mirror of
https://git.dev.opencascade.org/repos/occt.git
synced 2025-04-10 18:51:21 +03:00
Performance update applied: - moving to const reference as much as possible Result of CLANG_TIDY (static analyzing filter: perform*)
767 lines
24 KiB
C++
767 lines
24 KiB
C++
// Created on: 1997-10-06
|
|
// Created by: Roman BORISOV
|
|
// Copyright (c) 1997-1999 Matra Datavision
|
|
// Copyright (c) 1999-2014 OPEN CASCADE SAS
|
|
//
|
|
// This file is part of Open CASCADE Technology software library.
|
|
//
|
|
// This library is free software; you can redistribute it and/or modify it under
|
|
// the terms of the GNU Lesser General Public License version 2.1 as published
|
|
// by the Free Software Foundation, with special exception defined in the file
|
|
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
|
|
// distribution for complete text of the license and disclaimer of any warranty.
|
|
//
|
|
// Alternatively, this file may be used under the terms of Open CASCADE
|
|
// commercial license or contractual agreement.
|
|
|
|
#include <Approx_CurveOnSurface.hxx>
|
|
|
|
#include <Adaptor2d_Curve2d.hxx>
|
|
#include <Adaptor3d_Curve.hxx>
|
|
#include <Adaptor3d_CurveOnSurface.hxx>
|
|
#include <Adaptor3d_HSurfaceTool.hxx>
|
|
#include <Adaptor3d_Surface.hxx>
|
|
#include <AdvApprox_ApproxAFunction.hxx>
|
|
#include <AdvApprox_DichoCutting.hxx>
|
|
#include <AdvApprox_PrefAndRec.hxx>
|
|
#include <Geom2d_BezierCurve.hxx>
|
|
#include <Geom2d_BSplineCurve.hxx>
|
|
#include <Geom2dAdaptor_Curve.hxx>
|
|
#include <Geom_RectangularTrimmedSurface.hxx>
|
|
#include <Geom_TrimmedCurve.hxx>
|
|
#include <GeomAdaptor_Curve.hxx>
|
|
#include <GeomAdaptor_Surface.hxx>
|
|
#include <GeomConvert.hxx>
|
|
#include <gp_Lin2d.hxx>
|
|
#include <gp_Pnt.hxx>
|
|
#include <gp_Vec.hxx>
|
|
#include <Precision.hxx>
|
|
#include <Standard_ConstructionError.hxx>
|
|
#include <TColgp_Array1OfPnt.hxx>
|
|
#include <TColgp_Array1OfPnt2d.hxx>
|
|
#include <TColStd_Array1OfReal.hxx>
|
|
#include <TColStd_HArray1OfReal.hxx>
|
|
|
|
//=======================================================================
|
|
//class : Approx_CurveOnSurface_Eval
|
|
//purpose: evaluator class for approximation of both 2d and 3d curves
|
|
//=======================================================================
|
|
class Approx_CurveOnSurface_Eval : public AdvApprox_EvaluatorFunction
|
|
{
|
|
public:
|
|
Approx_CurveOnSurface_Eval (const Handle(Adaptor3d_Curve)& theFunc,
|
|
const Handle(Adaptor2d_Curve2d)& theFunc2d,
|
|
Standard_Real First, Standard_Real Last)
|
|
: fonct(theFunc), fonct2d(theFunc2d)
|
|
{ StartEndSav[0] = First; StartEndSav[1] = Last; }
|
|
|
|
virtual void Evaluate (Standard_Integer *Dimension,
|
|
Standard_Real StartEnd[2],
|
|
Standard_Real *Parameter,
|
|
Standard_Integer *DerivativeRequest,
|
|
Standard_Real *Result, // [Dimension]
|
|
Standard_Integer *ErrorCode);
|
|
|
|
private:
|
|
Handle(Adaptor3d_Curve) fonct;
|
|
Handle(Adaptor2d_Curve2d) fonct2d;
|
|
Standard_Real StartEndSav[2];
|
|
};
|
|
|
|
void Approx_CurveOnSurface_Eval::Evaluate (Standard_Integer *Dimension,
|
|
Standard_Real StartEnd[2],
|
|
Standard_Real *Param, // Parameter at which evaluation
|
|
Standard_Integer *Order, // Derivative Request
|
|
Standard_Real *Result,// [Dimension]
|
|
Standard_Integer *ErrorCode)
|
|
{
|
|
*ErrorCode = 0;
|
|
Standard_Real par = *Param;
|
|
|
|
// Dimension is incorrect
|
|
if (*Dimension != 5) {
|
|
*ErrorCode = 1;
|
|
}
|
|
|
|
// Parameter is incorrect
|
|
if(StartEnd[0] != StartEndSav[0] || StartEnd[1]!= StartEndSav[1])
|
|
{
|
|
fonct = fonct->Trim(StartEnd[0],StartEnd[1],Precision::PConfusion());
|
|
fonct2d = fonct2d->Trim(StartEnd[0],StartEnd[1],
|
|
Precision::PConfusion());
|
|
StartEndSav[0]=StartEnd[0];
|
|
StartEndSav[1]=StartEnd[1];
|
|
}
|
|
gp_Pnt pnt;
|
|
|
|
|
|
gp_Pnt2d pnt2d;
|
|
|
|
switch (*Order) {
|
|
case 0:
|
|
{
|
|
fonct2d->D0(par, pnt2d);
|
|
fonct->D0(par, pnt);
|
|
Result[0] = pnt2d.X();
|
|
Result[1] = pnt2d.Y();
|
|
Result[2] = pnt.X();
|
|
Result[3] = pnt.Y();
|
|
Result[4] = pnt.Z();
|
|
break;
|
|
}
|
|
case 1:
|
|
{
|
|
gp_Vec v1;
|
|
gp_Vec2d v21;
|
|
fonct2d->D1(par, pnt2d, v21);
|
|
fonct->D1(par,pnt, v1);
|
|
Result[0] = v21.X();
|
|
Result[1] = v21.Y();
|
|
Result[2] = v1.X();
|
|
Result[3] = v1.Y();
|
|
Result[4] = v1.Z();
|
|
break;
|
|
}
|
|
case 2:
|
|
{
|
|
gp_Vec v1, v2;
|
|
gp_Vec2d v21, v22;
|
|
fonct2d->D2(par, pnt2d, v21, v22);
|
|
fonct->D2(par, pnt, v1, v2);
|
|
Result[0] = v22.X();
|
|
Result[1] = v22.Y();
|
|
Result[2] = v2.X();
|
|
Result[3] = v2.Y();
|
|
Result[4] = v2.Z();
|
|
break;
|
|
}
|
|
default:
|
|
Result[0] = Result[1] = Result[2] = Result[3] = Result[4] = 0.;
|
|
*ErrorCode = 3;
|
|
break;
|
|
}
|
|
}
|
|
|
|
//=======================================================================
|
|
//class : Approx_CurveOnSurface_Eval3d
|
|
//purpose: evaluator class for approximation of 3d curve
|
|
//=======================================================================
|
|
|
|
class Approx_CurveOnSurface_Eval3d : public AdvApprox_EvaluatorFunction
|
|
{
|
|
public:
|
|
Approx_CurveOnSurface_Eval3d (const Handle(Adaptor3d_Curve)& theFunc,
|
|
Standard_Real First, Standard_Real Last)
|
|
: fonct(theFunc) { StartEndSav[0] = First; StartEndSav[1] = Last; }
|
|
|
|
virtual void Evaluate (Standard_Integer *Dimension,
|
|
Standard_Real StartEnd[2],
|
|
Standard_Real *Parameter,
|
|
Standard_Integer *DerivativeRequest,
|
|
Standard_Real *Result, // [Dimension]
|
|
Standard_Integer *ErrorCode);
|
|
|
|
private:
|
|
Handle(Adaptor3d_Curve) fonct;
|
|
Standard_Real StartEndSav[2];
|
|
};
|
|
|
|
void Approx_CurveOnSurface_Eval3d::Evaluate (Standard_Integer *Dimension,
|
|
Standard_Real StartEnd[2],
|
|
Standard_Real *Param, // Parameter at which evaluation
|
|
Standard_Integer *Order, // Derivative Request
|
|
Standard_Real *Result,// [Dimension]
|
|
Standard_Integer *ErrorCode)
|
|
{
|
|
*ErrorCode = 0;
|
|
Standard_Real par = *Param;
|
|
|
|
// Dimension is incorrect
|
|
if (*Dimension != 3) {
|
|
*ErrorCode = 1;
|
|
}
|
|
|
|
// Parameter is incorrect
|
|
if(StartEnd[0] != StartEndSav[0] || StartEnd[1]!= StartEndSav[1])
|
|
{
|
|
fonct = fonct->Trim(StartEnd[0],StartEnd[1],Precision::PConfusion());
|
|
StartEndSav[0]=StartEnd[0];
|
|
StartEndSav[1]=StartEnd[1];
|
|
}
|
|
|
|
gp_Pnt pnt;
|
|
|
|
switch (*Order) {
|
|
case 0:
|
|
pnt = fonct->Value(par);
|
|
Result[0] = pnt.X();
|
|
Result[1] = pnt.Y();
|
|
Result[2] = pnt.Z();
|
|
break;
|
|
case 1:
|
|
{
|
|
gp_Vec v1;
|
|
fonct->D1(par, pnt, v1);
|
|
Result[0] = v1.X();
|
|
Result[1] = v1.Y();
|
|
Result[2] = v1.Z();
|
|
break;
|
|
}
|
|
case 2:
|
|
{
|
|
gp_Vec v1, v2;
|
|
fonct->D2(par, pnt, v1, v2);
|
|
Result[0] = v2.X();
|
|
Result[1] = v2.Y();
|
|
Result[2] = v2.Z();
|
|
break;
|
|
}
|
|
default:
|
|
Result[0] = Result[1] = Result[2] = 0.;
|
|
*ErrorCode = 3;
|
|
break;
|
|
}
|
|
}
|
|
|
|
//=======================================================================
|
|
//class : Approx_CurveOnSurface_Eval2d
|
|
//purpose: evaluator class for approximation of 2d curve
|
|
//=======================================================================
|
|
|
|
class Approx_CurveOnSurface_Eval2d : public AdvApprox_EvaluatorFunction
|
|
{
|
|
public:
|
|
Approx_CurveOnSurface_Eval2d (const Handle(Adaptor2d_Curve2d)& theFunc2d,
|
|
Standard_Real First, Standard_Real Last)
|
|
: fonct2d(theFunc2d) { StartEndSav[0] = First; StartEndSav[1] = Last; }
|
|
|
|
virtual void Evaluate (Standard_Integer *Dimension,
|
|
Standard_Real StartEnd[2],
|
|
Standard_Real *Parameter,
|
|
Standard_Integer *DerivativeRequest,
|
|
Standard_Real *Result, // [Dimension]
|
|
Standard_Integer *ErrorCode);
|
|
|
|
private:
|
|
Handle(Adaptor2d_Curve2d) fonct2d;
|
|
Standard_Real StartEndSav[2];
|
|
};
|
|
|
|
void Approx_CurveOnSurface_Eval2d::Evaluate (Standard_Integer *Dimension,
|
|
Standard_Real StartEnd[2],
|
|
Standard_Real *Param, // Parameter at which evaluation
|
|
Standard_Integer *Order, // Derivative Request
|
|
Standard_Real *Result,// [Dimension]
|
|
Standard_Integer *ErrorCode)
|
|
{
|
|
*ErrorCode = 0;
|
|
Standard_Real par = *Param;
|
|
|
|
// Dimension is incorrect
|
|
if (*Dimension != 2) {
|
|
*ErrorCode = 1;
|
|
}
|
|
|
|
// Parameter is incorrect
|
|
if(StartEnd[0] != StartEndSav[0] || StartEnd[1]!= StartEndSav[1])
|
|
{
|
|
fonct2d = fonct2d->Trim(StartEnd[0],StartEnd[1],Precision::PConfusion());
|
|
StartEndSav[0]=StartEnd[0];
|
|
StartEndSav[1]=StartEnd[1];
|
|
}
|
|
|
|
gp_Pnt2d pnt;
|
|
|
|
switch (*Order) {
|
|
case 0:
|
|
{
|
|
pnt = fonct2d->Value(par);
|
|
Result[0] = pnt.X();
|
|
Result[1] = pnt.Y();
|
|
break;
|
|
}
|
|
case 1:
|
|
{
|
|
gp_Vec2d v1;
|
|
fonct2d->D1(par, pnt, v1);
|
|
Result[0] = v1.X();
|
|
Result[1] = v1.Y();
|
|
break;
|
|
}
|
|
case 2:
|
|
{
|
|
gp_Vec2d v1, v2;
|
|
fonct2d->D2(par, pnt, v1, v2);
|
|
Result[0] = v2.X();
|
|
Result[1] = v2.Y();
|
|
break;
|
|
}
|
|
default:
|
|
Result[0] = Result[1] = 0.;
|
|
*ErrorCode = 3;
|
|
break;
|
|
}
|
|
}
|
|
|
|
//=============================================================================
|
|
//function : Approx_CurveOnSurface
|
|
//purpose : Constructor
|
|
//=============================================================================
|
|
Approx_CurveOnSurface::Approx_CurveOnSurface(const Handle(Adaptor2d_Curve2d)& C2D,
|
|
const Handle(Adaptor3d_Surface)& Surf,
|
|
const Standard_Real First,
|
|
const Standard_Real Last,
|
|
const Standard_Real Tol,
|
|
const GeomAbs_Shape S,
|
|
const Standard_Integer MaxDegree,
|
|
const Standard_Integer MaxSegments,
|
|
const Standard_Boolean only3d,
|
|
const Standard_Boolean only2d)
|
|
: myC2D(C2D),
|
|
mySurf(Surf),
|
|
myFirst(First),
|
|
myLast(Last),
|
|
myTol(Tol),
|
|
myIsDone(Standard_False),
|
|
myHasResult(Standard_False),
|
|
myError3d(0.0),
|
|
myError2dU(0.0),
|
|
myError2dV(0.0)
|
|
{
|
|
Perform(MaxSegments, MaxDegree, S, only3d, only2d);
|
|
}
|
|
|
|
//=============================================================================
|
|
//function : Approx_CurveOnSurface
|
|
//purpose : Constructor
|
|
//=============================================================================
|
|
Approx_CurveOnSurface::Approx_CurveOnSurface(const Handle(Adaptor2d_Curve2d)& theC2D,
|
|
const Handle(Adaptor3d_Surface)& theSurf,
|
|
const Standard_Real theFirst,
|
|
const Standard_Real theLast,
|
|
const Standard_Real theTol)
|
|
: myC2D(theC2D),
|
|
mySurf(theSurf),
|
|
myFirst(theFirst),
|
|
myLast(theLast),
|
|
myTol(theTol),
|
|
myIsDone(Standard_False),
|
|
myHasResult(Standard_False),
|
|
myError3d(0.0),
|
|
myError2dU(0.0),
|
|
myError2dV(0.0)
|
|
{
|
|
}
|
|
|
|
//=============================================================================
|
|
//function : Perform
|
|
//purpose :
|
|
//=============================================================================
|
|
void Approx_CurveOnSurface::Perform(const Standard_Integer theMaxSegments,
|
|
const Standard_Integer theMaxDegree,
|
|
const GeomAbs_Shape theContinuity,
|
|
const Standard_Boolean theOnly3d,
|
|
const Standard_Boolean theOnly2d)
|
|
{
|
|
myIsDone = Standard_False;
|
|
myHasResult = Standard_False;
|
|
myError2dU = 0.0;
|
|
myError2dV = 0.0;
|
|
myError3d = 0.0;
|
|
|
|
if(theOnly3d && theOnly2d) throw Standard_ConstructionError();
|
|
|
|
GeomAbs_Shape aContinuity = theContinuity;
|
|
if (aContinuity == GeomAbs_G1)
|
|
aContinuity = GeomAbs_C1;
|
|
else if (aContinuity == GeomAbs_G2)
|
|
aContinuity = GeomAbs_C2;
|
|
else if (aContinuity > GeomAbs_C2)
|
|
aContinuity = GeomAbs_C2; //Restriction of AdvApprox_ApproxAFunction
|
|
|
|
Handle( Adaptor2d_Curve2d ) TrimmedC2D = myC2D->Trim( myFirst, myLast, Precision::PConfusion() );
|
|
|
|
Standard_Boolean isU, isForward;
|
|
Standard_Real aParam;
|
|
if (theOnly3d && isIsoLine(TrimmedC2D, isU, aParam, isForward))
|
|
{
|
|
if (buildC3dOnIsoLine(TrimmedC2D, isU, aParam, isForward))
|
|
{
|
|
myIsDone = Standard_True;
|
|
myHasResult = Standard_True;
|
|
return;
|
|
}
|
|
}
|
|
|
|
Handle(Adaptor3d_CurveOnSurface) HCOnS = new Adaptor3d_CurveOnSurface (TrimmedC2D, mySurf);
|
|
|
|
Standard_Integer Num1DSS = 0, Num2DSS=0, Num3DSS=0;
|
|
Handle(TColStd_HArray1OfReal) OneDTol;
|
|
Handle(TColStd_HArray1OfReal) TwoDTolNul;
|
|
Handle(TColStd_HArray1OfReal) ThreeDTol;
|
|
|
|
// create evaluators and choose appropriate one
|
|
Approx_CurveOnSurface_Eval3d Eval3dCvOnSurf (HCOnS, myFirst, myLast);
|
|
Approx_CurveOnSurface_Eval2d Eval2dCvOnSurf ( TrimmedC2D, myFirst, myLast);
|
|
Approx_CurveOnSurface_Eval EvalCvOnSurf (HCOnS, TrimmedC2D, myFirst, myLast);
|
|
AdvApprox_EvaluatorFunction* EvalPtr;
|
|
if ( theOnly3d ) EvalPtr = &Eval3dCvOnSurf;
|
|
else if ( theOnly2d ) EvalPtr = &Eval2dCvOnSurf;
|
|
else EvalPtr = &EvalCvOnSurf;
|
|
|
|
// Initialization for 2d approximation
|
|
if(!theOnly3d) {
|
|
Num1DSS = 2;
|
|
OneDTol = new TColStd_HArray1OfReal(1,Num1DSS);
|
|
|
|
Standard_Real TolU, TolV;
|
|
|
|
TolU = mySurf->UResolution(myTol) / 2.;
|
|
TolV = mySurf->VResolution(myTol) / 2.;
|
|
|
|
if (mySurf->UContinuity() == GeomAbs_C0)
|
|
{
|
|
if (!Adaptor3d_HSurfaceTool::IsSurfG1(mySurf, Standard_True, Precision::Angular()))
|
|
TolU = Min(1.e-3, 1.e3 * TolU);
|
|
if (!Adaptor3d_HSurfaceTool::IsSurfG1(mySurf, Standard_True, Precision::Confusion()))
|
|
TolU = Min(1.e-3, 1.e2 * TolU);
|
|
}
|
|
|
|
if (mySurf->VContinuity() == GeomAbs_C0)
|
|
{
|
|
if (!Adaptor3d_HSurfaceTool::IsSurfG1(mySurf, Standard_False, Precision::Angular()))
|
|
TolV = Min(1.e-3, 1.e3 * TolV);
|
|
if (!Adaptor3d_HSurfaceTool::IsSurfG1(mySurf, Standard_False, Precision::Confusion()))
|
|
TolV = Min(1.e-3, 1.e2 * TolV);
|
|
}
|
|
|
|
OneDTol->SetValue(1,TolU);
|
|
OneDTol->SetValue(2,TolV);
|
|
}
|
|
|
|
if(!theOnly2d) {
|
|
Num3DSS=1;
|
|
ThreeDTol = new TColStd_HArray1OfReal(1,Num3DSS);
|
|
ThreeDTol->Init(myTol/2);
|
|
}
|
|
|
|
AdvApprox_Cutting* CutTool;
|
|
|
|
if (aContinuity <= myC2D->Continuity() &&
|
|
aContinuity <= mySurf->UContinuity() &&
|
|
aContinuity <= mySurf->VContinuity())
|
|
{
|
|
CutTool = new AdvApprox_DichoCutting();
|
|
}
|
|
else if (aContinuity == GeomAbs_C1)
|
|
{
|
|
Standard_Integer NbInterv_C1 = HCOnS->NbIntervals(GeomAbs_C1);
|
|
TColStd_Array1OfReal CutPnts_C1(1, NbInterv_C1 + 1);
|
|
HCOnS->Intervals(CutPnts_C1, GeomAbs_C1);
|
|
Standard_Integer NbInterv_C2 = HCOnS->NbIntervals(GeomAbs_C2);
|
|
TColStd_Array1OfReal CutPnts_C2(1, NbInterv_C2 + 1);
|
|
HCOnS->Intervals(CutPnts_C2, GeomAbs_C2);
|
|
|
|
CutTool = new AdvApprox_PrefAndRec (CutPnts_C1, CutPnts_C2);
|
|
}
|
|
else
|
|
{
|
|
Standard_Integer NbInterv_C2 = HCOnS->NbIntervals(GeomAbs_C2);
|
|
TColStd_Array1OfReal CutPnts_C2(1, NbInterv_C2 + 1);
|
|
HCOnS->Intervals(CutPnts_C2, GeomAbs_C2);
|
|
Standard_Integer NbInterv_C3 = HCOnS->NbIntervals(GeomAbs_C3);
|
|
TColStd_Array1OfReal CutPnts_C3(1, NbInterv_C3 + 1);
|
|
HCOnS->Intervals(CutPnts_C3, GeomAbs_C3);
|
|
|
|
CutTool = new AdvApprox_PrefAndRec (CutPnts_C2, CutPnts_C3);
|
|
}
|
|
|
|
AdvApprox_ApproxAFunction aApprox (Num1DSS, Num2DSS, Num3DSS,
|
|
OneDTol, TwoDTolNul, ThreeDTol,
|
|
myFirst, myLast, aContinuity,
|
|
theMaxDegree, theMaxSegments,
|
|
*EvalPtr, *CutTool);
|
|
|
|
delete CutTool;
|
|
|
|
myIsDone = aApprox.IsDone();
|
|
myHasResult = aApprox.HasResult();
|
|
|
|
if (myHasResult) {
|
|
Handle(TColStd_HArray1OfReal) Knots = aApprox.Knots();
|
|
Handle(TColStd_HArray1OfInteger) Mults = aApprox.Multiplicities();
|
|
Standard_Integer Degree = aApprox.Degree();
|
|
|
|
if(!theOnly2d)
|
|
{
|
|
TColgp_Array1OfPnt Poles(1,aApprox.NbPoles());
|
|
aApprox.Poles(1,Poles);
|
|
myCurve3d = new Geom_BSplineCurve(Poles, Knots->Array1(), Mults->Array1(), Degree);
|
|
myError3d = aApprox.MaxError(3, 1);
|
|
}
|
|
if(!theOnly3d)
|
|
{
|
|
TColgp_Array1OfPnt2d Poles2d(1,aApprox.NbPoles());
|
|
TColStd_Array1OfReal Poles1dU(1,aApprox.NbPoles());
|
|
aApprox.Poles1d(1, Poles1dU);
|
|
TColStd_Array1OfReal Poles1dV(1,aApprox.NbPoles());
|
|
aApprox.Poles1d(2, Poles1dV);
|
|
for(Standard_Integer i = 1; i <= aApprox.NbPoles(); i++)
|
|
Poles2d.SetValue(i, gp_Pnt2d(Poles1dU.Value(i), Poles1dV.Value(i)));
|
|
myCurve2d = new Geom2d_BSplineCurve(Poles2d, Knots->Array1(), Mults->Array1(), Degree);
|
|
|
|
myError2dU = aApprox.MaxError(1, 1);
|
|
myError2dV = aApprox.MaxError(1, 2);
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
Standard_Boolean Approx_CurveOnSurface::IsDone() const
|
|
{
|
|
return myIsDone;
|
|
}
|
|
|
|
Standard_Boolean Approx_CurveOnSurface::HasResult() const
|
|
{
|
|
return myHasResult;
|
|
}
|
|
|
|
Handle(Geom_BSplineCurve) Approx_CurveOnSurface::Curve3d() const
|
|
{
|
|
return myCurve3d;
|
|
}
|
|
|
|
Handle(Geom2d_BSplineCurve) Approx_CurveOnSurface::Curve2d() const
|
|
{
|
|
return myCurve2d;
|
|
}
|
|
|
|
Standard_Real Approx_CurveOnSurface::MaxError3d() const
|
|
{
|
|
return myError3d;
|
|
}
|
|
|
|
Standard_Real Approx_CurveOnSurface::MaxError2dU() const
|
|
{
|
|
return myError2dU;
|
|
}
|
|
|
|
Standard_Real Approx_CurveOnSurface::MaxError2dV() const
|
|
{
|
|
return myError2dV;
|
|
}
|
|
|
|
//=============================================================================
|
|
//function : isIsoLine
|
|
//purpose :
|
|
//=============================================================================
|
|
Standard_Boolean Approx_CurveOnSurface::isIsoLine(const Handle(Adaptor2d_Curve2d)& theC2D,
|
|
Standard_Boolean& theIsU,
|
|
Standard_Real& theParam,
|
|
Standard_Boolean& theIsForward) const
|
|
{
|
|
// These variables are used to check line state (vertical or horizontal).
|
|
Standard_Boolean isAppropriateType = Standard_False;
|
|
gp_Pnt2d aLoc2d;
|
|
gp_Dir2d aDir2d;
|
|
|
|
// Test type.
|
|
const GeomAbs_CurveType aType = theC2D->GetType();
|
|
if (aType == GeomAbs_Line)
|
|
{
|
|
gp_Lin2d aLin2d = theC2D->Line();
|
|
aLoc2d = aLin2d.Location();
|
|
aDir2d = aLin2d.Direction();
|
|
isAppropriateType = Standard_True;
|
|
}
|
|
else if (aType == GeomAbs_BSplineCurve)
|
|
{
|
|
Handle(Geom2d_BSplineCurve) aBSpline2d = theC2D->BSpline();
|
|
if (aBSpline2d->Degree() != 1 || aBSpline2d->NbPoles() != 2)
|
|
return Standard_False; // Not a line or uneven parameterization.
|
|
|
|
aLoc2d = aBSpline2d->Pole(1);
|
|
|
|
// Vector should be non-degenerated.
|
|
gp_Vec2d aVec2d(aBSpline2d->Pole(1), aBSpline2d->Pole(2));
|
|
if (aVec2d.SquareMagnitude() < Precision::Confusion())
|
|
return Standard_False; // Degenerated spline.
|
|
aDir2d = aVec2d;
|
|
|
|
isAppropriateType = Standard_True;
|
|
}
|
|
else if (aType == GeomAbs_BezierCurve)
|
|
{
|
|
Handle(Geom2d_BezierCurve) aBezier2d = theC2D->Bezier();
|
|
if (aBezier2d->Degree() != 1 || aBezier2d->NbPoles() != 2)
|
|
return Standard_False; // Not a line or uneven parameterization.
|
|
|
|
aLoc2d = aBezier2d->Pole(1);
|
|
|
|
// Vector should be non-degenerated.
|
|
gp_Vec2d aVec2d(aBezier2d->Pole(1), aBezier2d->Pole(2));
|
|
if (aVec2d.SquareMagnitude() < Precision::Confusion())
|
|
return Standard_False; // Degenerated spline.
|
|
aDir2d = aVec2d;
|
|
|
|
isAppropriateType = Standard_True;
|
|
}
|
|
|
|
if (!isAppropriateType)
|
|
return Standard_False;
|
|
|
|
// Check line to be vertical or horizontal.
|
|
if (aDir2d.IsParallel(gp::DX2d(), Precision::Angular()))
|
|
{
|
|
// Horizontal line. V = const.
|
|
theIsU = Standard_False;
|
|
theParam = aLoc2d.Y();
|
|
theIsForward = aDir2d.Dot(gp::DX2d()) > 0.0;
|
|
return Standard_True;
|
|
}
|
|
else if (aDir2d.IsParallel(gp::DY2d(), Precision::Angular()))
|
|
{
|
|
// Vertical line. U = const.
|
|
theIsU = Standard_True;
|
|
theParam = aLoc2d.X();
|
|
theIsForward = aDir2d.Dot(gp::DY2d()) > 0.0;
|
|
return Standard_True;
|
|
}
|
|
|
|
return Standard_False;
|
|
}
|
|
|
|
#include <GeomLib.hxx>
|
|
|
|
//=============================================================================
|
|
//function : buildC3dOnIsoLine
|
|
//purpose :
|
|
//=============================================================================
|
|
Standard_Boolean Approx_CurveOnSurface::buildC3dOnIsoLine(const Handle(Adaptor2d_Curve2d)& theC2D,
|
|
const Standard_Boolean theIsU,
|
|
const Standard_Real theParam,
|
|
const Standard_Boolean theIsForward)
|
|
{
|
|
// Convert adapter to the appropriate type.
|
|
Handle(GeomAdaptor_Surface) aGeomAdapter = Handle(GeomAdaptor_Surface)::DownCast(mySurf);
|
|
if (aGeomAdapter.IsNull())
|
|
return Standard_False;
|
|
|
|
if (mySurf->GetType() == GeomAbs_Sphere)
|
|
return Standard_False;
|
|
|
|
// Extract isoline
|
|
Handle(Geom_Surface) aSurf = aGeomAdapter->Surface();
|
|
Handle(Geom_Curve) aC3d;
|
|
|
|
gp_Pnt2d aF2d = theC2D->Value(theC2D->FirstParameter());
|
|
gp_Pnt2d aL2d = theC2D->Value(theC2D->LastParameter());
|
|
|
|
Standard_Boolean isToTrim = Standard_True;
|
|
Standard_Real U1, U2, V1, V2;
|
|
aSurf->Bounds(U1, U2, V1, V2);
|
|
|
|
if (theIsU)
|
|
{
|
|
Standard_Real aV1Param = Min(aF2d.Y(), aL2d.Y());
|
|
Standard_Real aV2Param = Max(aF2d.Y(), aL2d.Y());
|
|
if (aV2Param < V1 - myTol || aV1Param > V2 + myTol)
|
|
{
|
|
return Standard_False;
|
|
}
|
|
else if (Precision::IsInfinite(V1) || Precision::IsInfinite(V2))
|
|
{
|
|
if (Abs(aV2Param - aV1Param) < Precision::PConfusion())
|
|
{
|
|
return Standard_False;
|
|
}
|
|
aSurf = new Geom_RectangularTrimmedSurface(aSurf, U1, U2, aV1Param, aV2Param);
|
|
isToTrim = Standard_False;
|
|
}
|
|
else
|
|
{
|
|
aV1Param = Max(aV1Param, V1);
|
|
aV2Param = Min(aV2Param, V2);
|
|
if (Abs(aV2Param - aV1Param) < Precision::PConfusion())
|
|
{
|
|
return Standard_False;
|
|
}
|
|
}
|
|
aC3d = aSurf->UIso(theParam);
|
|
if (isToTrim)
|
|
aC3d = new Geom_TrimmedCurve(aC3d, aV1Param, aV2Param);
|
|
}
|
|
else
|
|
{
|
|
Standard_Real aU1Param = Min(aF2d.X(), aL2d.X());
|
|
Standard_Real aU2Param = Max(aF2d.X(), aL2d.X());
|
|
if (aU2Param < U1 - myTol || aU1Param > U2 + myTol)
|
|
{
|
|
return Standard_False;
|
|
}
|
|
else if (Precision::IsInfinite(U1) || Precision::IsInfinite(U2))
|
|
{
|
|
if (Abs(aU2Param - aU1Param) < Precision::PConfusion())
|
|
{
|
|
return Standard_False;
|
|
}
|
|
aSurf = new Geom_RectangularTrimmedSurface(aSurf, aU1Param, aU2Param, V1, V2);
|
|
isToTrim = Standard_False;
|
|
}
|
|
else
|
|
{
|
|
aU1Param = Max(aU1Param, U1);
|
|
aU2Param = Min(aU2Param, U2);
|
|
if (Abs(aU2Param - aU1Param) < Precision::PConfusion())
|
|
{
|
|
return Standard_False;
|
|
}
|
|
}
|
|
aC3d = aSurf->VIso(theParam);
|
|
if (isToTrim)
|
|
aC3d = new Geom_TrimmedCurve(aC3d, aU1Param, aU2Param);
|
|
}
|
|
|
|
// Convert arbitrary curve type to the b-spline.
|
|
myCurve3d = GeomConvert::CurveToBSplineCurve(aC3d, Convert_QuasiAngular);
|
|
if (!theIsForward)
|
|
myCurve3d->Reverse();
|
|
|
|
// Rebuild parameterization for the 3d curve to have the same parameterization with
|
|
// a two-dimensional curve.
|
|
TColStd_Array1OfReal aKnots = myCurve3d->Knots();
|
|
BSplCLib::Reparametrize(theC2D->FirstParameter(), theC2D->LastParameter(), aKnots);
|
|
myCurve3d->SetKnots(aKnots);
|
|
|
|
// Evaluate error.
|
|
myError3d = 0.0;
|
|
|
|
const Standard_Real aParF = myFirst;
|
|
const Standard_Real aParL = myLast;
|
|
const Standard_Integer aNbPnt = 23;
|
|
for(Standard_Integer anIdx = 0; anIdx <= aNbPnt; ++anIdx)
|
|
{
|
|
const Standard_Real aPar = aParF + ((aParL - aParF) * anIdx) / aNbPnt;
|
|
|
|
const gp_Pnt2d aPnt2d = theC2D->Value(aPar);
|
|
|
|
const gp_Pnt aPntC3D = myCurve3d->Value(aPar);
|
|
const gp_Pnt aPntC2D = mySurf->Value(aPnt2d.X(), aPnt2d.Y());
|
|
|
|
const Standard_Real aSqDeviation = aPntC3D.SquareDistance(aPntC2D);
|
|
myError3d = Max(aSqDeviation, myError3d);
|
|
}
|
|
|
|
myError3d = Sqrt(myError3d);
|
|
|
|
// Target tolerance is not obtained. This situation happens for isolines on the sphere.
|
|
// OCCT is unable to convert it keeping original parameterization, while the geometric
|
|
// form of the result is entirely identical. In that case, it is better to utilize
|
|
// a general-purpose approach.
|
|
if (myError3d > myTol)
|
|
return Standard_False;
|
|
|
|
return Standard_True;
|
|
}
|