters->ChangeArray1()(index) = InParameters(ii) ;
|
|
index += 1 ;
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
index = 1 ;
|
|
num_points = InParameters.Length() ;
|
|
OutParameters =
|
|
new TColStd_HArray1OfReal(1,num_points) ;
|
|
for (ii = InParameters.Lower() ; ii <= InParameters.Upper() ; ii++) {
|
|
OutParameters->ChangeArray1()(index) = InParameters(ii) ;
|
|
index += 1 ;
|
|
}
|
|
}
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : FuseIntervals
|
|
//purpose :
|
|
//=======================================================================
|
|
void GeomLib::FuseIntervals(const TColStd_Array1OfReal& I1,
|
|
const TColStd_Array1OfReal& I2,
|
|
TColStd_SequenceOfReal& Seq,
|
|
const Standard_Real Epspar)
|
|
{
|
|
Standard_Integer ind1=1, ind2=1;
|
|
Standard_Real v1, v2;
|
|
// Initialisations : les IND1 et IND2 pointent sur le 1er element
|
|
// de chacune des 2 tables a traiter.INDS pointe sur le dernier
|
|
// element cree de TABSOR
|
|
|
|
|
|
//--- On remplit TABSOR en parcourant TABLE1 et TABLE2 simultanement ---
|
|
//------------------ en eliminant les occurrences multiples ------------
|
|
|
|
while ((ind1<=I1.Upper()) && (ind2<=I2.Upper())) {
|
|
v1 = I1(ind1);
|
|
v2 = I2(ind2);
|
|
if (Abs(v1-v2)<= Epspar) {
|
|
// Ici les elements de I1 et I2 conviennent .
|
|
Seq.Append((v1+v2)/2);
|
|
ind1++;
|
|
ind2++;
|
|
}
|
|
else if (v1 < v2) {
|
|
// Ici l' element de I1 convient.
|
|
Seq.Append(v1);
|
|
ind1++;
|
|
}
|
|
else {
|
|
// Ici l' element de TABLE2 convient.
|
|
Seq.Append(v2);
|
|
ind2++;
|
|
}
|
|
}
|
|
|
|
if (ind1>I1.Upper()) {
|
|
//----- Ici I1 est epuise, on complete avec la fin de TABLE2 -------
|
|
|
|
for (; ind2<=I2.Upper(); ind2++) {
|
|
Seq.Append(I2(ind2));
|
|
}
|
|
}
|
|
|
|
if (ind2>I2.Upper()) {
|
|
//----- Ici I2 est epuise, on complete avec la fin de I1 -------
|
|
for (; ind1<=I1.Upper(); ind1++) {
|
|
Seq.Append(I1(ind1));
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
//=======================================================================
|
|
//function : EvalMaxParametricDistance
|
|
//purpose :
|
|
//=======================================================================
|
|
|
|
void GeomLib::EvalMaxParametricDistance(const Adaptor3d_Curve& ACurve,
|
|
const Adaptor3d_Curve& AReferenceCurve,
|
|
// const Standard_Real Tolerance,
|
|
const Standard_Real ,
|
|
const TColStd_Array1OfReal& Parameters,
|
|
Standard_Real& MaxDistance)
|
|
{
|
|
Standard_Integer ii ;
|
|
|
|
Standard_Real max_squared = 0.0e0,
|
|
// tolerance_squared,
|
|
local_distance_squared ;
|
|
|
|
// tolerance_squared = Tolerance * Tolerance ;
|
|
gp_Pnt Point1 ;
|
|
gp_Pnt Point2 ;
|
|
for (ii = Parameters.Lower() ; ii <= Parameters.Upper() ; ii++) {
|
|
ACurve.D0(Parameters(ii),
|
|
Point1) ;
|
|
AReferenceCurve.D0(Parameters(ii),
|
|
Point2) ;
|
|
local_distance_squared =
|
|
Point1.SquareDistance (Point2) ;
|
|
max_squared = Max(max_squared,local_distance_squared) ;
|
|
}
|
|
if (max_squared > 0.0e0) {
|
|
MaxDistance = sqrt(max_squared) ;
|
|
}
|
|
else {
|
|
MaxDistance = 0.0e0 ;
|
|
}
|
|
|
|
}
|
|
//=======================================================================
|
|
//function : EvalMaxDistanceAlongParameter
|
|
//purpose :
|
|
//=======================================================================
|
|
|
|
void GeomLib::EvalMaxDistanceAlongParameter(const Adaptor3d_Curve& ACurve,
|
|
const Adaptor3d_Curve& AReferenceCurve,
|
|
const Standard_Real Tolerance,
|
|
const TColStd_Array1OfReal& Parameters,
|
|
Standard_Real& MaxDistance)
|
|
{
|
|
Standard_Integer ii ;
|
|
Standard_Real max_squared = 0.0e0,
|
|
tolerance_squared = Tolerance * Tolerance,
|
|
other_parameter,
|
|
para_tolerance,
|
|
local_distance_squared ;
|
|
gp_Pnt Point1 ;
|
|
gp_Pnt Point2 ;
|
|
|
|
|
|
|
|
para_tolerance =
|
|
AReferenceCurve.Resolution(Tolerance) ;
|
|
other_parameter = Parameters(Parameters.Lower()) ;
|
|
ACurve.D0(other_parameter,
|
|
Point1) ;
|
|
Extrema_LocateExtPC a_projector(Point1,
|
|
AReferenceCurve,
|
|
other_parameter,
|
|
para_tolerance) ;
|
|
for (ii = Parameters.Lower() ; ii <= Parameters.Upper() ; ii++) {
|
|
ACurve.D0(Parameters(ii),
|
|
Point1) ;
|
|
AReferenceCurve.D0(Parameters(ii),
|
|
Point2) ;
|
|
local_distance_squared =
|
|
Point1.SquareDistance (Point2) ;
|
|
|
|
local_distance_squared =
|
|
Point1.SquareDistance (Point2) ;
|
|
|
|
|
|
if (local_distance_squared > tolerance_squared) {
|
|
|
|
|
|
a_projector.Perform(Point1,
|
|
other_parameter) ;
|
|
if (a_projector.IsDone()) {
|
|
other_parameter =
|
|
a_projector.Point().Parameter() ;
|
|
AReferenceCurve.D0(other_parameter,
|
|
Point2) ;
|
|
local_distance_squared =
|
|
Point1.SquareDistance (Point2) ;
|
|
}
|
|
else {
|
|
local_distance_squared = 0.0e0 ;
|
|
other_parameter = Parameters(ii) ;
|
|
}
|
|
}
|
|
else {
|
|
other_parameter = Parameters(ii) ;
|
|
}
|
|
|
|
|
|
max_squared = Max(max_squared,local_distance_squared) ;
|
|
}
|
|
if (max_squared > tolerance_squared) {
|
|
MaxDistance = sqrt(max_squared) ;
|
|
}
|
|
else {
|
|
MaxDistance = Tolerance ;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
// Aliases:
|
|
|
|
// Global data definitions:
|
|
|
|
// Methods :
|
|
|
|
|
|
//=======================================================================
|
|
//function : To3d
|
|
//purpose :
|
|
//=======================================================================
|
|
|
|
Handle(Geom_Curve) GeomLib::To3d (const gp_Ax2& Position,
|
|
const Handle(Geom2d_Curve)& Curve2d ) {
|
|
Handle(Geom_Curve) Curve3d;
|
|
Handle(Standard_Type) KindOfCurve = Curve2d->DynamicType();
|
|
|
|
if (KindOfCurve == STANDARD_TYPE (Geom2d_TrimmedCurve)) {
|
|
Handle(Geom2d_TrimmedCurve) Ct =
|
|
Handle(Geom2d_TrimmedCurve)::DownCast(Curve2d);
|
|
Standard_Real U1 = Ct->FirstParameter ();
|
|
Standard_Real U2 = Ct->LastParameter ();
|
|
Handle(Geom2d_Curve) CBasis2d = Ct->BasisCurve();
|
|
Handle(Geom_Curve) CC = GeomLib::To3d(Position, CBasis2d);
|
|
Curve3d = new Geom_TrimmedCurve (CC, U1, U2);
|
|
}
|
|
else if (KindOfCurve == STANDARD_TYPE (Geom2d_OffsetCurve)) {
|
|
Handle(Geom2d_OffsetCurve) Co =
|
|
Handle(Geom2d_OffsetCurve)::DownCast(Curve2d);
|
|
Standard_Real Offset = Co->Offset();
|
|
Handle(Geom2d_Curve) CBasis2d = Co->BasisCurve();
|
|
Handle(Geom_Curve) CC = GeomLib::To3d(Position, CBasis2d);
|
|
Curve3d = new Geom_OffsetCurve (CC, Offset, Position.Direction());
|
|
}
|
|
else if (KindOfCurve == STANDARD_TYPE (Geom2d_BezierCurve)) {
|
|
Handle(Geom2d_BezierCurve) CBez2d =
|
|
Handle(Geom2d_BezierCurve)::DownCast (Curve2d);
|
|
Standard_Integer Nbpoles = CBez2d->NbPoles ();
|
|
TColgp_Array1OfPnt2d Poles2d (1, Nbpoles);
|
|
CBez2d->Poles (Poles2d);
|
|
TColgp_Array1OfPnt Poles3d (1, Nbpoles);
|
|
for (Standard_Integer i = 1; i <= Nbpoles; i++) {
|
|
Poles3d (i) = ElCLib::To3d (Position, Poles2d (i));
|
|
}
|
|
Handle(Geom_BezierCurve) CBez3d;
|
|
if (CBez2d->IsRational()) {
|
|
TColStd_Array1OfReal TheWeights (1, Nbpoles);
|
|
CBez2d->Weights (TheWeights);
|
|
CBez3d = new Geom_BezierCurve (Poles3d, TheWeights);
|
|
}
|
|
else {
|
|
CBez3d = new Geom_BezierCurve (Poles3d);
|
|
}
|
|
Curve3d = CBez3d;
|
|
}
|
|
else if (KindOfCurve == STANDARD_TYPE (Geom2d_BSplineCurve)) {
|
|
Handle(Geom2d_BSplineCurve) CBSpl2d =
|
|
Handle(Geom2d_BSplineCurve)::DownCast (Curve2d);
|
|
Standard_Integer Nbpoles = CBSpl2d->NbPoles ();
|
|
Standard_Integer Nbknots = CBSpl2d->NbKnots ();
|
|
Standard_Integer TheDegree = CBSpl2d->Degree ();
|
|
Standard_Boolean IsPeriodic = CBSpl2d->IsPeriodic();
|
|
TColgp_Array1OfPnt2d Poles2d (1, Nbpoles);
|
|
CBSpl2d->Poles (Poles2d);
|
|
TColgp_Array1OfPnt Poles3d (1, Nbpoles);
|
|
for (Standard_Integer i = 1; i <= Nbpoles; i++) {
|
|
Poles3d (i) = ElCLib::To3d (Position, Poles2d (i));
|
|
}
|
|
TColStd_Array1OfReal TheKnots (1, Nbknots);
|
|
TColStd_Array1OfInteger TheMults (1, Nbknots);
|
|
CBSpl2d->Knots (TheKnots);
|
|
CBSpl2d->Multiplicities (TheMults);
|
|
Handle(Geom_BSplineCurve) CBSpl3d;
|
|
if (CBSpl2d->IsRational()) {
|
|
TColStd_Array1OfReal TheWeights (1, Nbpoles);
|
|
CBSpl2d->Weights (TheWeights);
|
|
CBSpl3d = new Geom_BSplineCurve (Poles3d, TheWeights, TheKnots, TheMults, TheDegree, IsPeriodic);
|
|
}
|
|
else {
|
|
CBSpl3d = new Geom_BSplineCurve (Poles3d, TheKnots, TheMults, TheDegree, IsPeriodic);
|
|
}
|
|
Curve3d = CBSpl3d;
|
|
}
|
|
else if (KindOfCurve == STANDARD_TYPE (Geom2d_Line)) {
|
|
Handle(Geom2d_Line) Line2d = Handle(Geom2d_Line)::DownCast (Curve2d);
|
|
gp_Lin2d L2d = Line2d->Lin2d();
|
|
gp_Lin L3d = ElCLib::To3d (Position, L2d);
|
|
Handle(Geom_Line) GeomL3d = new Geom_Line (L3d);
|
|
Curve3d = GeomL3d;
|
|
}
|
|
else if (KindOfCurve == STANDARD_TYPE (Geom2d_Circle)) {
|
|
Handle(Geom2d_Circle) Circle2d =
|
|
Handle(Geom2d_Circle)::DownCast (Curve2d);
|
|
gp_Circ2d C2d = Circle2d->Circ2d();
|
|
gp_Circ C3d = ElCLib::To3d (Position, C2d);
|
|
Handle(Geom_Circle) GeomC3d = new Geom_Circle (C3d);
|
|
Curve3d = GeomC3d;
|
|
}
|
|
else if (KindOfCurve == STANDARD_TYPE (Geom2d_Ellipse)) {
|
|
Handle(Geom2d_Ellipse) Ellipse2d =
|
|
Handle(Geom2d_Ellipse)::DownCast (Curve2d);
|
|
gp_Elips2d E2d = Ellipse2d->Elips2d ();
|
|
gp_Elips E3d = ElCLib::To3d (Position, E2d);
|
|
Handle(Geom_Ellipse) GeomE3d = new Geom_Ellipse (E3d);
|
|
Curve3d = GeomE3d;
|
|
}
|
|
else if (KindOfCurve == STANDARD_TYPE (Geom2d_Parabola)) {
|
|
Handle(Geom2d_Parabola) Parabola2d =
|
|
Handle(Geom2d_Parabola)::DownCast (Curve2d);
|
|
gp_Parab2d Prb2d = Parabola2d->Parab2d ();
|
|
gp_Parab Prb3d = ElCLib::To3d (Position, Prb2d);
|
|
Handle(Geom_Parabola) GeomPrb3d = new Geom_Parabola (Prb3d);
|
|
Curve3d = GeomPrb3d;
|
|
}
|
|
else if (KindOfCurve == STANDARD_TYPE (Geom2d_Hyperbola)) {
|
|
Handle(Geom2d_Hyperbola) Hyperbola2d =
|
|
Handle(Geom2d_Hyperbola)::DownCast (Curve2d);
|
|
gp_Hypr2d H2d = Hyperbola2d->Hypr2d ();
|
|
gp_Hypr H3d = ElCLib::To3d (Position, H2d);
|
|
Handle(Geom_Hyperbola) GeomH3d = new Geom_Hyperbola (H3d);
|
|
Curve3d = GeomH3d;
|
|
}
|
|
else {
|
|
throw Standard_NotImplemented();
|
|
}
|
|
|
|
return Curve3d;
|
|
}
|
|
|
|
|
|
|
|
//=======================================================================
|
|
//function : GTransform
|
|
//purpose :
|
|
//=======================================================================
|
|
|
|
Handle(Geom2d_Curve) GeomLib::GTransform(const Handle(Geom2d_Curve)& Curve,
|
|
const gp_GTrsf2d& GTrsf)
|
|
{
|
|
gp_TrsfForm Form = GTrsf.Form();
|
|
|
|
if ( Form != gp_Other) {
|
|
|
|
// Alors, la GTrsf est en fait une Trsf.
|
|
// La geometrie des courbes sera alors inchangee.
|
|
|
|
Handle(Geom2d_Curve) C =
|
|
Handle(Geom2d_Curve)::DownCast(Curve->Transformed(GTrsf.Trsf2d()));
|
|
return C;
|
|
}
|
|
else {
|
|
|
|
// Alors, la GTrsf est une other Transformation.
|
|
// La geometrie des courbes est alors changee, et les conics devront
|
|
// etre converties en BSplines.
|
|
|
|
Handle(Standard_Type) TheType = Curve->DynamicType();
|
|
|
|
if ( TheType == STANDARD_TYPE(Geom2d_TrimmedCurve)) {
|
|
|
|
// On va recurer sur la BasisCurve
|
|
|
|
Handle(Geom2d_TrimmedCurve) C =
|
|
Handle(Geom2d_TrimmedCurve)::DownCast(Curve->Copy());
|
|
|
|
Handle(Standard_Type) TheBasisType = (C->BasisCurve())->DynamicType();
|
|
|
|
if (TheBasisType == STANDARD_TYPE(Geom2d_BSplineCurve) ||
|
|
TheBasisType == STANDARD_TYPE(Geom2d_BezierCurve) ) {
|
|
|
|
// Dans ces cas le parametrage est conserve sur la courbe transformee
|
|
// on peut donc la trimmer avec les parametres de la courbe de base.
|
|
|
|
Standard_Real U1 = C->FirstParameter();
|
|
Standard_Real U2 = C->LastParameter();
|
|
|
|
Handle(Geom2d_TrimmedCurve) result =
|
|
new Geom2d_TrimmedCurve(GTransform(C->BasisCurve(), GTrsf), U1,U2);
|
|
return result;
|
|
}
|
|
else if ( TheBasisType == STANDARD_TYPE(Geom2d_Line)) {
|
|
|
|
// Dans ce cas, le parametrage n`est plus conserve.
|
|
// Il faut recalculer les parametres de Trimming sur la courbe
|
|
// resultante. ( Calcul par projection ( ElCLib) des points debut
|
|
// et fin transformes)
|
|
|
|
Handle(Geom2d_Line) L =
|
|
Handle(Geom2d_Line)::DownCast(GTransform(C->BasisCurve(), GTrsf));
|
|
gp_Lin2d Lin = L->Lin2d();
|
|
|
|
gp_Pnt2d P1 = C->StartPoint();
|
|
gp_Pnt2d P2 = C->EndPoint();
|
|
P1.SetXY(GTrsf.Transformed(P1.XY()));
|
|
P2.SetXY(GTrsf.Transformed(P2.XY()));
|
|
Standard_Real U1 = ElCLib::Parameter(Lin,P1);
|
|
Standard_Real U2 = ElCLib::Parameter(Lin,P2);
|
|
|
|
Handle(Geom2d_TrimmedCurve) result =
|
|
new Geom2d_TrimmedCurve(L,U1,U2);
|
|
return result;
|
|
}
|
|
else if (TheBasisType == STANDARD_TYPE(Geom2d_Circle) ||
|
|
TheBasisType == STANDARD_TYPE(Geom2d_Ellipse) ||
|
|
TheBasisType == STANDARD_TYPE(Geom2d_Parabola) ||
|
|
TheBasisType == STANDARD_TYPE(Geom2d_Hyperbola) ) {
|
|
|
|
// Dans ces cas, la geometrie de la courbe n`est pas conservee
|
|
// on la convertir en BSpline avant de lui appliquer la Trsf.
|
|
|
|
Handle(Geom2d_BSplineCurve) BS =
|
|
Geom2dConvert::CurveToBSplineCurve(C);
|
|
return GTransform(BS,GTrsf);
|
|
}
|
|
else {
|
|
|
|
// La transformee d`une OffsetCurve vaut ????? Sais pas faire !!
|
|
|
|
Handle(Geom2d_Curve) dummy;
|
|
return dummy;
|
|
}
|
|
}
|
|
else if ( TheType == STANDARD_TYPE(Geom2d_Line)) {
|
|
|
|
Handle(Geom2d_Line) L =
|
|
Handle(Geom2d_Line)::DownCast(Curve->Copy());
|
|
gp_Lin2d Lin = L->Lin2d();
|
|
gp_Pnt2d P = Lin.Location();
|
|
gp_Pnt2d PP = L->Value(10.); // pourquoi pas !!
|
|
P.SetXY(GTrsf.Transformed(P.XY()));
|
|
PP.SetXY(GTrsf.Transformed(PP.XY()));
|
|
L->SetLocation(P);
|
|
gp_Vec2d V(P,PP);
|
|
L->SetDirection(gp_Dir2d(V));
|
|
return L;
|
|
}
|
|
else if ( TheType == STANDARD_TYPE(Geom2d_BezierCurve)) {
|
|
|
|
// Les GTrsf etant des operation lineaires, la transformee d`une courbe
|
|
// a poles est la courbe dont les poles sont la transformee des poles
|
|
// de la courbe de base.
|
|
|
|
Handle(Geom2d_BezierCurve) C =
|
|
Handle(Geom2d_BezierCurve)::DownCast(Curve->Copy());
|
|
Standard_Integer NbPoles = C->NbPoles();
|
|
TColgp_Array1OfPnt2d Poles(1,NbPoles);
|
|
C->Poles(Poles);
|
|
for ( Standard_Integer i = 1; i <= NbPoles; i++) {
|
|
Poles(i).SetXY(GTrsf.Transformed(Poles(i).XY()));
|
|
C->SetPole(i,Poles(i));
|
|
}
|
|
return C;
|
|
}
|
|
else if ( TheType == STANDARD_TYPE(Geom2d_BSplineCurve)) {
|
|
|
|
// Voir commentaire pour les Bezier.
|
|
|
|
Handle(Geom2d_BSplineCurve) C =
|
|
Handle(Geom2d_BSplineCurve)::DownCast(Curve->Copy());
|
|
Standard_Integer NbPoles = C->NbPoles();
|
|
TColgp_Array1OfPnt2d Poles(1,NbPoles);
|
|
C->Poles(Poles);
|
|
for ( Standard_Integer i = 1; i <= NbPoles; i++) {
|
|
Poles(i).SetXY(GTrsf.Transformed(Poles(i).XY()));
|
|
C->SetPole(i,Poles(i));
|
|
}
|
|
return C;
|
|
}
|
|
else if ( TheType == STANDARD_TYPE(Geom2d_Circle) ||
|
|
TheType == STANDARD_TYPE(Geom2d_Ellipse) ) {
|
|
|
|
// Dans ces cas, la geometrie de la courbe n`est pas conservee
|
|
// on la convertir en BSpline avant de lui appliquer la Trsf.
|
|
|
|
Handle(Geom2d_BSplineCurve) C =
|
|
Geom2dConvert::CurveToBSplineCurve(Curve);
|
|
return GTransform(C, GTrsf);
|
|
}
|
|
else if ( TheType == STANDARD_TYPE(Geom2d_Parabola) ||
|
|
TheType == STANDARD_TYPE(Geom2d_Hyperbola) ||
|
|
TheType == STANDARD_TYPE(Geom2d_OffsetCurve) ) {
|
|
|
|
// On ne sait pas faire : return a null Handle;
|
|
|
|
Handle(Geom2d_Curve) dummy;
|
|
return dummy;
|
|
}
|
|
}
|
|
|
|
Handle(Geom2d_Curve) WNT__; // portage Windows.
|
|
return WNT__;
|
|
}
|
|
|
|
|
|
//=======================================================================
|
|
//function : SameRange
|
|
//purpose :
|
|
//=======================================================================
|
|
void GeomLib::SameRange(const Standard_Real Tolerance,
|
|
const Handle(Geom2d_Curve)& CurvePtr,
|
|
const Standard_Real FirstOnCurve,
|
|
const Standard_Real LastOnCurve,
|
|
const Standard_Real RequestedFirst,
|
|
const Standard_Real RequestedLast,
|
|
Handle(Geom2d_Curve)& NewCurvePtr)
|
|
{
|
|
if(CurvePtr.IsNull()) throw Standard_Failure();
|
|
if (Abs(LastOnCurve - RequestedLast) <= Tolerance &&
|
|
Abs(FirstOnCurve - RequestedFirst) <= Tolerance)
|
|
{
|
|
NewCurvePtr = CurvePtr;
|
|
return;
|
|
}
|
|
|
|
// the parametrisation lentgh must at least be the same.
|
|
if (Abs(LastOnCurve - FirstOnCurve - RequestedLast + RequestedFirst)
|
|
<= Tolerance)
|
|
{
|
|
if (CurvePtr->IsKind(STANDARD_TYPE(Geom2d_Line)))
|
|
{
|
|
Handle(Geom2d_Line) Line =
|
|
Handle(Geom2d_Line)::DownCast(CurvePtr->Copy());
|
|
Standard_Real dU = FirstOnCurve - RequestedFirst;
|
|
gp_Dir2d D = Line->Direction() ;
|
|
Line->Translate(dU * gp_Vec2d(D));
|
|
NewCurvePtr = Line;
|
|
}
|
|
else if (CurvePtr->IsKind(STANDARD_TYPE(Geom2d_Circle)))
|
|
{
|
|
gp_Trsf2d Trsf;
|
|
NewCurvePtr = Handle(Geom2d_Curve)::DownCast(CurvePtr->Copy());
|
|
Handle(Geom2d_Circle) Circ =
|
|
Handle(Geom2d_Circle)::DownCast(NewCurvePtr);
|
|
gp_Pnt2d P = Circ->Location();
|
|
Standard_Real dU;
|
|
if (Circ->Circ2d().IsDirect()) {
|
|
dU = FirstOnCurve - RequestedFirst;
|
|
}
|
|
else {
|
|
dU = RequestedFirst - FirstOnCurve;
|
|
}
|
|
Trsf.SetRotation(P,dU);
|
|
NewCurvePtr->Transform(Trsf) ;
|
|
}
|
|
else if (CurvePtr->IsKind(STANDARD_TYPE(Geom2d_TrimmedCurve)))
|
|
{
|
|
Handle(Geom2d_TrimmedCurve) TC =
|
|
Handle(Geom2d_TrimmedCurve)::DownCast(CurvePtr);
|
|
GeomLib::SameRange(Tolerance,
|
|
TC->BasisCurve(),
|
|
FirstOnCurve , LastOnCurve,
|
|
RequestedFirst, RequestedLast,
|
|
NewCurvePtr);
|
|
NewCurvePtr = new Geom2d_TrimmedCurve( NewCurvePtr, RequestedFirst, RequestedLast );
|
|
}
|
|
//
|
|
// attention a des problemes de limitation : utiliser le MEME test que dans
|
|
// Geom2d_TrimmedCurve::SetTrim car sinon comme on risque de relimite sur
|
|
// RequestedFirst et RequestedLast on aura un probleme
|
|
//
|
|
//
|
|
else if (Abs(LastOnCurve - FirstOnCurve) > Precision::PConfusion() ||
|
|
Abs(RequestedLast + RequestedFirst) > Precision::PConfusion())
|
|
{
|
|
|
|
Handle(Geom2d_TrimmedCurve) TC =
|
|
new Geom2d_TrimmedCurve(CurvePtr,FirstOnCurve,LastOnCurve);
|
|
|
|
Handle(Geom2d_BSplineCurve) BS =
|
|
Geom2dConvert::CurveToBSplineCurve(TC);
|
|
TColStd_Array1OfReal Knots(1,BS->NbKnots());
|
|
BS->Knots(Knots);
|
|
|
|
BSplCLib::Reparametrize(RequestedFirst,RequestedLast,Knots);
|
|
|
|
BS->SetKnots(Knots);
|
|
NewCurvePtr = BS;
|
|
}
|
|
}
|
|
else
|
|
{ // On segmente le resultat
|
|
Handle(Geom2d_TrimmedCurve) TC;
|
|
Handle(Geom2d_Curve) aCCheck = CurvePtr;
|
|
|
|
if(aCCheck->IsKind(STANDARD_TYPE(Geom2d_TrimmedCurve)))
|
|
{
|
|
aCCheck = Handle(Geom2d_TrimmedCurve)::DownCast(aCCheck)->BasisCurve();
|
|
}
|
|
|
|
if(aCCheck->IsPeriodic())
|
|
{
|
|
if(Abs(LastOnCurve - FirstOnCurve) > Precision::PConfusion())
|
|
{
|
|
TC = new Geom2d_TrimmedCurve( CurvePtr, FirstOnCurve, LastOnCurve );
|
|
}
|
|
else
|
|
{
|
|
TC = new Geom2d_TrimmedCurve( CurvePtr, CurvePtr->FirstParameter(), CurvePtr->LastParameter() );
|
|
}
|
|
}
|
|
else
|
|
{
|
|
const Standard_Real Udeb = Max(CurvePtr->FirstParameter(), FirstOnCurve);
|
|
const Standard_Real Ufin = Min(CurvePtr->LastParameter(), LastOnCurve);
|
|
if(Abs(Ufin - Udeb) > Precision::PConfusion())
|
|
{
|
|
TC = new Geom2d_TrimmedCurve( CurvePtr, Udeb, Ufin );
|
|
}
|
|
else
|
|
{
|
|
TC = new Geom2d_TrimmedCurve( CurvePtr, CurvePtr->FirstParameter(), CurvePtr->LastParameter());
|
|
}
|
|
}
|
|
|
|
//
|
|
Handle(Geom2d_BSplineCurve) BS =
|
|
Geom2dConvert::CurveToBSplineCurve(TC);
|
|
TColStd_Array1OfReal Knots(1,BS->NbKnots());
|
|
BS->Knots(Knots);
|
|
|
|
BSplCLib::Reparametrize(RequestedFirst,RequestedLast,Knots);
|
|
|
|
BS->SetKnots(Knots);
|
|
NewCurvePtr = BS;
|
|
}
|
|
}
|
|
|
|
//=======================================================================
|
|
//class : GeomLib_CurveOnSurfaceEvaluator
|
|
//purpose: The evaluator for the Curve 3D building
|
|
//=======================================================================
|
|
|
|
class GeomLib_CurveOnSurfaceEvaluator : public AdvApprox_EvaluatorFunction
|
|
{
|
|
public:
|
|
GeomLib_CurveOnSurfaceEvaluator (Adaptor3d_CurveOnSurface& theCurveOnSurface,
|
|
Standard_Real theFirst, Standard_Real theLast)
|
|
: CurveOnSurface(theCurveOnSurface), FirstParam(theFirst), LastParam(theLast) {}
|
|
|
|
virtual void Evaluate (Standard_Integer *Dimension,
|
|
Standard_Real StartEnd[2],
|
|
Standard_Real *Parameter,
|
|
Standard_Integer *DerivativeRequest,
|
|
Standard_Real *Result, // [Dimension]
|
|
Standard_Integer *ErrorCode);
|
|
|
|
private:
|
|
Adaptor3d_CurveOnSurface& CurveOnSurface;
|
|
Standard_Real FirstParam;
|
|
Standard_Real LastParam;
|
|
|
|
Handle(Adaptor3d_HCurve) TrimCurve;
|
|
};
|
|
|
|
void GeomLib_CurveOnSurfaceEvaluator::Evaluate (Standard_Integer *,/*Dimension*/
|
|
Standard_Real DebutFin[2],
|
|
Standard_Real *Parameter,
|
|
Standard_Integer *DerivativeRequest,
|
|
Standard_Real *Result,// [Dimension]
|
|
Standard_Integer *ReturnCode)
|
|
{
|
|
gp_Pnt Point;
|
|
|
|
//Gestion des positionnements gauche / droite
|
|
if ((DebutFin[0] != FirstParam) || (DebutFin[1] != LastParam))
|
|
{
|
|
TrimCurve = CurveOnSurface.Trim(DebutFin[0], DebutFin[1], Precision::PConfusion());
|
|
FirstParam = DebutFin[0];
|
|
LastParam = DebutFin[1];
|
|
}
|
|
|
|
//Positionemment
|
|
if (*DerivativeRequest == 0)
|
|
{
|
|
TrimCurve->D0((*Parameter), Point) ;
|
|
|
|
for (Standard_Integer ii = 0 ; ii < 3 ; ii++)
|
|
Result[ii] = Point.Coord(ii + 1);
|
|
}
|
|
if (*DerivativeRequest == 1)
|
|
{
|
|
gp_Vec Vector;
|
|
TrimCurve->D1((*Parameter), Point, Vector);
|
|
for (Standard_Integer ii = 0 ; ii < 3 ; ii++)
|
|
Result[ii] = Vector.Coord(ii + 1) ;
|
|
}
|
|
if (*DerivativeRequest == 2)
|
|
{
|
|
gp_Vec Vector, VecBis;
|
|
TrimCurve->D2((*Parameter), Point, VecBis, Vector);
|
|
for (Standard_Integer ii = 0 ; ii < 3 ; ii++)
|
|
Result[ii] = Vector.Coord(ii + 1) ;
|
|
}
|
|
ReturnCode[0] = 0;
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : BuildCurve3d
|
|
//purpose :
|
|
//=======================================================================
|
|
|
|
void GeomLib::BuildCurve3d(const Standard_Real Tolerance,
|
|
Adaptor3d_CurveOnSurface& Curve,
|
|
const Standard_Real FirstParameter,
|
|
const Standard_Real LastParameter,
|
|
Handle(Geom_Curve)& NewCurvePtr,
|
|
Standard_Real& MaxDeviation,
|
|
Standard_Real& AverageDeviation,
|
|
const GeomAbs_Shape Continuity,
|
|
const Standard_Integer MaxDegree,
|
|
const Standard_Integer MaxSegment)
|
|
|
|
{
|
|
|
|
|
|
MaxDeviation = 0.0e0 ;
|
|
AverageDeviation = 0.0e0 ;
|
|
Handle(GeomAdaptor_HSurface) geom_adaptor_surface_ptr (Handle(GeomAdaptor_HSurface)::DownCast(Curve.GetSurface()) );
|
|
Handle(Geom2dAdaptor_HCurve) geom_adaptor_curve_ptr (Handle(Geom2dAdaptor_HCurve)::DownCast(Curve.GetCurve()) );
|
|
|
|
if (! geom_adaptor_curve_ptr.IsNull() &&
|
|
! geom_adaptor_surface_ptr.IsNull()) {
|
|
Handle(Geom_Plane) P ;
|
|
const GeomAdaptor_Surface & geom_surface =
|
|
* (GeomAdaptor_Surface *) &geom_adaptor_surface_ptr->Surface() ;
|
|
|
|
Handle(Geom_RectangularTrimmedSurface) RT =
|
|
Handle(Geom_RectangularTrimmedSurface)::
|
|
DownCast(geom_surface.Surface());
|
|
if ( RT.IsNull()) {
|
|
P = Handle(Geom_Plane)::DownCast(geom_surface.Surface());
|
|
}
|
|
else {
|
|
P = Handle(Geom_Plane)::DownCast(RT->BasisSurface());
|
|
}
|
|
|
|
|
|
if (! P.IsNull()) {
|
|
// compute the 3d curve
|
|
gp_Ax2 axes = P->Position().Ax2();
|
|
const Geom2dAdaptor_Curve & geom2d_curve =
|
|
* (Geom2dAdaptor_Curve *) & geom_adaptor_curve_ptr->Curve2d() ;
|
|
NewCurvePtr =
|
|
GeomLib::To3d(axes,
|
|
geom2d_curve.Curve());
|
|
return;
|
|
|
|
}
|
|
|
|
Handle(Adaptor2d_HCurve2d) TrimmedC2D = geom_adaptor_curve_ptr->Trim (FirstParameter, LastParameter, Precision::PConfusion());
|
|
|
|
Standard_Boolean isU, isForward;
|
|
Standard_Real aParam;
|
|
if (isIsoLine(TrimmedC2D, isU, aParam, isForward))
|
|
{
|
|
NewCurvePtr = buildC3dOnIsoLine (TrimmedC2D, geom_adaptor_surface_ptr, FirstParameter, LastParameter, Tolerance, isU, aParam, isForward);
|
|
if (!NewCurvePtr.IsNull())
|
|
{
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
//
|
|
// Entree
|
|
//
|
|
Handle(TColStd_HArray1OfReal) Tolerance1DPtr,Tolerance2DPtr;
|
|
Handle(TColStd_HArray1OfReal) Tolerance3DPtr =
|
|
new TColStd_HArray1OfReal(1,1) ;
|
|
Tolerance3DPtr->SetValue(1,Tolerance);
|
|
|
|
// Recherche des discontinuitees
|
|
Standard_Integer NbIntervalC2 = Curve.NbIntervals(GeomAbs_C2);
|
|
TColStd_Array1OfReal Param_de_decoupeC2 (1, NbIntervalC2+1);
|
|
Curve.Intervals(Param_de_decoupeC2, GeomAbs_C2);
|
|
|
|
Standard_Integer NbIntervalC3 = Curve.NbIntervals(GeomAbs_C3);
|
|
TColStd_Array1OfReal Param_de_decoupeC3 (1, NbIntervalC3+1);
|
|
Curve.Intervals(Param_de_decoupeC3, GeomAbs_C3);
|
|
|
|
// Note extension of the parameteric range
|
|
// Pour forcer le Trim au premier appel de l'evaluateur
|
|
GeomLib_CurveOnSurfaceEvaluator ev (Curve, FirstParameter - 1., LastParameter + 1.);
|
|
|
|
// Approximation avec decoupe preferentiel
|
|
AdvApprox_PrefAndRec Preferentiel(Param_de_decoupeC2,
|
|
Param_de_decoupeC3);
|
|
AdvApprox_ApproxAFunction anApproximator(0,
|
|
0,
|
|
1,
|
|
Tolerance1DPtr,
|
|
Tolerance2DPtr,
|
|
Tolerance3DPtr,
|
|
FirstParameter,
|
|
LastParameter,
|
|
Continuity,
|
|
MaxDegree,
|
|
MaxSegment,
|
|
ev,
|
|
// CurveOnSurfaceEvaluator,
|
|
Preferentiel) ;
|
|
|
|
if (anApproximator.HasResult()) {
|
|
GeomLib_MakeCurvefromApprox
|
|
aCurveBuilder(anApproximator) ;
|
|
|
|
Handle(Geom_BSplineCurve) aCurvePtr =
|
|
aCurveBuilder.Curve(1) ;
|
|
// On rend les resultats de l'approx
|
|
MaxDeviation = anApproximator.MaxError(3,1) ;
|
|
AverageDeviation = anApproximator.AverageError(3,1) ;
|
|
NewCurvePtr = aCurvePtr ;
|
|
}
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : AdjustExtremity
|
|
//purpose :
|
|
//=======================================================================
|
|
|
|
void GeomLib::AdjustExtremity(Handle(Geom_BoundedCurve)& Curve,
|
|
const gp_Pnt& P1,
|
|
const gp_Pnt& P2,
|
|
const gp_Vec& T1,
|
|
const gp_Vec& T2)
|
|
{
|
|
// il faut Convertir l'entree (en preservant si possible le parametrage)
|
|
Handle(Geom_BSplineCurve) aIn, aDef;
|
|
aIn = GeomConvert::CurveToBSplineCurve(Curve, Convert_QuasiAngular);
|
|
|
|
Standard_Integer ii, jj;
|
|
gp_Pnt P;
|
|
gp_Vec V, Vtan, DV;
|
|
TColgp_Array1OfPnt PolesDef(1,4), Coeffs(1,4);
|
|
TColStd_Array1OfReal FK(1, 8);
|
|
TColStd_Array1OfReal Ti(1, 4);
|
|
TColStd_Array1OfInteger Contact(1, 4);
|
|
|
|
Ti(1) = Ti(2) = aIn->FirstParameter();
|
|
Ti(3) = Ti(4) = aIn->LastParameter();
|
|
Contact(1) = Contact(3) = 0;
|
|
Contact(2) = Contact(4) = 1;
|
|
for (ii=1; ii<=4; ii++) {
|
|
FK(ii) = aIn->FirstParameter();
|
|
FK(ii) = aIn->LastParameter();
|
|
}
|
|
|
|
// Calculs des contraintes de deformations
|
|
aIn->D1(Ti(1), P, V);
|
|
PolesDef(1).ChangeCoord() = P1.XYZ()-P.XYZ();
|
|
Vtan = T1;
|
|
Vtan.Normalize();
|
|
DV = Vtan * (Vtan * V) - V;
|
|
PolesDef(2).ChangeCoord() = (Ti(4)-Ti(1))*DV.XYZ();
|
|
|
|
aIn->D1(Ti(4), P, V);
|
|
PolesDef(3).ChangeCoord() = P2.XYZ()-P.XYZ();
|
|
Vtan = T2;
|
|
Vtan.Normalize();
|
|
DV = Vtan * (Vtan * V) - V;
|
|
PolesDef(4).ChangeCoord() = (Ti(4)-Ti(1))* DV.XYZ();
|
|
|
|
// Interpolation des contraintes
|
|
math_Matrix Mat(1, 4, 1, 4);
|
|
if (!PLib::HermiteCoefficients(0., 1., 1, 1, Mat))
|
|
throw Standard_ConstructionError();
|
|
|
|
for (jj=1; jj<=4; jj++) {
|
|
gp_XYZ aux(0.,0.,0.);
|
|
for (ii=1; ii<=4; ii++) {
|
|
aux.SetLinearForm(Mat(ii,jj), PolesDef(ii).XYZ(), aux);
|
|
}
|
|
Coeffs(jj).SetXYZ(aux);
|
|
}
|
|
|
|
PLib::CoefficientsPoles(Coeffs, PLib::NoWeights(),
|
|
PolesDef, PLib::NoWeights());
|
|
|
|
// Ajout de la deformation
|
|
TColStd_Array1OfReal K(1, 2);
|
|
TColStd_Array1OfInteger M(1, 2);
|
|
K(1) = Ti(1);
|
|
K(2) = Ti(4);
|
|
M.Init(4);
|
|
|
|
aDef = new (Geom_BSplineCurve) (PolesDef, K, M, 3);
|
|
if (aIn->Degree() < 3) aIn->IncreaseDegree(3);
|
|
else aDef->IncreaseDegree(aIn->Degree());
|
|
|
|
for (ii=2; ii<aIn->NbKnots(); ii++) {
|
|
aDef->InsertKnot(aIn->Knot(ii), aIn->Multiplicity(ii));
|
|
}
|
|
|
|
if (aDef->NbPoles() != aIn->NbPoles())
|
|
throw Standard_ConstructionError("Inconsistent poles's number");
|
|
|
|
for (ii=1; ii<=aDef->NbPoles(); ii++) {
|
|
P = aIn->Pole(ii);
|
|
P.ChangeCoord() += aDef->Pole(ii).XYZ();
|
|
aIn->SetPole(ii, P);
|
|
}
|
|
Curve = aIn;
|
|
}
|
|
//=======================================================================
|
|
//function : ExtendCurveToPoint
|
|
//purpose :
|
|
//=======================================================================
|
|
|
|
void GeomLib::ExtendCurveToPoint(Handle(Geom_BoundedCurve)& Curve,
|
|
const gp_Pnt& Point,
|
|
const Standard_Integer Continuity,
|
|
const Standard_Boolean After)
|
|
{
|
|
if(Continuity < 1 || Continuity > 3) return;
|
|
Standard_Integer size = Continuity + 2;
|
|
Standard_Real Ubord, Tol=1.e-6;
|
|
math_Matrix MatCoefs(1,size, 1,size);
|
|
Standard_Real Lambda, L1;
|
|
Standard_Integer ii, jj;
|
|
gp_Vec d1, d2, d3;
|
|
gp_Pnt p0;
|
|
// il faut Convertir l'entree (en preservant si possible le parametrage)
|
|
GeomConvert_CompCurveToBSplineCurve Concat(Curve, Convert_QuasiAngular);
|
|
|
|
// Les contraintes de constructions
|
|
TColgp_Array1OfXYZ Cont(1,size);
|
|
if (After) {
|
|
Ubord = Curve->LastParameter();
|
|
|
|
}
|
|
else {
|
|
Ubord = Curve->FirstParameter();
|
|
}
|
|
PLib::HermiteCoefficients(0, 1, // Les Bornes
|
|
Continuity, 0, // Les Ordres de contraintes
|
|
MatCoefs);
|
|
|
|
Curve->D3(Ubord, p0, d1, d2, d3);
|
|
if (!After) { // Inversion du parametrage
|
|
d1 *= -1;
|
|
d3 *= -1;
|
|
}
|
|
|
|
L1 = p0.Distance(Point);
|
|
if (L1 > Tol) {
|
|
// Lambda est le ratio qu'il faut appliquer a la derive de la courbe
|
|
// pour obtenir la derive du prolongement (fixe arbitrairement a la
|
|
// longueur du segment bout de la courbe - point cible.
|
|
// On essai d'avoir sur le prolongement la vitesse moyenne que l'on
|
|
// a sur la courbe.
|
|
gp_Vec daux;
|
|
gp_Pnt pp;
|
|
Standard_Real f= Curve->FirstParameter(), t, dt, norm;
|
|
dt = (Curve->LastParameter()-f)/9;
|
|
norm = d1.Magnitude();
|
|
for (ii=1, t=f+dt; ii<=8; ii++, t+=dt) {
|
|
Curve->D1(t, pp, daux);
|
|
norm += daux.Magnitude();
|
|
}
|
|
norm /= 9;
|
|
dt = d1.Magnitude() / norm;
|
|
if ((dt<1.5) && (dt>0.75)) { // Le bord est dans la moyenne on le garde
|
|
Lambda = ((Standard_Real)1) / Max (d1.Magnitude() / L1, Tol);
|
|
}
|
|
else {
|
|
Lambda = ((Standard_Real)1) / Max (norm / L1, Tol);
|
|
}
|
|
}
|
|
else {
|
|
return; // Pas d'extension
|
|
}
|
|
|
|
// Optimisation du Lambda
|
|
math_Matrix Cons(1, 3, 1, size);
|
|
Cons(1,1) = p0.X(); Cons(2,1) = p0.Y(); Cons(3,1) = p0.Z();
|
|
Cons(1,2) = d1.X(); Cons(2,2) = d1.Y(); Cons(3,2) = d1.Z();
|
|
Cons(1,size) = Point.X(); Cons(2,size) = Point.Y(); Cons(3,size) = Point.Z();
|
|
if (Continuity >= 2) {
|
|
Cons(1,3) = d2.X(); Cons(2,3) = d2.Y(); Cons(3,3) = d2.Z();
|
|
}
|
|
if (Continuity >= 3) {
|
|
Cons(1,4) = d3.X(); Cons(2,4) = d3.Y(); Cons(3,4) = d3.Z();
|
|
}
|
|
ComputeLambda(Cons, MatCoefs, L1, Lambda);
|
|
|
|
// Construction dans la Base Polynomiale
|
|
Cont(1) = p0.XYZ();
|
|
Cont(2) = d1.XYZ() * Lambda;
|
|
if(Continuity >= 2) Cont(3) = d2.XYZ() * Pow(Lambda,2);
|
|
if(Continuity >= 3) Cont(4) = d3.XYZ() * Pow(Lambda,3);
|
|
Cont(size) = Point.XYZ();
|
|
|
|
|
|
TColgp_Array1OfPnt ExtrapPoles(1, size);
|
|
TColgp_Array1OfPnt ExtraCoeffs(1, size);
|
|
|
|
gp_Pnt PNull(0.,0.,0.);
|
|
ExtraCoeffs.Init(PNull);
|
|
for (ii=1; ii<=size; ii++) {
|
|
for (jj=1; jj<=size; jj++) {
|
|
ExtraCoeffs(jj).ChangeCoord() += MatCoefs(ii,jj)*Cont(ii);
|
|
}
|
|
}
|
|
|
|
// Convertion Dans la Base de Bernstein
|
|
PLib::CoefficientsPoles(ExtraCoeffs, PLib::NoWeights(),
|
|
ExtrapPoles, PLib::NoWeights());
|
|
|
|
Handle(Geom_BezierCurve) Bezier = new (Geom_BezierCurve) (ExtrapPoles);
|
|
|
|
Standard_Real dist = ExtrapPoles(1).Distance(p0);
|
|
Standard_Boolean Ok;
|
|
Tol += dist;
|
|
|
|
// Concatenation
|
|
Ok = Concat.Add(Bezier, Tol, After);
|
|
if (!Ok) throw Standard_ConstructionError("ExtendCurveToPoint");
|
|
|
|
Curve = Concat.BSplineCurve();
|
|
}
|
|
|
|
|
|
//=======================================================================
|
|
//function : ExtendKPart
|
|
//purpose : Extension par longueur des surfaces cannonique
|
|
//=======================================================================
|
|
static Standard_Boolean
|
|
ExtendKPart(Handle(Geom_RectangularTrimmedSurface)& Surface,
|
|
const Standard_Real Length,
|
|
const Standard_Boolean InU,
|
|
const Standard_Boolean After)
|
|
{
|
|
|
|
if (Surface.IsNull()) return Standard_False;
|
|
|
|
Standard_Boolean Ok=Standard_True;
|
|
Standard_Real Uf, Ul, Vf, Vl;
|
|
Handle(Geom_Surface) Support = Surface->BasisSurface();
|
|
GeomAbs_SurfaceType Type;
|
|
|
|
Surface->Bounds(Uf, Ul, Vf, Vl);
|
|
GeomAdaptor_Surface AS(Surface);
|
|
Type = AS.GetType();
|
|
|
|
if (InU) {
|
|
switch(Type) {
|
|
case GeomAbs_Plane :
|
|
{
|
|
if (After) Ul+=Length;
|
|
else Uf-=Length;
|
|
Surface = new (Geom_RectangularTrimmedSurface)
|
|
(Support, Uf, Ul, Vf, Vl);
|
|
break;
|
|
}
|
|
|
|
default:
|
|
Ok = Standard_False;
|
|
}
|
|
}
|
|
else {
|
|
switch(Type) {
|
|
case GeomAbs_Plane :
|
|
case GeomAbs_Cylinder :
|
|
case GeomAbs_SurfaceOfExtrusion :
|
|
{
|
|
if (After) Vl+=Length;
|
|
else Vf-=Length;
|
|
Surface = new (Geom_RectangularTrimmedSurface)
|
|
(Support, Uf, Ul, Vf, Vl);
|
|
break;
|
|
}
|
|
default:
|
|
Ok = Standard_False;
|
|
}
|
|
}
|
|
|
|
return Ok;
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : ExtendSurfByLength
|
|
//purpose :
|
|
//=======================================================================
|
|
void GeomLib::ExtendSurfByLength(Handle(Geom_BoundedSurface)& Surface,
|
|
const Standard_Real Length,
|
|
const Standard_Integer Continuity,
|
|
const Standard_Boolean InU,
|
|
const Standard_Boolean After)
|
|
{
|
|
if(Continuity < 0 || Continuity > 3) return;
|
|
Standard_Integer Cont = Continuity;
|
|
|
|
// Kpart ?
|
|
Handle(Geom_RectangularTrimmedSurface) TS =
|
|
Handle(Geom_RectangularTrimmedSurface)::DownCast (Surface);
|
|
if (ExtendKPart(TS,Length, InU, After) ) {
|
|
Surface = TS;
|
|
return;
|
|
}
|
|
|
|
// format BSplineSurface avec un degre suffisant pour la continuite voulue
|
|
Handle(Geom_BSplineSurface) BS =
|
|
Handle(Geom_BSplineSurface)::DownCast (Surface);
|
|
if (BS.IsNull()) {
|
|
//BS = GeomConvert::SurfaceToBSplineSurface(Surface);
|
|
Standard_Real Tol = Precision::Confusion(); //1.e-4;
|
|
GeomAbs_Shape UCont = GeomAbs_C1, VCont = GeomAbs_C1;
|
|
Standard_Integer degU = 14, degV = 14;
|
|
Standard_Integer nmax = 16;
|
|
Standard_Integer thePrec = 1;
|
|
const Handle(Geom_Surface)& aSurf = Surface; // to resolve ambiguity
|
|
GeomConvert_ApproxSurface theApprox(aSurf,Tol,UCont,VCont,degU,degV,nmax,thePrec);
|
|
if (theApprox.HasResult())
|
|
BS = theApprox.Surface();
|
|
else
|
|
BS = GeomConvert::SurfaceToBSplineSurface(Surface);
|
|
}
|
|
if (InU&&(BS->UDegree()<Continuity+1))
|
|
BS->IncreaseDegree(Continuity+1,BS->VDegree());
|
|
if (!InU&&(BS->VDegree()<Continuity+1))
|
|
BS->IncreaseDegree(BS->UDegree(),Continuity+1);
|
|
|
|
// si BS etait periodique dans le sens de l'extension, elle ne le sera plus
|
|
if ( (InU&&(BS->IsUPeriodic())) || (!InU&&(BS->IsVPeriodic())) ) {
|
|
Standard_Real U0,U1,V0,V1;
|
|
BS->Bounds(U0,U1,V0,V1);
|
|
BS->Segment(U0,U1,V0,V1);
|
|
}
|
|
|
|
|
|
// IFV Fix OCC bug 0022694 - wrong result extrapolating rational surfaces
|
|
// Standard_Boolean rational = ( InU && BS->IsURational() )
|
|
// || ( !InU && BS->IsVRational() ) ;
|
|
Standard_Boolean rational = (BS->IsURational() || BS->IsVRational());
|
|
Standard_Boolean NullWeight;
|
|
Standard_Real EpsW = 10*Precision::PConfusion();
|
|
Standard_Integer gap = 3;
|
|
if ( rational ) gap++;
|
|
|
|
|
|
|
|
Standard_Integer Cdeg = 0, Cdim = 0, NbP = 0, Ksize = 0, Psize = 1;
|
|
Standard_Integer ii, jj, ipole, Kount;
|
|
Standard_Real Tbord, lambmin=Length;
|
|
Standard_Real * Padr = NULL;
|
|
Standard_Boolean Ok;
|
|
Handle(TColStd_HArray1OfReal) FKnots, Point, lambda, Tgte, Poles;
|
|
|
|
|
|
|
|
|
|
for (Kount=0, Ok=Standard_False; Kount<=2 && !Ok; Kount++) {
|
|
// transformation de la surface en une BSpline non rationnelle a une variable
|
|
// de degre UDegree ou VDegree et de dimension 3 ou 4 x NbVpoles ou NbUpoles
|
|
// le nombre de poles egal a NbUpoles ou NbVpoles
|
|
// ATTENTION : dans le cas rationnel, un point de coordonnees (x,y,z)
|
|
// et de poids w devient un point de coordonnees (wx, wy, wz, w )
|
|
|
|
|
|
if (InU) {
|
|
Cdeg = BS->UDegree();
|
|
NbP = BS->NbUPoles();
|
|
Cdim = BS->NbVPoles() * gap;
|
|
}
|
|
else {
|
|
Cdeg = BS->VDegree();
|
|
NbP = BS->NbVPoles();
|
|
Cdim = BS->NbUPoles() * gap;
|
|
}
|
|
|
|
// les noeuds plats
|
|
Ksize = NbP + Cdeg + 1;
|
|
FKnots = new (TColStd_HArray1OfReal) (1,Ksize);
|
|
if (InU)
|
|
BS->UKnotSequence(FKnots->ChangeArray1());
|
|
else
|
|
BS->VKnotSequence(FKnots->ChangeArray1());
|
|
|
|
// le parametre du noeud de raccord
|
|
if (After)
|
|
Tbord = FKnots->Value(FKnots->Upper()-Cdeg);
|
|
else
|
|
Tbord = FKnots->Value(FKnots->Lower()+Cdeg);
|
|
|
|
// les poles
|
|
Psize = Cdim * NbP;
|
|
Poles = new (TColStd_HArray1OfReal) (1,Psize);
|
|
|
|
if (InU) {
|
|
for (ii=1,ipole=1; ii<=NbP; ii++) {
|
|
for (jj=1;jj<=BS->NbVPoles();jj++) {
|
|
Poles->SetValue(ipole, BS->Pole(ii,jj).X());
|
|
Poles->SetValue(ipole+1, BS->Pole(ii,jj).Y());
|
|
Poles->SetValue(ipole+2, BS->Pole(ii,jj).Z());
|
|
if (rational) Poles->SetValue(ipole+3, BS->Weight(ii,jj));
|
|
ipole+=gap;
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
for (jj=1,ipole=1; jj<=NbP; jj++) {
|
|
for (ii=1;ii<=BS->NbUPoles();ii++) {
|
|
Poles->SetValue(ipole, BS->Pole(ii,jj).X());
|
|
Poles->SetValue(ipole+1, BS->Pole(ii,jj).Y());
|
|
Poles->SetValue(ipole+2, BS->Pole(ii,jj).Z());
|
|
if (rational) Poles->SetValue(ipole+3, BS->Weight(ii,jj));
|
|
ipole+=gap;
|
|
}
|
|
}
|
|
}
|
|
Padr = (Standard_Real *) &Poles->ChangeValue(1);
|
|
|
|
// calcul du point de raccord et de la tangente
|
|
Point = new (TColStd_HArray1OfReal)(1,Cdim);
|
|
Tgte = new (TColStd_HArray1OfReal)(1,Cdim);
|
|
lambda = new (TColStd_HArray1OfReal)(1,Cdim);
|
|
|
|
Standard_Boolean periodic_flag = Standard_False ;
|
|
Standard_Integer extrap_mode[2], derivative_request = Max(Continuity,1);
|
|
extrap_mode[0] = extrap_mode[1] = Cdeg;
|
|
TColStd_Array1OfReal Result(1, Cdim * (derivative_request+1)) ;
|
|
|
|
TColStd_Array1OfReal& tgte = Tgte->ChangeArray1();
|
|
TColStd_Array1OfReal& point = Point->ChangeArray1();
|
|
TColStd_Array1OfReal& lamb = lambda->ChangeArray1();
|
|
|
|
Standard_Real * Radr = (Standard_Real *) &Result(1) ;
|
|
|
|
BSplCLib::Eval(Tbord,periodic_flag,derivative_request,extrap_mode[0],
|
|
Cdeg,FKnots->Array1(),Cdim,*Padr,*Radr);
|
|
Ok = Standard_True;
|
|
for (ii=1;ii<=Cdim;ii++) {
|
|
point(ii) = Result(ii);
|
|
tgte(ii) = Result(ii+Cdim);
|
|
}
|
|
|
|
// calcul de la contrainte a atteindre
|
|
|
|
gp_Vec CurT, OldT;
|
|
|
|
Standard_Real NTgte, val, Tgtol = 1.e-12, OldN = 0.0;
|
|
if (rational) {
|
|
for (ii=gap;ii<=Cdim;ii+=gap) {
|
|
tgte(ii) = 0.;
|
|
}
|
|
for (ii=gap;ii<=Cdim;ii+=gap) {
|
|
CurT.SetCoord(tgte(ii-3),tgte(ii-2), tgte(ii-1));
|
|
NTgte=CurT.Magnitude();
|
|
if (NTgte>Tgtol) {
|
|
val = Length/NTgte;
|
|
// Attentions aux Cas ou le segment donne par les poles
|
|
// est oppose au sens de la derive
|
|
// Exemple: Certaine portions de tore.
|
|
if ( (OldN > Tgtol) && (CurT.Angle(OldT) > 2)) {
|
|
Ok = Standard_False;
|
|
}
|
|
|
|
lamb(ii-1) = lamb(ii-2) = lamb(ii-3) = val;
|
|
lamb(ii) = 0.;
|
|
lambmin = Min(lambmin, val);
|
|
}
|
|
else {
|
|
lamb(ii-1) = lamb(ii-2) = lamb(ii-3) = 0.;
|
|
lamb(ii) = 0.;
|
|
}
|
|
OldT = CurT;
|
|
OldN = NTgte;
|
|
}
|
|
}
|
|
else {
|
|
for (ii=gap;ii<=Cdim;ii+=gap) {
|
|
CurT.SetCoord(tgte(ii-2),tgte(ii-1), tgte(ii));
|
|
NTgte=CurT.Magnitude();
|
|
if (NTgte>Tgtol) {
|
|
val = Length/NTgte;
|
|
// Attentions aux Cas ou le segment donne par les poles
|
|
// est oppose au sens de la derive
|
|
// Exemple: Certaine portion de tore.
|
|
if ( (OldN > Tgtol) && (CurT.Angle(OldT) > 2)) {
|
|
Ok = Standard_False;
|
|
}
|
|
lamb(ii) = lamb(ii-1) = lamb(ii-2) = val;
|
|
lambmin = Min(lambmin, val);
|
|
}
|
|
else {
|
|
lamb(ii) =lamb(ii-1) = lamb(ii-2) = 0.;
|
|
}
|
|
OldT = CurT;
|
|
OldN = NTgte;
|
|
}
|
|
}
|
|
if (!Ok && Kount<2) {
|
|
// On augmente le degre de l'iso bord afin de rapprocher les poles de la surface
|
|
// Et on ressaye
|
|
if (InU) BS->IncreaseDegree(BS->UDegree(), BS->VDegree()+2);
|
|
else BS->IncreaseDegree(BS->UDegree()+2, BS->VDegree());
|
|
}
|
|
}
|
|
|
|
|
|
TColStd_Array1OfReal ConstraintPoint(1,Cdim);
|
|
if (After) {
|
|
for (ii=1;ii<=Cdim;ii++) {
|
|
ConstraintPoint(ii) = Point->Value(ii) + lambda->Value(ii)*Tgte->Value(ii);
|
|
}
|
|
}
|
|
else {
|
|
for (ii=1;ii<=Cdim;ii++) {
|
|
ConstraintPoint(ii) = Point->Value(ii) - lambda->Value(ii)*Tgte->Value(ii);
|
|
}
|
|
}
|
|
|
|
// cas particulier du rationnel
|
|
if (rational) {
|
|
for (ipole=1;ipole<=Psize;ipole+=gap) {
|
|
Poles->ChangeValue(ipole) *= Poles->Value(ipole+3);
|
|
Poles->ChangeValue(ipole+1) *= Poles->Value(ipole+3);
|
|
Poles->ChangeValue(ipole+2) *= Poles->Value(ipole+3);
|
|
}
|
|
for (ii=1;ii<=Cdim;ii+=gap) {
|
|
ConstraintPoint(ii) *= ConstraintPoint(ii+3);
|
|
ConstraintPoint(ii+1) *= ConstraintPoint(ii+3);
|
|
ConstraintPoint(ii+2) *= ConstraintPoint(ii+3);
|
|
}
|
|
}
|
|
|
|
// tableaux necessaires pour l'extension
|
|
Standard_Integer Ksize2 = Ksize+Cdeg, NbPoles, NbKnots = 0;
|
|
TColStd_Array1OfReal FK(1, Ksize2) ;
|
|
Standard_Real * FKRadr = &FK(1);
|
|
|
|
Standard_Integer Psize2 = Psize+Cdeg*Cdim;
|
|
TColStd_Array1OfReal PRes(1, Psize2) ;
|
|
Standard_Real * PRadr = &PRes(1);
|
|
Standard_Real ww;
|
|
Standard_Boolean ExtOk = Standard_False;
|
|
Handle(TColgp_HArray2OfPnt) NewPoles;
|
|
Handle(TColStd_HArray2OfReal) NewWeights;
|
|
|
|
|
|
for (Kount=1; Kount<=5 && !ExtOk; Kount++) {
|
|
// extension
|
|
BSplCLib::TangExtendToConstraint(FKnots->Array1(),
|
|
lambmin,NbP,*Padr,
|
|
Cdim,Cdeg,
|
|
ConstraintPoint, Cont, After,
|
|
NbPoles, NbKnots,*FKRadr, *PRadr);
|
|
|
|
// recopie des poles du resultat sous forme de points 3D et de poids
|
|
Standard_Integer NU, NV, indice ;
|
|
if (InU) {
|
|
NU = NbPoles;
|
|
NV = BS->NbVPoles();
|
|
}
|
|
else {
|
|
NU = BS->NbUPoles();
|
|
NV = NbPoles;
|
|
}
|
|
|
|
NewPoles = new (TColgp_HArray2OfPnt)(1,NU,1,NV);
|
|
TColgp_Array2OfPnt& NewP = NewPoles->ChangeArray2();
|
|
NewWeights = new (TColStd_HArray2OfReal) (1,NU,1,NV);
|
|
TColStd_Array2OfReal& NewW = NewWeights->ChangeArray2();
|
|
|
|
if (!rational) NewW.Init(1.);
|
|
NullWeight= Standard_False;
|
|
|
|
if (InU) {
|
|
for (ii=1; ii<=NU && !NullWeight; ii++) {
|
|
for (jj=1; jj<=NV && !NullWeight; jj++) {
|
|
indice = 1+(ii-1)*Cdim+(jj-1)*gap;
|
|
NewP(ii,jj).SetCoord(1,PRes(indice));
|
|
NewP(ii,jj).SetCoord(2,PRes(indice+1));
|
|
NewP(ii,jj).SetCoord(3,PRes(indice+2));
|
|
if (rational) {
|
|
ww = PRes(indice+3);
|
|
if (Abs(ww - 1.0) < EpsW)
|
|
ww = 1.0;
|
|
if (ww < EpsW) {
|
|
NullWeight = Standard_True;
|
|
}
|
|
else {
|
|
NewW(ii,jj) = ww;
|
|
NewP(ii,jj).ChangeCoord() /= ww;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
for (jj=1; jj<=NV && !NullWeight; jj++) {
|
|
for (ii=1; ii<=NU && !NullWeight; ii++) {
|
|
indice = 1+(ii-1)*gap+(jj-1)*Cdim;
|
|
NewP(ii,jj).SetCoord(1,PRes(indice));
|
|
NewP(ii,jj).SetCoord(2,PRes(indice+1));
|
|
NewP(ii,jj).SetCoord(3,PRes(indice+2));
|
|
if (rational) {
|
|
ww = PRes(indice+3);
|
|
if (Abs(ww - 1.0) < EpsW)
|
|
ww = 1.0;
|
|
if (ww < EpsW) {
|
|
NullWeight = Standard_True;
|
|
}
|
|
else {
|
|
NewW(ii,jj) = ww;
|
|
NewP(ii,jj).ChangeCoord() /= ww;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (NullWeight) {
|
|
#ifdef OCCT_DEBUG
|
|
std::cout << "Echec de l'Extension rationnelle" << std::endl;
|
|
#endif
|
|
lambmin /= 3.;
|
|
NullWeight = Standard_False;
|
|
}
|
|
else {
|
|
ExtOk = Standard_True;
|
|
}
|
|
}
|
|
|
|
|
|
// recopie des noeuds plats sous forme de noeuds avec leurs multiplicites
|
|
// calcul des degres du resultat
|
|
Standard_Integer Usize = BS->NbUKnots(), Vsize = BS->NbVKnots(), UDeg, VDeg;
|
|
if (InU)
|
|
Usize++;
|
|
else
|
|
Vsize++;
|
|
TColStd_Array1OfReal UKnots(1,Usize);
|
|
TColStd_Array1OfReal VKnots(1,Vsize);
|
|
TColStd_Array1OfInteger UMults(1,Usize);
|
|
TColStd_Array1OfInteger VMults(1,Vsize);
|
|
TColStd_Array1OfReal FKRes(1, NbKnots);
|
|
|
|
for (ii=1; ii<=NbKnots; ii++)
|
|
FKRes(ii) = FK(ii);
|
|
|
|
if (InU) {
|
|
BSplCLib::Knots(FKRes, UKnots, UMults);
|
|
UDeg = Cdeg;
|
|
UMults(Usize) = UDeg+1; // Petite verrue utile quand la continuite
|
|
// n'est pas ok.
|
|
BS->VKnots(VKnots);
|
|
BS->VMultiplicities(VMults);
|
|
VDeg = BS->VDegree();
|
|
}
|
|
else {
|
|
BSplCLib::Knots(FKRes, VKnots, VMults);
|
|
VDeg = Cdeg;
|
|
VMults(Vsize) = VDeg+1;
|
|
BS->UKnots(UKnots);
|
|
BS->UMultiplicities(UMults);
|
|
UDeg = BS->UDegree();
|
|
}
|
|
|
|
// construction de la surface BSpline resultat
|
|
Handle(Geom_BSplineSurface) Res =
|
|
new (Geom_BSplineSurface) (NewPoles->Array2(),
|
|
NewWeights->Array2(),
|
|
UKnots,VKnots,
|
|
UMults,VMults,
|
|
UDeg,VDeg,
|
|
BS->IsUPeriodic(),
|
|
BS->IsVPeriodic());
|
|
Surface = Res;
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : Inertia
|
|
//purpose :
|
|
//=======================================================================
|
|
void GeomLib::Inertia(const TColgp_Array1OfPnt& Points,
|
|
gp_Pnt& Bary,
|
|
gp_Dir& XDir,
|
|
gp_Dir& YDir,
|
|
Standard_Real& Xgap,
|
|
Standard_Real& Ygap,
|
|
Standard_Real& Zgap)
|
|
{
|
|
gp_XYZ GB(0., 0., 0.), Diff;
|
|
// gp_Vec A,B,C,D;
|
|
|
|
Standard_Integer i,nb=Points.Length();
|
|
GB.SetCoord(0.,0.,0.);
|
|
for (i=1; i<=nb; i++)
|
|
GB += Points(i).XYZ();
|
|
|
|
GB /= nb;
|
|
|
|
math_Matrix M (1, 3, 1, 3);
|
|
M.Init(0.);
|
|
for (i=1; i<=nb; i++) {
|
|
Diff.SetLinearForm(-1, Points(i).XYZ(), GB);
|
|
M(1,1) += Diff.X() * Diff.X();
|
|
M(2,2) += Diff.Y() * Diff.Y();
|
|
M(3,3) += Diff.Z() * Diff.Z();
|
|
M(1,2) += Diff.X() * Diff.Y();
|
|
M(1,3) += Diff.X() * Diff.Z();
|
|
M(2,3) += Diff.Y() * Diff.Z();
|
|
}
|
|
|
|
M(2,1)=M(1,2) ;
|
|
M(3,1)=M(1,3) ;
|
|
M(3,2)=M(2,3) ;
|
|
|
|
M /= nb;
|
|
|
|
math_Jacobi J(M);
|
|
if (!J.IsDone()) {
|
|
#ifdef OCCT_DEBUG
|
|
std::cout << "Erreur dans Jacobbi" << std::endl;
|
|
M.Dump(std::cout);
|
|
#endif
|
|
}
|
|
|
|
Standard_Real n1,n2,n3;
|
|
|
|
n1=J.Value(1);
|
|
n2=J.Value(2);
|
|
n3=J.Value(3);
|
|
|
|
Standard_Real r1 = Min(Min(n1,n2),n3), r2;
|
|
Standard_Integer m1, m2, m3;
|
|
if (r1==n1) {
|
|
m1 = 1;
|
|
r2 = Min(n2,n3);
|
|
if (r2==n2) {
|
|
m2 = 2;
|
|
m3 = 3;
|
|
}
|
|
else {
|
|
m2 = 3;
|
|
m3 = 2;
|
|
}
|
|
}
|
|
else {
|
|
if (r1==n2) {
|
|
m1 = 2 ;
|
|
r2 = Min(n1,n3);
|
|
if (r2==n1) {
|
|
m2 = 1;
|
|
m3 = 3;
|
|
}
|
|
else {
|
|
m2 = 3;
|
|
m3 = 1;
|
|
}
|
|
}
|
|
else {
|
|
m1 = 3 ;
|
|
r2 = Min(n1,n2);
|
|
if (r2==n1) {
|
|
m2 = 1;
|
|
m3 = 2;
|
|
}
|
|
else {
|
|
m2 = 2;
|
|
m3 = 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
math_Vector V2(1,3),V3(1,3);
|
|
J.Vector(m2,V2);
|
|
J.Vector(m3,V3);
|
|
|
|
Bary.SetXYZ(GB);
|
|
XDir.SetCoord(V3(1),V3(2),V3(3));
|
|
YDir.SetCoord(V2(1),V2(2),V2(3));
|
|
|
|
Zgap = sqrt(Abs(J.Value(m1)));
|
|
Ygap = sqrt(Abs(J.Value(m2)));
|
|
Xgap = sqrt(Abs(J.Value(m3)));
|
|
}
|
|
//=======================================================================
|
|
//function : AxeOfInertia
|
|
//purpose :
|
|
//=======================================================================
|
|
void GeomLib::AxeOfInertia(const TColgp_Array1OfPnt& Points,
|
|
gp_Ax2& Axe,
|
|
Standard_Boolean& IsSingular,
|
|
const Standard_Real Tol)
|
|
{
|
|
gp_Pnt Bary;
|
|
gp_Dir OX,OY,OZ;
|
|
Standard_Real gx, gy, gz;
|
|
|
|
GeomLib::Inertia(Points, Bary, OX, OY, gx, gy, gz);
|
|
|
|
if (gy*Points.Length()<=Tol) {
|
|
gp_Ax2 axe (Bary, OX);
|
|
OY = axe.XDirection();
|
|
IsSingular = Standard_True;
|
|
}
|
|
else {
|
|
IsSingular = Standard_False;
|
|
}
|
|
|
|
OZ = OX^OY;
|
|
gp_Ax2 TheAxe(Bary, OZ, OX);
|
|
Axe = TheAxe;
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : CanBeTreated
|
|
//purpose : indicates if the surface can be treated(if the conditions are
|
|
// filled) and need to be treated(if the surface hasn't been yet
|
|
// treated or if the surface is rationnal and non periodic)
|
|
//=======================================================================
|
|
|
|
static Standard_Boolean CanBeTreated(Handle(Geom_BSplineSurface)& BSurf)
|
|
|
|
{Standard_Integer i;
|
|
Standard_Real lambda; //proportionnality coefficient
|
|
Standard_Boolean AlreadyTreated=Standard_True;
|
|
|
|
if (!BSurf->IsURational()||(BSurf->IsUPeriodic()))
|
|
return Standard_False;
|
|
else {
|
|
lambda=(BSurf->Weight(1,1)/BSurf->Weight(BSurf->NbUPoles(),1));
|
|
for (i=1;i<=BSurf->NbVPoles();i++) //test of the proportionnality of the denominator on the boundaries
|
|
if ((BSurf->Weight(1,i)/(lambda*BSurf->Weight(BSurf->NbUPoles(),i))<(1-Precision::Confusion()))||
|
|
(BSurf->Weight(1,i)/(lambda*BSurf->Weight(BSurf->NbUPoles(),i))>(1+Precision::Confusion())))
|
|
return Standard_False;
|
|
i=1;
|
|
while ((AlreadyTreated) && (i<=BSurf->NbVPoles())){ //tests if the surface has already been treated
|
|
if (((BSurf->Weight(1,i)/(BSurf->Weight(2,i)))<(1-Precision::Confusion()))||
|
|
((BSurf->Weight(1,i)/(BSurf->Weight(2,i)))>(1+Precision::Confusion()))||
|
|
((BSurf->Weight(BSurf->NbUPoles()-1,i)/(BSurf->Weight(BSurf->NbUPoles(),i)))<(1-Precision::Confusion()))||
|
|
((BSurf->Weight(BSurf->NbUPoles()-1,i)/(BSurf->Weight(BSurf->NbUPoles(),i)))>(1+Precision::Confusion())))
|
|
AlreadyTreated=Standard_False;
|
|
i++;
|
|
}
|
|
if (AlreadyTreated)
|
|
return Standard_False;
|
|
}
|
|
return Standard_True;
|
|
}
|
|
|
|
//=======================================================================
|
|
//class : law_evaluator
|
|
//purpose : usefull to estimate the value of a function of 2 variables
|
|
//=======================================================================
|
|
|
|
class law_evaluator : public BSplSLib_EvaluatorFunction
|
|
{
|
|
|
|
public:
|
|
|
|
law_evaluator (const GeomLib_DenominatorMultiplierPtr theDenominatorPtr)
|
|
: myDenominator (theDenominatorPtr) {}
|
|
|
|
virtual void Evaluate (const Standard_Integer theDerivativeRequest,
|
|
const Standard_Real theUParameter,
|
|
const Standard_Real theVParameter,
|
|
Standard_Real& theResult,
|
|
Standard_Integer& theErrorCode) const
|
|
{
|
|
if ((myDenominator != NULL) && (theDerivativeRequest == 0))
|
|
{
|
|
theResult = myDenominator->Value (theUParameter, theVParameter);
|
|
theErrorCode = 0;
|
|
}
|
|
else
|
|
{
|
|
theErrorCode = 1;
|
|
}
|
|
}
|
|
|
|
private:
|
|
|
|
GeomLib_DenominatorMultiplierPtr myDenominator;
|
|
|
|
};
|
|
|
|
//=======================================================================
|
|
//function : CheckIfKnotExists
|
|
//purpose : true if the knot already exists in the knot sequence
|
|
//=======================================================================
|
|
|
|
static Standard_Boolean CheckIfKnotExists(const TColStd_Array1OfReal& surface_knots,
|
|
const Standard_Real knot)
|
|
|
|
{Standard_Integer i;
|
|
for (i=1;i<=surface_knots.Length();i++)
|
|
if ((surface_knots(i)-Precision::Confusion()<=knot)&&(surface_knots(i)+Precision::Confusion()>=knot))
|
|
return Standard_True;
|
|
return Standard_False;
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : AddAKnot
|
|
//purpose : add a knot and its multiplicity to the knot sequence. This knot
|
|
// will be C2 and the degree is increased of deltasurface_degree
|
|
//=======================================================================
|
|
|
|
static void AddAKnot(const TColStd_Array1OfReal& knots,
|
|
const TColStd_Array1OfInteger& mults,
|
|
const Standard_Real knotinserted,
|
|
const Standard_Integer deltasurface_degree,
|
|
const Standard_Integer finalsurfacedegree,
|
|
Handle(TColStd_HArray1OfReal) & newknots,
|
|
Handle(TColStd_HArray1OfInteger) & newmults)
|
|
|
|
{Standard_Integer i;
|
|
|
|
newknots=new TColStd_HArray1OfReal(1,knots.Length()+1);
|
|
newmults=new TColStd_HArray1OfInteger(1,knots.Length()+1);
|
|
i=1;
|
|
while (knots(i)<knotinserted){
|
|
newknots->SetValue(i,knots(i));
|
|
newmults->SetValue(i,mults(i)+deltasurface_degree);
|
|
i++;
|
|
}
|
|
newknots->SetValue(i,knotinserted); //insertion of the new knot
|
|
newmults->SetValue(i,finalsurfacedegree-2);
|
|
i++;
|
|
while (i<=newknots->Length()){
|
|
newknots->SetValue(i,knots(i-1));
|
|
newmults->SetValue(i,mults(i-1)+deltasurface_degree);
|
|
i++;
|
|
}
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : Sort
|
|
//purpose : give the new flat knots(u or v) of the surface
|
|
//=======================================================================
|
|
|
|
static void BuildFlatKnot(const TColStd_Array1OfReal& surface_knots,
|
|
const TColStd_Array1OfInteger& surface_mults,
|
|
const Standard_Integer deltasurface_degree,
|
|
const Standard_Integer finalsurface_degree,
|
|
const Standard_Real knotmin,
|
|
const Standard_Real knotmax,
|
|
Handle(TColStd_HArray1OfReal)& ResultKnots,
|
|
Handle(TColStd_HArray1OfInteger)& ResultMults)
|
|
|
|
{
|
|
Standard_Integer i;
|
|
|
|
if (CheckIfKnotExists(surface_knots,knotmin) &&
|
|
CheckIfKnotExists(surface_knots,knotmax)){
|
|
ResultKnots=new TColStd_HArray1OfReal(1,surface_knots.Length());
|
|
ResultMults=new TColStd_HArray1OfInteger(1,surface_knots.Length());
|
|
for (i=1;i<=surface_knots.Length();i++){
|
|
ResultKnots->SetValue(i,surface_knots(i));
|
|
ResultMults->SetValue(i,surface_mults(i)+deltasurface_degree);
|
|
}
|
|
}
|
|
else{
|
|
if ((CheckIfKnotExists(surface_knots,knotmin))&&(!CheckIfKnotExists(surface_knots,knotmax)))
|
|
AddAKnot(surface_knots,surface_mults,knotmax,deltasurface_degree,finalsurface_degree,ResultKnots,ResultMults);
|
|
else{
|
|
if ((!CheckIfKnotExists(surface_knots,knotmin))&&(CheckIfKnotExists(surface_knots,knotmax)))
|
|
AddAKnot(surface_knots,surface_mults,knotmin,deltasurface_degree,finalsurface_degree,ResultKnots,ResultMults);
|
|
else{
|
|
if ((!CheckIfKnotExists(surface_knots,knotmin))&&(!CheckIfKnotExists(surface_knots,knotmax))&&
|
|
(knotmin==knotmax)){
|
|
AddAKnot(surface_knots,surface_mults,knotmin,deltasurface_degree,finalsurface_degree,ResultKnots,ResultMults);
|
|
}
|
|
else{
|
|
Handle(TColStd_HArray1OfReal) IntermedKnots;
|
|
Handle(TColStd_HArray1OfInteger) IntermedMults;
|
|
AddAKnot(surface_knots,surface_mults,knotmin,deltasurface_degree,finalsurface_degree,IntermedKnots,IntermedMults);
|
|
AddAKnot(IntermedKnots->ChangeArray1(),IntermedMults->ChangeArray1(),knotmax,0,finalsurface_degree,ResultKnots,ResultMults);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : FunctionMultiply
|
|
//purpose : multiply the surface BSurf by a(u,v) (law_evaluator) on its
|
|
// numerator and denominator
|
|
//=======================================================================
|
|
|
|
static void FunctionMultiply(Handle(Geom_BSplineSurface)& BSurf,
|
|
const Standard_Real knotmin,
|
|
const Standard_Real knotmax)
|
|
|
|
{TColStd_Array1OfReal surface_u_knots(1,BSurf->NbUKnots()) ;
|
|
TColStd_Array1OfInteger surface_u_mults(1,BSurf->NbUKnots()) ;
|
|
TColStd_Array1OfReal surface_v_knots(1,BSurf->NbVKnots()) ;
|
|
TColStd_Array1OfInteger surface_v_mults(1,BSurf->NbVKnots()) ;
|
|
TColgp_Array2OfPnt surface_poles(1,BSurf->NbUPoles(),
|
|
1,BSurf->NbVPoles()) ;
|
|
TColStd_Array2OfReal surface_weights(1,BSurf->NbUPoles(),
|
|
1,BSurf->NbVPoles()) ;
|
|
Standard_Integer i,j,k,status,new_num_u_poles,new_num_v_poles,length=0;
|
|
Handle(TColStd_HArray1OfReal) newuknots,newvknots;
|
|
Handle(TColStd_HArray1OfInteger) newumults,newvmults;
|
|
|
|
BSurf->UKnots(surface_u_knots) ;
|
|
BSurf->UMultiplicities(surface_u_mults) ;
|
|
BSurf->VKnots(surface_v_knots) ;
|
|
BSurf->VMultiplicities(surface_v_mults) ;
|
|
BSurf->Poles(surface_poles) ;
|
|
BSurf->Weights(surface_weights) ;
|
|
|
|
TColStd_Array1OfReal Knots(1,2);
|
|
TColStd_Array1OfInteger Mults(1,2);
|
|
Handle(TColStd_HArray1OfReal) NewKnots;
|
|
Handle(TColStd_HArray1OfInteger) NewMults;
|
|
|
|
Knots(1)=0;
|
|
Knots(2)=1;
|
|
Mults(1)=4;
|
|
Mults(2)=4;
|
|
BuildFlatKnot(Knots,Mults,0,3,knotmin,knotmax,NewKnots,NewMults);
|
|
|
|
for (i=1;i<=NewMults->Length();i++)
|
|
length+=NewMults->Value(i);
|
|
TColStd_Array1OfReal FlatKnots(1,length);
|
|
BSplCLib::KnotSequence(NewKnots->ChangeArray1(),NewMults->ChangeArray1(),FlatKnots);
|
|
|
|
GeomLib_DenominatorMultiplier aDenominator (BSurf, FlatKnots);
|
|
|
|
BuildFlatKnot(surface_u_knots,
|
|
surface_u_mults,
|
|
3,
|
|
BSurf->UDegree()+3,
|
|
knotmin,
|
|
knotmax,
|
|
newuknots,
|
|
newumults);
|
|
BuildFlatKnot(surface_v_knots,
|
|
surface_v_mults,
|
|
BSurf->VDegree(),
|
|
2*(BSurf->VDegree()),
|
|
1.0,
|
|
0.0,
|
|
newvknots,
|
|
newvmults);
|
|
length=0;
|
|
for (i=1;i<=newumults->Length();i++)
|
|
length+=newumults->Value(i);
|
|
new_num_u_poles=(length-BSurf->UDegree()-3-1);
|
|
TColStd_Array1OfReal newuflatknots(1,length);
|
|
length=0;
|
|
for (i=1;i<=newvmults->Length();i++)
|
|
length+=newvmults->Value(i);
|
|
new_num_v_poles=(length-2*BSurf->VDegree()-1);
|
|
TColStd_Array1OfReal newvflatknots(1,length);
|
|
|
|
TColgp_Array2OfPnt NewNumerator(1,new_num_u_poles,1,new_num_v_poles);
|
|
TColStd_Array2OfReal NewDenominator(1,new_num_u_poles,1,new_num_v_poles);
|
|
|
|
BSplCLib::KnotSequence(newuknots->ChangeArray1(),newumults->ChangeArray1(),newuflatknots);
|
|
BSplCLib::KnotSequence(newvknots->ChangeArray1(),newvmults->ChangeArray1(),newvflatknots);
|
|
//POP pour WNT
|
|
law_evaluator ev (&aDenominator);
|
|
// BSplSLib::FunctionMultiply(law_evaluator, //multiplication
|
|
BSplSLib::FunctionMultiply(ev, //multiplication
|
|
BSurf->UDegree(),
|
|
BSurf->VDegree(),
|
|
surface_u_knots,
|
|
surface_v_knots,
|
|
&surface_u_mults,
|
|
&surface_v_mults,
|
|
surface_poles,
|
|
&surface_weights,
|
|
newuflatknots,
|
|
newvflatknots,
|
|
BSurf->UDegree()+3,
|
|
2*(BSurf->VDegree()),
|
|
NewNumerator,
|
|
NewDenominator,
|
|
status);
|
|
if (status!=0)
|
|
throw Standard_ConstructionError("GeomLib Multiplication Error") ;
|
|
for (i = 1 ; i <= new_num_u_poles ; i++) {
|
|
for (j = 1 ; j <= new_num_v_poles ; j++) {
|
|
for (k = 1 ; k <= 3 ; k++) {
|
|
NewNumerator(i,j).SetCoord(k,NewNumerator(i,j).Coord(k)/NewDenominator(i,j)) ;
|
|
}
|
|
}
|
|
}
|
|
BSurf= new Geom_BSplineSurface(NewNumerator,
|
|
NewDenominator,
|
|
newuknots->ChangeArray1(),
|
|
newvknots->ChangeArray1(),
|
|
newumults->ChangeArray1(),
|
|
newvmults->ChangeArray1(),
|
|
BSurf->UDegree()+3,
|
|
2*(BSurf->VDegree()) );
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : CancelDenominatorDerivative1D
|
|
//purpose : cancel the denominator derivative in one direction
|
|
//=======================================================================
|
|
|
|
static void CancelDenominatorDerivative1D(Handle(Geom_BSplineSurface) & BSurf)
|
|
|
|
{Standard_Integer i,j;
|
|
Standard_Real uknotmin=1.0,uknotmax=0.0,
|
|
x,y,
|
|
startu_value,
|
|
endu_value;
|
|
TColStd_Array1OfReal BSurf_u_knots(1,BSurf->NbUKnots()) ;
|
|
|
|
startu_value=BSurf->UKnot(1);
|
|
endu_value=BSurf->UKnot(BSurf->NbUKnots());
|
|
BSurf->UKnots(BSurf_u_knots) ;
|
|
BSplCLib::Reparametrize(0.0,1.0,BSurf_u_knots);
|
|
BSurf->SetUKnots(BSurf_u_knots); //reparametrisation of the surface
|
|
Handle(Geom_BSplineCurve) BCurve;
|
|
TColStd_Array1OfReal BCurveWeights(1,BSurf->NbUPoles());
|
|
TColgp_Array1OfPnt BCurvePoles(1,BSurf->NbUPoles());
|
|
TColStd_Array1OfReal BCurveKnots(1,BSurf->NbUKnots());
|
|
TColStd_Array1OfInteger BCurveMults(1,BSurf->NbUKnots());
|
|
|
|
if (CanBeTreated(BSurf)){
|
|
for (i=1;i<=BSurf->NbVPoles();i++){ //loop on each pole function
|
|
x=1.0;y=0.0;
|
|
for (j=1;j<=BSurf->NbUPoles();j++){
|
|
BCurveWeights(j)=BSurf->Weight(j,i);
|
|
BCurvePoles(j)=BSurf->Pole(j,i);
|
|
}
|
|
BSurf->UKnots(BCurveKnots);
|
|
BSurf->UMultiplicities(BCurveMults);
|
|
BCurve = new Geom_BSplineCurve(BCurvePoles, //building of a pole function
|
|
BCurveWeights,
|
|
BCurveKnots,
|
|
BCurveMults,
|
|
BSurf->UDegree());
|
|
Hermit::Solutionbis(BCurve,x,y,Precision::Confusion(),Precision::Confusion());
|
|
if (x<uknotmin)
|
|
uknotmin=x; //uknotmin,uknotmax:extremal knots
|
|
if ((x!=1.0)&&(x>uknotmax))
|
|
uknotmax=x;
|
|
if ((y!=0.0)&&(y<uknotmin))
|
|
uknotmin=y;
|
|
if (y>uknotmax)
|
|
uknotmax=y;
|
|
}
|
|
|
|
FunctionMultiply(BSurf,uknotmin,uknotmax); //multiplication
|
|
|
|
BSurf->UKnots(BSurf_u_knots) ;
|
|
BSplCLib::Reparametrize(startu_value,endu_value,BSurf_u_knots);
|
|
BSurf->SetUKnots(BSurf_u_knots);
|
|
}
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : CancelDenominatorDerivative
|
|
//purpose :
|
|
//=======================================================================
|
|
|
|
void GeomLib::CancelDenominatorDerivative(Handle(Geom_BSplineSurface) & BSurf,
|
|
const Standard_Boolean udirection,
|
|
const Standard_Boolean vdirection)
|
|
|
|
{if (udirection && !vdirection)
|
|
CancelDenominatorDerivative1D(BSurf);
|
|
else{
|
|
if (!udirection && vdirection) {
|
|
BSurf->ExchangeUV();
|
|
CancelDenominatorDerivative1D(BSurf);
|
|
BSurf->ExchangeUV();
|
|
}
|
|
else{
|
|
if (udirection && vdirection){ //optimize the treatment
|
|
if (BSurf->UDegree()<=BSurf->VDegree()){
|
|
CancelDenominatorDerivative1D(BSurf);
|
|
BSurf->ExchangeUV();
|
|
CancelDenominatorDerivative1D(BSurf);
|
|
BSurf->ExchangeUV();
|
|
}
|
|
else{
|
|
BSurf->ExchangeUV();
|
|
CancelDenominatorDerivative1D(BSurf);
|
|
BSurf->ExchangeUV();
|
|
CancelDenominatorDerivative1D(BSurf);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : NormEstim
|
|
//purpose :
|
|
//=======================================================================
|
|
|
|
Standard_Integer GeomLib::NormEstim(const Handle(Geom_Surface)& S,
|
|
const gp_Pnt2d& UV,
|
|
const Standard_Real Tol, gp_Dir& N)
|
|
{
|
|
gp_Vec DU, DV;
|
|
gp_Pnt DummyPnt;
|
|
Standard_Real aTol2 = Square(Tol);
|
|
|
|
S->D1(UV.X(), UV.Y(), DummyPnt, DU, DV);
|
|
|
|
Standard_Real MDU = DU.SquareMagnitude(), MDV = DV.SquareMagnitude();
|
|
|
|
if(MDU >= aTol2 && MDV >= aTol2) {
|
|
gp_Vec Norm = DU^DV;
|
|
Standard_Real Magn = Norm.SquareMagnitude();
|
|
if(Magn < aTol2) return 3;
|
|
|
|
//Magn = sqrt(Magn);
|
|
N.SetXYZ(Norm.XYZ());
|
|
|
|
return 0;
|
|
}
|
|
else {
|
|
gp_Vec D2U, D2V, D2UV;
|
|
Standard_Boolean isDone;
|
|
CSLib_NormalStatus aStatus;
|
|
gp_Dir aNormal;
|
|
|
|
S->D2(UV.X(), UV.Y(), DummyPnt, DU, DV, D2U, D2V, D2UV);
|
|
CSLib::Normal(DU, DV, D2U, D2V, D2UV, Tol, isDone, aStatus, aNormal);
|
|
|
|
if (isDone) {
|
|
Standard_Real Umin, Umax, Vmin, Vmax;
|
|
Standard_Real step = 1.0e-5;
|
|
Standard_Real eps = 1.0e-16;
|
|
Standard_Real sign = -1.0;
|
|
|
|
S->Bounds(Umin, Umax, Vmin, Vmax);
|
|
|
|
// check for cone apex singularity point
|
|
if ((UV.Y() > Vmin + step) && (UV.Y() < Vmax - step))
|
|
{
|
|
gp_Dir aNormal1, aNormal2;
|
|
Standard_Real aConeSingularityAngleEps = 1.0e-4;
|
|
S->D1(UV.X(), UV.Y() - sign * step, DummyPnt, DU, DV);
|
|
if ((DU.XYZ().SquareModulus() > eps) && (DV.XYZ().SquareModulus() > eps)) {
|
|
aNormal1 = DU^DV;
|
|
S->D1(UV.X(), UV.Y() + sign * step, DummyPnt, DU, DV);
|
|
if ((DU.XYZ().SquareModulus() > eps) && (DV.XYZ().SquareModulus() > eps)) {
|
|
aNormal2 = DU^DV;
|
|
if (aNormal1.IsOpposite(aNormal2, aConeSingularityAngleEps))
|
|
return 2;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Along V
|
|
if(MDU < aTol2 && MDV >= aTol2) {
|
|
if ((Vmax - UV.Y()) > (UV.Y() - Vmin))
|
|
sign = 1.0;
|
|
S->D1(UV.X(), UV.Y() + sign * step, DummyPnt, DU, DV);
|
|
gp_Vec Norm = DU^DV;
|
|
if (Norm.SquareMagnitude() < eps) {
|
|
Standard_Real sign1 = -1.0;
|
|
if ((Umax - UV.X()) > (UV.X() - Umin))
|
|
sign1 = 1.0;
|
|
S->D1(UV.X() + sign1 * step, UV.Y() + sign * step, DummyPnt, DU, DV);
|
|
Norm = DU^DV;
|
|
}
|
|
if ((Norm.SquareMagnitude() >= eps) && (Norm.Dot(aNormal) < 0.0))
|
|
aNormal.Reverse();
|
|
}
|
|
|
|
// Along U
|
|
if(MDV < aTol2 && MDU >= aTol2) {
|
|
if ((Umax - UV.X()) > (UV.X() - Umin))
|
|
sign = 1.0;
|
|
S->D1(UV.X() + sign * step, UV.Y(), DummyPnt, DU, DV);
|
|
gp_Vec Norm = DU^DV;
|
|
if (Norm.SquareMagnitude() < eps) {
|
|
Standard_Real sign1 = -1.0;
|
|
if ((Vmax - UV.Y()) > (UV.Y() - Vmin))
|
|
sign1 = 1.0;
|
|
S->D1(UV.X() + sign * step, UV.Y() + sign1 * step, DummyPnt, DU, DV);
|
|
Norm = DU^DV;
|
|
}
|
|
if ((Norm.SquareMagnitude() >= eps) && (Norm.Dot(aNormal) < 0.0))
|
|
aNormal.Reverse();
|
|
}
|
|
|
|
// quasysingular
|
|
if ((aStatus == CSLib_D1NuIsNull) || (aStatus == CSLib_D1NvIsNull) ||
|
|
(aStatus == CSLib_D1NuIsParallelD1Nv)) {
|
|
N.SetXYZ(aNormal.XYZ());
|
|
return 1;
|
|
}
|
|
// conical
|
|
if (aStatus == CSLib_InfinityOfSolutions)
|
|
return 2;
|
|
}
|
|
// computation is impossible
|
|
else {
|
|
// conical
|
|
if (aStatus == CSLib_D1NIsNull) {
|
|
return 2;
|
|
}
|
|
return 3;
|
|
}
|
|
}
|
|
return 3;
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : IsClosed
|
|
//purpose :
|
|
//=======================================================================
|
|
void GeomLib::IsClosed (const Handle(Geom_Surface)& S,
|
|
const Standard_Real Tol,
|
|
Standard_Boolean& isUClosed, Standard_Boolean& isVClosed)
|
|
{
|
|
isUClosed = Standard_False;
|
|
isVClosed = Standard_False;
|
|
//
|
|
GeomAdaptor_Surface aGAS(S);
|
|
GeomAbs_SurfaceType aSType = aGAS.GetType();
|
|
//
|
|
Standard_Real u1, u2, v1, v2;
|
|
u1 = aGAS.FirstUParameter();
|
|
u2 = aGAS.LastUParameter();
|
|
v1 = aGAS.FirstVParameter();
|
|
v2 = aGAS.LastVParameter();
|
|
//
|
|
Standard_Real Tol2 = Tol * Tol;
|
|
switch (aSType)
|
|
{
|
|
case GeomAbs_Plane:
|
|
{
|
|
return;
|
|
}
|
|
case GeomAbs_SurfaceOfExtrusion:
|
|
{
|
|
if (Precision::IsInfinite(u1) || Precision::IsInfinite(u2)) {
|
|
// not closed
|
|
return;
|
|
}
|
|
}
|
|
Standard_FALLTHROUGH
|
|
case GeomAbs_Cylinder:
|
|
{
|
|
if(Precision::IsInfinite(v1))
|
|
v1 = 0.;
|
|
gp_Pnt p1 = aGAS.Value(u1, v1);
|
|
gp_Pnt p2 = aGAS.Value(u2, v1);
|
|
isUClosed = p1.SquareDistance(p2) <= Tol2;
|
|
return;
|
|
}
|
|
case GeomAbs_Cone:
|
|
{
|
|
//find v with maximal distance from axis
|
|
if(!(Precision::IsInfinite(v1) || Precision::IsInfinite(v2)))
|
|
{
|
|
gp_Cone aCone = aGAS.Cone();
|
|
gp_Pnt anApex = aCone.Apex();
|
|
gp_Pnt P1 = aGAS.Value(u1, v1);
|
|
gp_Pnt P2 = aGAS.Value(u1, v2);
|
|
if(P2.SquareDistance(anApex) > P1.SquareDistance(anApex))
|
|
{
|
|
v1 = v2;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
v1 = 0.;
|
|
}
|
|
gp_Pnt p1 = aGAS.Value(u1, v1);
|
|
gp_Pnt p2 = aGAS.Value(u2, v1);
|
|
isUClosed = p1.SquareDistance(p2) <= Tol2;
|
|
return;
|
|
}
|
|
case GeomAbs_Sphere:
|
|
{
|
|
//find v with maximal distance from axis
|
|
if(v1*v2 <= 0.)
|
|
{
|
|
v1 = 0.;
|
|
}
|
|
else
|
|
{
|
|
if(v1 < 0.)
|
|
{
|
|
v1 = v2;
|
|
}
|
|
}
|
|
gp_Pnt p1 = aGAS.Value(u1, v1);
|
|
gp_Pnt p2 = aGAS.Value(u2, v1);
|
|
isUClosed = p1.SquareDistance(p2) <= Tol2;
|
|
return;
|
|
}
|
|
case GeomAbs_Torus:
|
|
{
|
|
Standard_Real ures = aGAS.UResolution(Tol);
|
|
Standard_Real vres = aGAS.VResolution(Tol);
|
|
//
|
|
isUClosed = (u2 - u1) >= aGAS.UPeriod() - ures;
|
|
isVClosed = (v2 - v1) >= aGAS.VPeriod() - vres;
|
|
return;
|
|
}
|
|
case GeomAbs_BSplineSurface:
|
|
{
|
|
Handle(Geom_BSplineSurface) aBSpl = aGAS.BSpline();
|
|
isUClosed = GeomLib::IsBSplUClosed(aBSpl, u1, u2, Tol);
|
|
isVClosed = GeomLib::IsBSplVClosed(aBSpl, v1, v2, Tol);
|
|
return;
|
|
}
|
|
case GeomAbs_BezierSurface:
|
|
{
|
|
Handle(Geom_BezierSurface) aBz = aGAS.Bezier();
|
|
isUClosed = GeomLib::IsBzUClosed(aBz, u1, u2, Tol);
|
|
isVClosed = GeomLib::IsBzVClosed(aBz, v1, v2, Tol);
|
|
return;
|
|
}
|
|
case GeomAbs_SurfaceOfRevolution:
|
|
case GeomAbs_OffsetSurface:
|
|
case GeomAbs_OtherSurface:
|
|
{
|
|
Standard_Integer nbp = 23;
|
|
if(Precision::IsInfinite(v1))
|
|
{
|
|
v1 = Sign(1., v1);
|
|
}
|
|
if(Precision::IsInfinite(v2))
|
|
{
|
|
v2 = Sign(1., v2);
|
|
}
|
|
//
|
|
if(aSType == GeomAbs_OffsetSurface ||
|
|
aSType == GeomAbs_OtherSurface)
|
|
{
|
|
if(Precision::IsInfinite(u1))
|
|
{
|
|
u1 = Sign(1., u1);
|
|
}
|
|
if(Precision::IsInfinite(u2))
|
|
{
|
|
u2 = Sign(1., u2);
|
|
}
|
|
}
|
|
isUClosed = Standard_True;
|
|
Standard_Real dt = (v2 - v1) / (nbp - 1);
|
|
Standard_Real res = Max(aGAS.UResolution(Tol), Precision::PConfusion());
|
|
if(dt <= res)
|
|
{
|
|
nbp = RealToInt((v2 - v1) /(2.*res)) + 1;
|
|
nbp = Max(nbp, 2);
|
|
dt = (v2 - v1) / (nbp - 1);
|
|
}
|
|
Standard_Real t;
|
|
Standard_Integer i;
|
|
for(i = 0; i < nbp; ++i)
|
|
{
|
|
t = (i == nbp-1 ? v2 : v1 + i * dt);
|
|
gp_Pnt p1 = aGAS.Value(u1, t);
|
|
gp_Pnt p2 = aGAS.Value(u2, t);
|
|
if(p1.SquareDistance(p2) > Tol2)
|
|
{
|
|
isUClosed = Standard_False;
|
|
break;
|
|
}
|
|
}
|
|
//
|
|
nbp = 23;
|
|
isVClosed = Standard_True;
|
|
dt = (u2 - u1) / (nbp - 1);
|
|
res = Max(aGAS.VResolution(Tol), Precision::PConfusion());
|
|
if(dt <= res)
|
|
{
|
|
nbp = RealToInt((u2 - u1) /(2.*res)) + 1;
|
|
nbp = Max(nbp, 2);
|
|
dt = (u2 - u1) / (nbp - 1);
|
|
}
|
|
for(i = 0; i < nbp; ++i)
|
|
{
|
|
t = (i == nbp-1 ? u2 : u1 + i * dt);
|
|
gp_Pnt p1 = aGAS.Value(t, v1);
|
|
gp_Pnt p2 = aGAS.Value(t, v2);
|
|
if(p1.SquareDistance(p2) > Tol2)
|
|
{
|
|
isVClosed = Standard_False;
|
|
break;
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
default:
|
|
{
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : IsBSplUClosed
|
|
//purpose :
|
|
//=======================================================================
|
|
Standard_Boolean GeomLib::IsBSplUClosed (const Handle(Geom_BSplineSurface)& S,
|
|
const Standard_Real U1,
|
|
const Standard_Real U2,
|
|
const Standard_Real Tol)
|
|
{
|
|
Handle(Geom_Curve) aCUF = S->UIso( U1 );
|
|
Handle(Geom_Curve) aCUL = S->UIso( U2 );
|
|
if(aCUF.IsNull() || aCUL.IsNull())
|
|
return Standard_False;
|
|
Standard_Real Tol2 = 2.*Tol;
|
|
Handle(Geom_BSplineCurve) aBsF = Handle(Geom_BSplineCurve)::DownCast(aCUF);
|
|
Handle(Geom_BSplineCurve) aBsL = Handle(Geom_BSplineCurve)::DownCast(aCUL);
|
|
const TColgp_Array1OfPnt& aPF = aBsF->Poles();
|
|
const TColgp_Array1OfPnt& aPL = aBsL->Poles();
|
|
const TColStd_Array1OfReal* WF = aBsF->Weights();
|
|
const TColStd_Array1OfReal* WL = aBsL->Weights();
|
|
return CompareWeightPoles(aPF, WF, aPL, WL, Tol2);
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : IsBSplVClosed
|
|
//purpose :
|
|
//=======================================================================
|
|
Standard_Boolean GeomLib::IsBSplVClosed (const Handle(Geom_BSplineSurface)& S,
|
|
const Standard_Real V1,
|
|
const Standard_Real V2,
|
|
const Standard_Real Tol)
|
|
{
|
|
Handle(Geom_Curve) aCVF = S->VIso( V1 );
|
|
Handle(Geom_Curve) aCVL = S->VIso( V2 );
|
|
if(aCVF.IsNull() || aCVL.IsNull())
|
|
return Standard_False;
|
|
Standard_Real Tol2 = 2.*Tol;
|
|
Handle(Geom_BSplineCurve) aBsF = Handle(Geom_BSplineCurve)::DownCast(aCVF);
|
|
Handle(Geom_BSplineCurve) aBsL = Handle(Geom_BSplineCurve)::DownCast(aCVL);
|
|
const TColgp_Array1OfPnt& aPF = aBsF->Poles();
|
|
const TColgp_Array1OfPnt& aPL = aBsL->Poles();
|
|
const TColStd_Array1OfReal* WF = aBsF->Weights();
|
|
const TColStd_Array1OfReal* WL = aBsL->Weights();
|
|
return CompareWeightPoles(aPF, WF, aPL, WL, Tol2);
|
|
}
|
|
//=======================================================================
|
|
//function : IsBzUClosed
|
|
//purpose :
|
|
//=======================================================================
|
|
Standard_Boolean GeomLib::IsBzUClosed (const Handle(Geom_BezierSurface)& S,
|
|
const Standard_Real U1,
|
|
const Standard_Real U2,
|
|
const Standard_Real Tol)
|
|
{
|
|
Handle(Geom_Curve) aCUF = S->UIso( U1 );
|
|
Handle(Geom_Curve) aCUL = S->UIso( U2 );
|
|
if(aCUF.IsNull() || aCUL.IsNull())
|
|
return Standard_False;
|
|
Standard_Real Tol2 = 2.*Tol;
|
|
Handle(Geom_BezierCurve) aBzF = Handle(Geom_BezierCurve)::DownCast(aCUF);
|
|
Handle(Geom_BezierCurve) aBzL = Handle(Geom_BezierCurve)::DownCast(aCUL);
|
|
const TColgp_Array1OfPnt& aPF = aBzF->Poles();
|
|
const TColgp_Array1OfPnt& aPL = aBzL->Poles();
|
|
//
|
|
return CompareWeightPoles(aPF, 0, aPL, 0, Tol2);
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : IsBzVClosed
|
|
//purpose :
|
|
//=======================================================================
|
|
Standard_Boolean GeomLib::IsBzVClosed (const Handle(Geom_BezierSurface)& S,
|
|
const Standard_Real V1,
|
|
const Standard_Real V2,
|
|
const Standard_Real Tol)
|
|
{
|
|
Handle(Geom_Curve) aCVF = S->VIso( V1 );
|
|
Handle(Geom_Curve) aCVL = S->VIso( V2 );
|
|
if(aCVF.IsNull() || aCVL.IsNull())
|
|
return Standard_False;
|
|
Standard_Real Tol2 = 2.*Tol;
|
|
Handle(Geom_BezierCurve) aBzF = Handle(Geom_BezierCurve)::DownCast(aCVF);
|
|
Handle(Geom_BezierCurve) aBzL = Handle(Geom_BezierCurve)::DownCast(aCVL);
|
|
const TColgp_Array1OfPnt& aPF = aBzF->Poles();
|
|
const TColgp_Array1OfPnt& aPL = aBzL->Poles();
|
|
//
|
|
return CompareWeightPoles(aPF, 0, aPL, 0, Tol2);
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : CompareWeightPoles
|
|
//purpose : Checks if thePoles1(i)*theW1(i) is equal to thePoles2(i)*theW2(i)
|
|
// with tolerance theTol.
|
|
// It is necessary for not rational B-splines and Bezier curves
|
|
// to set theW1 and theW2 adresses to zero.
|
|
//=======================================================================
|
|
static Standard_Boolean CompareWeightPoles(const TColgp_Array1OfPnt& thePoles1,
|
|
const TColStd_Array1OfReal* const theW1,
|
|
const TColgp_Array1OfPnt& thePoles2,
|
|
const TColStd_Array1OfReal* const theW2,
|
|
const Standard_Real theTol)
|
|
{
|
|
if(thePoles1.Length() != thePoles2.Length())
|
|
{
|
|
return Standard_False;
|
|
}
|
|
//
|
|
Standard_Integer i = 1;
|
|
for( i = 1 ; i <= thePoles1.Length(); i++ )
|
|
{
|
|
const Standard_Real aW1 = (theW1 == 0) ? 1.0 : theW1->Value(i);
|
|
const Standard_Real aW2 = (theW2 == 0) ? 1.0 : theW2->Value(i);
|
|
|
|
gp_XYZ aPole1 = thePoles1.Value(i).XYZ() * aW1;
|
|
gp_XYZ aPole2 = thePoles2.Value(i).XYZ() * aW2;
|
|
if(!aPole1.IsEqual(aPole2, theTol))
|
|
return Standard_False;
|
|
}
|
|
//
|
|
return Standard_True;
|
|
}
|
|
|
|
//=============================================================================
|
|
//function : isIsoLine
|
|
//purpose :
|
|
//=============================================================================
|
|
Standard_Boolean GeomLib::isIsoLine (const Handle(Adaptor2d_HCurve2d) theC2D,
|
|
Standard_Boolean& theIsU,
|
|
Standard_Real& theParam,
|
|
Standard_Boolean& theIsForward)
|
|
{
|
|
// These variables are used to check line state (vertical or horizontal).
|
|
Standard_Boolean isAppropriateType = Standard_False;
|
|
gp_Pnt2d aLoc2d;
|
|
gp_Dir2d aDir2d;
|
|
|
|
// Test type.
|
|
const GeomAbs_CurveType aType = theC2D->GetType();
|
|
if (aType == GeomAbs_Line)
|
|
{
|
|
gp_Lin2d aLin2d = theC2D->Line();
|
|
aLoc2d = aLin2d.Location();
|
|
aDir2d = aLin2d.Direction();
|
|
isAppropriateType = Standard_True;
|
|
}
|
|
else if (aType == GeomAbs_BSplineCurve)
|
|
{
|
|
Handle(Geom2d_BSplineCurve) aBSpline2d = theC2D->BSpline();
|
|
if (aBSpline2d->Degree() != 1 || aBSpline2d->NbPoles() != 2)
|
|
return Standard_False; // Not a line or uneven parameterization.
|
|
|
|
aLoc2d = aBSpline2d->Pole(1);
|
|
|
|
// Vector should be non-degenerated.
|
|
gp_Vec2d aVec2d(aBSpline2d->Pole(1), aBSpline2d->Pole(2));
|
|
if (aVec2d.SquareMagnitude() < Precision::Confusion())
|
|
return Standard_False; // Degenerated spline.
|
|
aDir2d = aVec2d;
|
|
|
|
isAppropriateType = Standard_True;
|
|
}
|
|
else if (aType == GeomAbs_BezierCurve)
|
|
{
|
|
Handle(Geom2d_BezierCurve) aBezier2d = theC2D->Bezier();
|
|
if (aBezier2d->Degree() != 1 || aBezier2d->NbPoles() != 2)
|
|
return Standard_False; // Not a line or uneven parameterization.
|
|
|
|
aLoc2d = aBezier2d->Pole(1);
|
|
|
|
// Vector should be non-degenerated.
|
|
gp_Vec2d aVec2d(aBezier2d->Pole(1), aBezier2d->Pole(2));
|
|
if (aVec2d.SquareMagnitude() < Precision::Confusion())
|
|
return Standard_False; // Degenerated spline.
|
|
aDir2d = aVec2d;
|
|
|
|
isAppropriateType = Standard_True;
|
|
}
|
|
|
|
if (!isAppropriateType)
|
|
return Standard_False;
|
|
|
|
// Check line to be vertical or horizontal.
|
|
if (aDir2d.IsParallel(gp::DX2d(), Precision::Angular()))
|
|
{
|
|
// Horizontal line. V = const.
|
|
theIsU = Standard_False;
|
|
theParam = aLoc2d.Y();
|
|
theIsForward = aDir2d.Dot(gp::DX2d()) > 0.0;
|
|
return Standard_True;
|
|
}
|
|
else if (aDir2d.IsParallel(gp::DY2d(), Precision::Angular()))
|
|
{
|
|
// Vertical line. U = const.
|
|
theIsU = Standard_True;
|
|
theParam = aLoc2d.X();
|
|
theIsForward = aDir2d.Dot(gp::DY2d()) > 0.0;
|
|
return Standard_True;
|
|
}
|
|
|
|
return Standard_False;
|
|
}
|
|
|
|
//=============================================================================
|
|
//function : buildC3dOnIsoLine
|
|
//purpose :
|
|
//=============================================================================
|
|
Handle(Geom_Curve) GeomLib::buildC3dOnIsoLine (const Handle(Adaptor2d_HCurve2d) theC2D,
|
|
const Handle(Adaptor3d_HSurface) theSurf,
|
|
const Standard_Real theFirst,
|
|
const Standard_Real theLast,
|
|
const Standard_Real theTolerance,
|
|
const Standard_Boolean theIsU,
|
|
const Standard_Real theParam,
|
|
const Standard_Boolean theIsForward)
|
|
{
|
|
// Convert adapter to the appropriate type.
|
|
Handle(GeomAdaptor_HSurface) aGeomAdapter = Handle(GeomAdaptor_HSurface)::DownCast(theSurf);
|
|
if (aGeomAdapter.IsNull())
|
|
return Handle(Geom_Curve)();
|
|
|
|
if (theSurf->GetType() == GeomAbs_Sphere)
|
|
return Handle(Geom_Curve)();
|
|
|
|
// Extract isoline
|
|
Handle(Geom_Surface) aSurf = aGeomAdapter->ChangeSurface().Surface();
|
|
Handle(Geom_Curve) aC3d;
|
|
|
|
gp_Pnt2d aF2d = theC2D->Value(theC2D->FirstParameter());
|
|
gp_Pnt2d aL2d = theC2D->Value(theC2D->LastParameter());
|
|
|
|
Standard_Boolean isToTrim = Standard_True;
|
|
Standard_Real U1, U2, V1, V2;
|
|
aSurf->Bounds(U1, U2, V1, V2);
|
|
|
|
if (theIsU)
|
|
{
|
|
Standard_Real aV1Param = Min(aF2d.Y(), aL2d.Y());
|
|
Standard_Real aV2Param = Max(aF2d.Y(), aL2d.Y());
|
|
if (aV2Param < V1 - theTolerance || aV1Param > V2 + theTolerance)
|
|
{
|
|
return Handle(Geom_Curve)();
|
|
}
|
|
else if (Precision::IsInfinite(V1) || Precision::IsInfinite(V2))
|
|
{
|
|
if (Abs(aV2Param - aV1Param) < Precision::PConfusion())
|
|
{
|
|
return Handle(Geom_Curve)();
|
|
}
|
|
aSurf = new Geom_RectangularTrimmedSurface(aSurf, U1, U2, aV1Param, aV2Param);
|
|
isToTrim = Standard_False;
|
|
}
|
|
else
|
|
{
|
|
aV1Param = Max(aV1Param, V1);
|
|
aV2Param = Min(aV2Param, V2);
|
|
if (Abs(aV2Param - aV1Param) < Precision::PConfusion())
|
|
{
|
|
return Handle(Geom_Curve)();
|
|
}
|
|
}
|
|
aC3d = aSurf->UIso(theParam);
|
|
if (isToTrim)
|
|
aC3d = new Geom_TrimmedCurve(aC3d, aV1Param, aV2Param);
|
|
}
|
|
else
|
|
{
|
|
Standard_Real aU1Param = Min(aF2d.X(), aL2d.X());
|
|
Standard_Real aU2Param = Max(aF2d.X(), aL2d.X());
|
|
if (aU2Param < U1 - theTolerance || aU1Param > U2 + theTolerance)
|
|
{
|
|
return Handle(Geom_Curve)();
|
|
}
|
|
else if (Precision::IsInfinite(U1) || Precision::IsInfinite(U2))
|
|
{
|
|
if (Abs(aU2Param - aU1Param) < Precision::PConfusion())
|
|
{
|
|
return Handle(Geom_Curve)();
|
|
}
|
|
aSurf = new Geom_RectangularTrimmedSurface(aSurf, aU1Param, aU2Param, V1, V2);
|
|
isToTrim = Standard_False;
|
|
}
|
|
else
|
|
{
|
|
aU1Param = Max(aU1Param, U1);
|
|
aU2Param = Min(aU2Param, U2);
|
|
if (Abs(aU2Param - aU1Param) < Precision::PConfusion())
|
|
{
|
|
return Handle(Geom_Curve)();
|
|
}
|
|
}
|
|
aC3d = aSurf->VIso(theParam);
|
|
if (isToTrim)
|
|
aC3d = new Geom_TrimmedCurve(aC3d, aU1Param, aU2Param);
|
|
}
|
|
|
|
// Convert arbitrary curve type to the b-spline.
|
|
Handle(Geom_BSplineCurve) aCurve3d = GeomConvert::CurveToBSplineCurve(aC3d, Convert_QuasiAngular);
|
|
if (!theIsForward)
|
|
aCurve3d->Reverse();
|
|
|
|
// Rebuild parameterization for the 3d curve to have the same parameterization with
|
|
// a two-dimensional curve.
|
|
TColStd_Array1OfReal aKnots = aCurve3d->Knots();
|
|
BSplCLib::Reparametrize(theC2D->FirstParameter(), theC2D->LastParameter(), aKnots);
|
|
aCurve3d->SetKnots(aKnots);
|
|
|
|
// Evaluate error.
|
|
Standard_Real anError3d = 0.0;
|
|
|
|
const Standard_Real aParF = theFirst;
|
|
const Standard_Real aParL = theLast;
|
|
const Standard_Integer aNbPnt = 23;
|
|
for (Standard_Integer anIdx = 0; anIdx <= aNbPnt; ++anIdx)
|
|
{
|
|
const Standard_Real aPar = aParF + ((aParL - aParF) * anIdx) / aNbPnt;
|
|
|
|
const gp_Pnt2d aPnt2d = theC2D->Value(aPar);
|
|
|
|
const gp_Pnt aPntC3D = aCurve3d->Value(aPar);
|
|
const gp_Pnt aPntC2D = theSurf->Value(aPnt2d.X(), aPnt2d.Y());
|
|
|
|
const Standard_Real aSqDeviation = aPntC3D.SquareDistance(aPntC2D);
|
|
anError3d = Max (aSqDeviation, anError3d);
|
|
}
|
|
|
|
anError3d = Sqrt(anError3d);
|
|
|
|
// Target tolerance is not obtained. This situation happens for isolines on the sphere.
|
|
// OCCT is unable to convert it keeping original parameterization, while the geometric
|
|
// form of the result is entirely identical. In that case, it is better to utilize
|
|
// a general-purpose approach.
|
|
if (anError3d > theTolerance)
|
|
return Handle(Geom_Curve)();
|
|
|
|
return aCurve3d;
|
|
}
|