mirror of
https://git.dev.opencascade.org/repos/occt.git
synced 2025-04-05 18:16:23 +03:00
Automatic upgrade of OCCT code by command "occt_upgrade . -nocdl": - WOK-generated header files from inc and sources from drv are moved to src - CDL files removed - All packages are converted to nocdlpack
249 lines
7.0 KiB
C++
249 lines
7.0 KiB
C++
// Copyright (c) 1997-1999 Matra Datavision
|
|
// Copyright (c) 1999-2014 OPEN CASCADE SAS
|
|
//
|
|
// This file is part of Open CASCADE Technology software library.
|
|
//
|
|
// This library is free software; you can redistribute it and/or modify it under
|
|
// the terms of the GNU Lesser General Public License version 2.1 as published
|
|
// by the Free Software Foundation, with special exception defined in the file
|
|
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
|
|
// distribution for complete text of the license and disclaimer of any warranty.
|
|
//
|
|
// Alternatively, this file may be used under the terms of Open CASCADE
|
|
// commercial license or contractual agreement.
|
|
|
|
//#ifndef OCCT_DEBUG
|
|
#define No_Standard_RangeError
|
|
#define No_Standard_OutOfRange
|
|
#define No_Standard_DimensionError
|
|
|
|
//#endif
|
|
|
|
#include <math_BracketMinimum.hxx>
|
|
#include <math_BrentMinimum.hxx>
|
|
#include <math_FRPR.hxx>
|
|
#include <math_Function.hxx>
|
|
#include <math_MultipleVarFunction.hxx>
|
|
#include <math_MultipleVarFunctionWithGradient.hxx>
|
|
#include <Standard_DimensionError.hxx>
|
|
#include <StdFail_NotDone.hxx>
|
|
|
|
// l'utilisation de math_BrentMinumim pur trouver un minimum dans une direction
|
|
// donnee n'est pas du tout optimale. voir peut etre interpolation cubique
|
|
// classique et aussi essayer "recherche unidimensionnelle economique"
|
|
// PROGRAMMATION MATHEMATIQUE (theorie et algorithmes) tome1 page 82.
|
|
class DirFunctionTer : public math_Function {
|
|
|
|
math_Vector *P0;
|
|
math_Vector *Dir;
|
|
math_Vector *P;
|
|
math_MultipleVarFunction *F;
|
|
|
|
public :
|
|
|
|
DirFunctionTer(math_Vector& V1,
|
|
math_Vector& V2,
|
|
math_Vector& V3,
|
|
math_MultipleVarFunction& f);
|
|
|
|
void Initialize(const math_Vector& p0, const math_Vector& dir);
|
|
|
|
virtual Standard_Boolean Value(const Standard_Real x, Standard_Real& fval);
|
|
};
|
|
|
|
DirFunctionTer::DirFunctionTer(math_Vector& V1,
|
|
math_Vector& V2,
|
|
math_Vector& V3,
|
|
math_MultipleVarFunction& f) {
|
|
|
|
P0 = &V1;
|
|
Dir = &V2;
|
|
P = &V3;
|
|
F = &f;
|
|
}
|
|
|
|
void DirFunctionTer::Initialize(const math_Vector& p0,
|
|
const math_Vector& dir) {
|
|
|
|
*P0 = p0;
|
|
*Dir = dir;
|
|
}
|
|
|
|
Standard_Boolean DirFunctionTer::Value(const Standard_Real x, Standard_Real& fval) {
|
|
|
|
*P = *Dir;
|
|
P->Multiply(x);
|
|
P->Add(*P0);
|
|
F->Value(*P, fval);
|
|
return Standard_True;
|
|
}
|
|
|
|
static Standard_Boolean MinimizeDirection(math_Vector& P,
|
|
math_Vector& Dir,
|
|
Standard_Real& Result,
|
|
DirFunctionTer& F) {
|
|
|
|
Standard_Real ax, xx, bx;
|
|
|
|
F.Initialize(P, Dir);
|
|
math_BracketMinimum Bracket(F, 0.0, 1.0);
|
|
if(Bracket.IsDone()) {
|
|
Bracket.Values(ax, xx, bx);
|
|
math_BrentMinimum Sol(1.e-10);
|
|
Sol.Perform(F, ax, xx, bx);
|
|
if (Sol.IsDone()) {
|
|
Standard_Real Scale = Sol.Location();
|
|
Result = Sol.Minimum();
|
|
Dir.Multiply(Scale);
|
|
P.Add(Dir);
|
|
return Standard_True;
|
|
}
|
|
}
|
|
return Standard_False;
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : math_FRPR
|
|
//purpose : Constructor
|
|
//=======================================================================
|
|
math_FRPR::math_FRPR(const math_MultipleVarFunctionWithGradient& theFunction,
|
|
const Standard_Real theTolerance,
|
|
const Standard_Integer theNbIterations,
|
|
const Standard_Real theZEPS)
|
|
|
|
: TheLocation(1, theFunction.NbVariables()),
|
|
TheGradient(1, theFunction.NbVariables()),
|
|
TheMinimum (0.0),
|
|
PreviousMinimum(0.0),
|
|
XTol (theTolerance),
|
|
EPSZ (theZEPS),
|
|
Done (Standard_False),
|
|
Iter (0),
|
|
State (0),
|
|
TheStatus (math_NotBracketed),
|
|
Itermax (theNbIterations)
|
|
{
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : ~math_FRPR
|
|
//purpose : Destructor
|
|
//=======================================================================
|
|
math_FRPR::~math_FRPR()
|
|
{
|
|
}
|
|
|
|
|
|
//=======================================================================
|
|
//function : Perform
|
|
//purpose :
|
|
//=======================================================================
|
|
void math_FRPR::Perform(math_MultipleVarFunctionWithGradient& F,
|
|
const math_Vector& StartingPoint)
|
|
{
|
|
Standard_Boolean Good;
|
|
Standard_Integer n = TheLocation.Length();
|
|
Standard_Integer j, its;
|
|
Standard_Real gg, gam, dgg;
|
|
|
|
math_Vector g(1, n), h(1, n);
|
|
|
|
math_Vector Temp1(1, n);
|
|
math_Vector Temp2(1, n);
|
|
math_Vector Temp3(1, n);
|
|
DirFunctionTer F_Dir(Temp1, Temp2, Temp3, F);
|
|
|
|
TheLocation = StartingPoint;
|
|
Good = F.Values(TheLocation, PreviousMinimum, TheGradient);
|
|
if(!Good) {
|
|
Done = Standard_False;
|
|
TheStatus = math_FunctionError;
|
|
return;
|
|
}
|
|
|
|
g = -TheGradient;
|
|
h = g;
|
|
TheGradient = g;
|
|
|
|
for(its = 1; its <= Itermax; its++) {
|
|
Iter = its;
|
|
|
|
Standard_Boolean IsGood = MinimizeDirection(TheLocation,
|
|
TheGradient, TheMinimum, F_Dir);
|
|
if(!IsGood) {
|
|
Done = Standard_False;
|
|
TheStatus = math_DirectionSearchError;
|
|
return;
|
|
}
|
|
if(IsSolutionReached(F)) {
|
|
Done = Standard_True;
|
|
State = F.GetStateNumber();
|
|
TheStatus = math_OK;
|
|
return;
|
|
}
|
|
Good = F.Values(TheLocation, PreviousMinimum, TheGradient);
|
|
if(!Good) {
|
|
Done = Standard_False;
|
|
TheStatus = math_FunctionError;
|
|
return;
|
|
}
|
|
|
|
dgg =0.0;
|
|
gg = 0.0;
|
|
|
|
for(j = 1; j<= n; j++) {
|
|
gg += g(j)*g(j);
|
|
// dgg += TheGradient(j)*TheGradient(j); //for Fletcher-Reeves
|
|
dgg += (TheGradient(j)+g(j)) * TheGradient(j); //for Polak-Ribiere
|
|
}
|
|
|
|
if (gg == 0.0) {
|
|
//Unlikely. If gradient is exactly 0 then we are already done.
|
|
Done = Standard_False;
|
|
TheStatus = math_FunctionError;
|
|
return;
|
|
}
|
|
|
|
gam = dgg/gg;
|
|
g = -TheGradient;
|
|
TheGradient = g + gam*h;
|
|
h = TheGradient;
|
|
}
|
|
Done = Standard_False;
|
|
TheStatus = math_TooManyIterations;
|
|
return;
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : Dump
|
|
//purpose :
|
|
//=======================================================================
|
|
void math_FRPR::Dump(Standard_OStream& o) const
|
|
{
|
|
o << "math_FRPR ";
|
|
if(Done) {
|
|
o << " Status = Done \n";
|
|
o << " Location Vector = "<< TheLocation << "\n";
|
|
o << " Minimum value = " << TheMinimum <<"\n";
|
|
o << " Number of iterations = " << Iter <<"\n";
|
|
}
|
|
else {
|
|
o << " Status = not Done because " << (Standard_Integer)TheStatus << "\n";
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|