1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-04-10 18:51:21 +03:00
occt/src/GeomAdaptor/GeomAdaptor_Curve.cxx
ski 5174095875 0026586: Eliminate compile warnings obtained by building occt with vc14: declaration of local variable hides previous local declaration
Eliminated warnings about "declaration of some local variable hides previous local declaration"
2015-09-17 12:53:55 +03:00

1179 lines
38 KiB
C++

// Created on: 1993-04-29
// Created by: Bruno DUMORTIER
// Copyright (c) 1993-1999 Matra Datavision
// Copyright (c) 1999-2014 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
// 20/02/97 : PMN -> Positionement local sur BSpline (PRO6902)
// 10/07/97 : PMN -> Pas de calcul de resolution dans Nb(Intervals)(PRO9248)
// 20/10/97 : RBV -> traitement des offset curves
#define No_Standard_RangeError
#define No_Standard_OutOfRange
#include <Adaptor3d_HCurve.hxx>
#include <BSplCLib.hxx>
#include <BSplCLib_Cache.hxx>
#include <CSLib_Offset.hxx>
#include <Geom_BezierCurve.hxx>
#include <Geom_BSplineCurve.hxx>
#include <Geom_Circle.hxx>
#include <Geom_Curve.hxx>
#include <Geom_Ellipse.hxx>
#include <Geom_Hyperbola.hxx>
#include <Geom_Line.hxx>
#include <Geom_OffsetCurve.hxx>
#include <Geom_Parabola.hxx>
#include <Geom_TrimmedCurve.hxx>
#include <GeomAbs_Shape.hxx>
#include <GeomAdaptor_Curve.hxx>
#include <GeomAdaptor_HCurve.hxx>
#include <GeomAdaptor_Surface.hxx>
#include <gp_Circ.hxx>
#include <gp_Elips.hxx>
#include <gp_Hypr.hxx>
#include <gp_Lin.hxx>
#include <gp_Parab.hxx>
#include <gp_Pnt.hxx>
#include <gp_Vec.hxx>
#include <Precision.hxx>
#include <Standard_ConstructionError.hxx>
#include <Standard_DomainError.hxx>
#include <Standard_NoSuchObject.hxx>
#include <Standard_NotImplemented.hxx>
#include <Standard_NullObject.hxx>
#include <Standard_OutOfRange.hxx>
#include <TColgp_Array1OfPnt.hxx>
#include <TColStd_Array1OfInteger.hxx>
#include <TColStd_Array1OfReal.hxx>
#include <TColStd_HArray1OfInteger.hxx>
//#include <GeomConvert_BSplineCurveKnotSplitting.hxx>
#define myBspl Handle(Geom_BSplineCurve)::DownCast (myCurve)
#define PosTol Precision::PConfusion()/2
static const int maxDerivOrder = 3;
static const Standard_Real MinStep = 1e-7;
static gp_Vec dummyDerivative; // used as empty value for unused derivatives in AdjustDerivative
// Recalculate derivatives in the singular point
// Returns true if the direction of derivatives is changed
static Standard_Boolean AdjustDerivative(
const Handle(Adaptor3d_HCurve)& theAdaptor, Standard_Integer theMaxDerivative, Standard_Real theU, gp_Vec& theD1,
gp_Vec& theD2 = dummyDerivative, gp_Vec& theD3 = dummyDerivative, gp_Vec& theD4 = dummyDerivative);
//=======================================================================
//function : LocalContinuity
//purpose : Computes the Continuity of a BSplineCurve
// between the parameters U1 and U2
// The continuity is C(d-m)
// with d = degree,
// m = max multiplicity of the Knots between U1 and U2
//=======================================================================
GeomAbs_Shape GeomAdaptor_Curve::LocalContinuity(const Standard_Real U1,
const Standard_Real U2)
const
{
Standard_NoSuchObject_Raise_if(myTypeCurve!=GeomAbs_BSplineCurve," ");
Standard_Integer Nb = myBspl->NbKnots();
Standard_Integer Index1 = 0;
Standard_Integer Index2 = 0;
Standard_Real newFirst, newLast;
TColStd_Array1OfReal TK(1,Nb);
TColStd_Array1OfInteger TM(1,Nb);
myBspl->Knots(TK);
myBspl->Multiplicities(TM);
BSplCLib::LocateParameter(myBspl->Degree(),TK,TM,U1,myBspl->IsPeriodic(),
1,Nb,Index1,newFirst);
BSplCLib::LocateParameter(myBspl->Degree(),TK,TM,U2,myBspl->IsPeriodic(),
1,Nb,Index2,newLast);
if ( Abs(newFirst-TK(Index1+1))<Precision::PConfusion()) {
if (Index1 < Nb) Index1++;
}
if ( Abs(newLast-TK(Index2))<Precision::PConfusion())
Index2--;
Standard_Integer MultMax;
// attention aux courbes peridiques.
if ( (myBspl->IsPeriodic()) && (Index1 == Nb) )
Index1 = 1;
if ( Index2 - Index1 <= 0) {
MultMax = 100; // CN entre 2 Noeuds consecutifs
}
else {
MultMax = TM(Index1+1);
for(Standard_Integer i = Index1+1;i<=Index2;i++) {
if ( TM(i)>MultMax) MultMax=TM(i);
}
MultMax = myBspl->Degree() - MultMax;
}
if ( MultMax <= 0) {
return GeomAbs_C0;
}
else if ( MultMax == 1) {
return GeomAbs_C1;
}
else if ( MultMax == 2) {
return GeomAbs_C2;
}
else if ( MultMax == 3) {
return GeomAbs_C3;
}
else {
return GeomAbs_CN;
}
}
//=======================================================================
//function : Load
//purpose :
//=======================================================================
void GeomAdaptor_Curve::load(const Handle(Geom_Curve)& C,
const Standard_Real UFirst,
const Standard_Real ULast)
{
myFirst = UFirst;
myLast = ULast;
if ( myCurve != C) {
myCurve = C;
const Handle(Standard_Type)& TheType = C->DynamicType();
if ( TheType == STANDARD_TYPE(Geom_TrimmedCurve)) {
Load(Handle(Geom_TrimmedCurve)::DownCast (C)->BasisCurve(),UFirst,ULast);
}
else if ( TheType == STANDARD_TYPE(Geom_Circle)) {
myTypeCurve = GeomAbs_Circle;
}
else if ( TheType ==STANDARD_TYPE(Geom_Line)) {
myTypeCurve = GeomAbs_Line;
}
else if ( TheType == STANDARD_TYPE(Geom_Ellipse)) {
myTypeCurve = GeomAbs_Ellipse;
}
else if ( TheType == STANDARD_TYPE(Geom_Parabola)) {
myTypeCurve = GeomAbs_Parabola;
}
else if ( TheType == STANDARD_TYPE(Geom_Hyperbola)) {
myTypeCurve = GeomAbs_Hyperbola;
}
else if ( TheType == STANDARD_TYPE(Geom_BezierCurve)) {
myTypeCurve = GeomAbs_BezierCurve;
}
else if ( TheType == STANDARD_TYPE(Geom_BSplineCurve)) {
myTypeCurve = GeomAbs_BSplineCurve;
// Create cache for B-spline
myCurveCache = new BSplCLib_Cache(myBspl->Degree(), myBspl->IsPeriodic(),
myBspl->KnotSequence(), myBspl->Poles(), myBspl->Weights());
}
else if ( TheType == STANDARD_TYPE(Geom_OffsetCurve)) {
myTypeCurve = GeomAbs_OtherCurve;
// Create nested adaptor for base curve
Handle(Geom_Curve) aBase = Handle(Geom_OffsetCurve)::DownCast(myCurve)->BasisCurve();
myOffsetBaseCurveAdaptor = new GeomAdaptor_HCurve(aBase);
}
else {
myTypeCurve = GeomAbs_OtherCurve;
}
}
}
// --
// -- Global methods - Apply to the whole curve.
// --
//=======================================================================
//function : Continuity
//purpose :
//=======================================================================
GeomAbs_Shape GeomAdaptor_Curve::Continuity() const
{
if (myTypeCurve == GeomAbs_BSplineCurve)
return LocalContinuity(myFirst, myLast);
if (myCurve->IsKind(STANDARD_TYPE(Geom_OffsetCurve)))
{
const GeomAbs_Shape S =
Handle(Geom_OffsetCurve)::DownCast (myCurve)->GetBasisCurveContinuity();
switch(S)
{
case GeomAbs_CN: return GeomAbs_CN;
case GeomAbs_C3: return GeomAbs_C2;
case GeomAbs_C2: return GeomAbs_C1;
case GeomAbs_C1: return GeomAbs_C0;
case GeomAbs_G1: return GeomAbs_G1;
case GeomAbs_G2: return GeomAbs_G2;
default:
Standard_NoSuchObject::Raise("GeomAdaptor_Curve::Continuity");
}
}
else if (myTypeCurve == GeomAbs_OtherCurve) {
Standard_NoSuchObject::Raise("GeomAdaptor_Curve::Contunuity");
}
return GeomAbs_CN;
}
//=======================================================================
//function : NbIntervals
//purpose :
//=======================================================================
Standard_Integer GeomAdaptor_Curve::NbIntervals(const GeomAbs_Shape S) const
{
Standard_Integer myNbIntervals = 1;
Standard_Integer NbSplit;
if (myTypeCurve == GeomAbs_BSplineCurve) {
Standard_Integer FirstIndex = myBspl->FirstUKnotIndex();
Standard_Integer LastIndex = myBspl->LastUKnotIndex();
TColStd_Array1OfInteger Inter (1, LastIndex-FirstIndex+1);
if ( S > Continuity()) {
Standard_Integer Cont;
switch ( S) {
case GeomAbs_G1:
case GeomAbs_G2:
Standard_DomainError::Raise("GeomAdaptor_Curve::NbIntervals");
break;
case GeomAbs_C0:
myNbIntervals = 1;
break;
case GeomAbs_C1:
case GeomAbs_C2:
case GeomAbs_C3:
case GeomAbs_CN:
{
if ( S == GeomAbs_C1) Cont = 1;
else if ( S == GeomAbs_C2) Cont = 2;
else if ( S == GeomAbs_C3) Cont = 3;
else Cont = myBspl->Degree();
Standard_Integer Degree = myBspl->Degree();
Standard_Integer NbKnots = myBspl->NbKnots();
TColStd_Array1OfInteger Mults (1, NbKnots);
myBspl->Multiplicities (Mults);
NbSplit = 1;
Standard_Integer Index = FirstIndex;
Inter (NbSplit) = Index;
Index++;
NbSplit++;
while (Index < LastIndex)
{
if (Degree - Mults (Index) < Cont)
{
Inter (NbSplit) = Index;
NbSplit++;
}
Index++;
}
Inter (NbSplit) = Index;
Standard_Integer NbInt = NbSplit-1;
Standard_Integer Nb = myBspl->NbKnots();
Standard_Integer Index1 = 0;
Standard_Integer Index2 = 0;
Standard_Real newFirst, newLast;
TColStd_Array1OfReal TK(1,Nb);
TColStd_Array1OfInteger TM(1,Nb);
myBspl->Knots(TK);
myBspl->Multiplicities(TM);
BSplCLib::LocateParameter(myBspl->Degree(),TK,TM,myFirst,
myBspl->IsPeriodic(),
1,Nb,Index1,newFirst);
BSplCLib::LocateParameter(myBspl->Degree(),TK,TM,myLast,
myBspl->IsPeriodic(),
1,Nb,Index2,newLast);
// On decale eventuellement les indices
// On utilise une "petite" tolerance, la resolution ne doit
// servir que pour les tres longue courbes....(PRO9248)
Standard_Real Eps = Min(Resolution(Precision::Confusion()),
Precision::PConfusion());
if ( Abs(newFirst-TK(Index1+1))< Eps) Index1++;
if ( newLast-TK(Index2)> Eps) Index2++;
myNbIntervals = 1;
for ( Standard_Integer i=1; i<=NbInt; i++)
if (Inter(i)>Index1 && Inter(i)<Index2) myNbIntervals++;
}
break;
}
}
}
else if (myCurve->IsKind(STANDARD_TYPE(Geom_OffsetCurve))){
GeomAbs_Shape BaseS=GeomAbs_C0;
switch(S){
case GeomAbs_G1:
case GeomAbs_G2:
Standard_DomainError::Raise("GeomAdaptor_Curve::NbIntervals");
break;
case GeomAbs_C0: BaseS = GeomAbs_C1; break;
case GeomAbs_C1: BaseS = GeomAbs_C2; break;
case GeomAbs_C2: BaseS = GeomAbs_C3; break;
default: BaseS = GeomAbs_CN;
}
GeomAdaptor_Curve C
(Handle(Geom_OffsetCurve)::DownCast (myCurve)->BasisCurve());
// akm 05/04/02 (OCC278) If our curve is trimmed we must recalculate
// the number of intervals obtained from the basis to
// vvv reflect parameter bounds
Standard_Integer iNbBasisInt = C.NbIntervals(BaseS), iInt;
if (iNbBasisInt>1)
{
TColStd_Array1OfReal rdfInter(1,1+iNbBasisInt);
C.Intervals(rdfInter,BaseS);
for (iInt=1; iInt<=iNbBasisInt; iInt++)
if (rdfInter(iInt)>myFirst && rdfInter(iInt)<myLast)
myNbIntervals++;
}
// akm 05/04/02 ^^^
}
return myNbIntervals;
}
//=======================================================================
//function : Intervals
//purpose :
//=======================================================================
void GeomAdaptor_Curve::Intervals(TColStd_Array1OfReal& T,
const GeomAbs_Shape S ) const
{
Standard_Integer myNbIntervals = 1;
Standard_Integer NbSplit;
Standard_Real FirstParam = myFirst, LastParam = myLast;
if (myTypeCurve == GeomAbs_BSplineCurve)
{
Standard_Integer FirstIndex = myBspl->FirstUKnotIndex();
Standard_Integer LastIndex = myBspl->LastUKnotIndex();
TColStd_Array1OfInteger Inter (1, LastIndex-FirstIndex+1);
if ( S > Continuity()) {
Standard_Integer Cont;
switch ( S) {
case GeomAbs_G1:
case GeomAbs_G2:
Standard_DomainError::Raise("Geom2dAdaptor_Curve::NbIntervals");
break;
case GeomAbs_C0:
myNbIntervals = 1;
break;
case GeomAbs_C1:
case GeomAbs_C2:
case GeomAbs_C3:
case GeomAbs_CN:
{
if ( S == GeomAbs_C1) Cont = 1;
else if ( S == GeomAbs_C2) Cont = 2;
else if ( S == GeomAbs_C3) Cont = 3;
else Cont = myBspl->Degree();
Standard_Integer Degree = myBspl->Degree();
Standard_Integer NbKnots = myBspl->NbKnots();
TColStd_Array1OfInteger Mults (1, NbKnots);
myBspl->Multiplicities (Mults);
NbSplit = 1;
Standard_Integer Index = FirstIndex;
Inter (NbSplit) = Index;
Index++;
NbSplit++;
while (Index < LastIndex)
{
if (Degree - Mults (Index) < Cont)
{
Inter (NbSplit) = Index;
NbSplit++;
}
Index++;
}
Inter (NbSplit) = Index;
Standard_Integer NbInt = NbSplit-1;
// GeomConvert_BSplineCurveKnotSplitting Convector(myBspl, Cont);
// Standard_Integer NbInt = Convector.NbSplits()-1;
// TColStd_Array1OfInteger Inter(1,NbInt+1);
// Convector.Splitting( Inter);
Standard_Integer Nb = myBspl->NbKnots();
Standard_Integer Index1 = 0;
Standard_Integer Index2 = 0;
Standard_Real newFirst, newLast;
TColStd_Array1OfReal TK(1,Nb);
TColStd_Array1OfInteger TM(1,Nb);
myBspl->Knots(TK);
myBspl->Multiplicities(TM);
BSplCLib::LocateParameter(myBspl->Degree(),TK,TM,myFirst,
myBspl->IsPeriodic(),
1,Nb,Index1,newFirst);
BSplCLib::LocateParameter(myBspl->Degree(),TK,TM,myLast,
myBspl->IsPeriodic(),
1,Nb,Index2,newLast);
FirstParam = newFirst;
LastParam = newLast;
// On decale eventuellement les indices
// On utilise une "petite" tolerance, la resolution ne doit
// servir que pour les tres longue courbes....(PRO9248)
Standard_Real Eps = Min(Resolution(Precision::Confusion()),
Precision::PConfusion());
if ( Abs(newFirst-TK(Index1+1))< Eps) Index1++;
if ( newLast-TK(Index2)> Eps) Index2++;
Inter( 1) = Index1;
myNbIntervals = 1;
for ( Standard_Integer i=1; i<=NbInt; i++) {
if (Inter(i) > Index1 && Inter(i)<Index2 ) {
myNbIntervals++;
Inter(myNbIntervals) = Inter(i);
}
}
Inter(myNbIntervals+1) = Index2;
for (Standard_Integer I=1;I<=myNbIntervals+1;I++) {
T(I) = TK(Inter(I));
}
}
break;
}
}
}
else if (myCurve->IsKind(STANDARD_TYPE(Geom_OffsetCurve))){
GeomAbs_Shape BaseS=GeomAbs_C0;
switch(S){
case GeomAbs_G1:
case GeomAbs_G2:
Standard_DomainError::Raise("GeomAdaptor_Curve::NbIntervals");
break;
case GeomAbs_C0: BaseS = GeomAbs_C1; break;
case GeomAbs_C1: BaseS = GeomAbs_C2; break;
case GeomAbs_C2: BaseS = GeomAbs_C3; break;
default: BaseS = GeomAbs_CN;
}
GeomAdaptor_Curve C
(Handle(Geom_OffsetCurve)::DownCast (myCurve)->BasisCurve());
// akm 05/04/02 (OCC278) If our curve is trimmed we must recalculate
// the array of intervals obtained from the basis to
// vvv reflect parameter bounds
Standard_Integer iNbBasisInt = C.NbIntervals(BaseS), iInt;
if (iNbBasisInt>1)
{
TColStd_Array1OfReal rdfInter(1,1+iNbBasisInt);
C.Intervals(rdfInter,BaseS);
for (iInt=1; iInt<=iNbBasisInt; iInt++)
if (rdfInter(iInt)>myFirst && rdfInter(iInt)<myLast)
T(++myNbIntervals)=rdfInter(iInt);
}
// old - myNbIntervals = C.NbIntervals(BaseS);
// old - C.Intervals(T, BaseS);
// akm 05/04/02 ^^^
}
T( T.Lower() ) = FirstParam;
T( T.Lower() + myNbIntervals ) = LastParam;
}
//=======================================================================
//function : Trim
//purpose :
//=======================================================================
Handle(Adaptor3d_HCurve) GeomAdaptor_Curve::Trim(const Standard_Real First,
const Standard_Real Last,
const Standard_Real /*Tol*/) const
{
return Handle(GeomAdaptor_HCurve)(new GeomAdaptor_HCurve(myCurve,First,Last));
}
//=======================================================================
//function : IsClosed
//purpose :
//=======================================================================
Standard_Boolean GeomAdaptor_Curve::IsClosed() const
{
if (!Precision::IsPositiveInfinite(myLast) &&
!Precision::IsNegativeInfinite(myFirst))
{
const gp_Pnt Pd = Value(myFirst);
const gp_Pnt Pf = Value(myLast);
return (Pd.Distance(Pf) <= Precision::Confusion());
}
return Standard_False;
}
//=======================================================================
//function : IsPeriodic
//purpose :
//=======================================================================
Standard_Boolean GeomAdaptor_Curve::IsPeriodic() const
{
return (myCurve->IsPeriodic()? IsClosed() : Standard_False);
}
//=======================================================================
//function : Period
//purpose :
//=======================================================================
Standard_Real GeomAdaptor_Curve::Period() const
{
return myCurve->LastParameter() - myCurve->FirstParameter();
}
//=======================================================================
//function : RebuildCache
//purpose :
//=======================================================================
void GeomAdaptor_Curve::RebuildCache(const Standard_Real theParameter) const
{
myCurveCache->BuildCache(theParameter, myBspl->Degree(),
myBspl->IsPeriodic(), myBspl->KnotSequence(),
myBspl->Poles(), myBspl->Weights());
}
//=======================================================================
//function : Value
//purpose :
//=======================================================================
gp_Pnt GeomAdaptor_Curve::Value(const Standard_Real U) const
{
if (myTypeCurve == GeomAbs_BSplineCurve)
return ValueBSpline(U);
else if (myCurve->DynamicType() == STANDARD_TYPE(Geom_OffsetCurve))
return ValueOffset(U);
return myCurve->Value(U);
}
//=======================================================================
//function : ValueBSpline
//purpose :
//=======================================================================
gp_Pnt GeomAdaptor_Curve::ValueBSpline(const Standard_Real theU) const
{
if (theU == myFirst || theU == myLast)
{
Standard_Integer Ideb = 0, Ifin = 0;
if (theU == myFirst) {
myBspl->LocateU(myFirst, PosTol, Ideb, Ifin);
if (Ideb<1) Ideb=1;
if (Ideb>=Ifin) Ifin = Ideb+1;
}
if (theU == myLast) {
myBspl->LocateU(myLast, PosTol, Ideb, Ifin);
if (Ifin>myBspl->NbKnots()) Ifin = myBspl->NbKnots();
if (Ideb>=Ifin) Ideb = Ifin-1;
}
return myBspl->LocalValue(theU, Ideb, Ifin);
}
else if (!myCurveCache.IsNull()) // use cached B-spline data
{
if (!myCurveCache->IsCacheValid(theU))
RebuildCache(theU);
gp_Pnt aRes;
myCurveCache->D0(theU, aRes);
return aRes;
}
return myCurve->Value(theU);
}
//=======================================================================
//function : ValueOffset
//purpose :
//=======================================================================
gp_Pnt GeomAdaptor_Curve::ValueOffset(const Standard_Real theU) const
{
gp_Pnt aP;
gp_Vec aV;
myOffsetBaseCurveAdaptor->D1(theU, aP, aV);
Standard_Boolean IsDirectionChange = Standard_False;
if(aV.SquareMagnitude() <= gp::Resolution())
IsDirectionChange = AdjustDerivative(myOffsetBaseCurveAdaptor, 1, theU, aV);
Handle(Geom_OffsetCurve) anOffC = Handle(Geom_OffsetCurve)::DownCast(myCurve);
Standard_Real anOffsetVal = anOffC->Offset();
const gp_Dir& anOffsetDir = anOffC->Direction();
CSLib_Offset::D0(aP, aV, anOffsetDir, anOffsetVal, IsDirectionChange, aP);
return aP;
}
//=======================================================================
//function : D0
//purpose :
//=======================================================================
void GeomAdaptor_Curve::D0(const Standard_Real U, gp_Pnt& P) const
{
if (myTypeCurve == GeomAbs_BSplineCurve)
D0BSpline(U, P);
else if (myCurve->DynamicType() == STANDARD_TYPE(Geom_OffsetCurve))
D0Offset(U, P);
else
myCurve->D0(U, P);
}
//=======================================================================
//function : D0BSpline
//purpose :
//=======================================================================
void GeomAdaptor_Curve::D0BSpline(const Standard_Real theU, gp_Pnt& theP) const
{
if (theU == myFirst || theU == myLast)
{
Standard_Integer Ideb = 0, Ifin = 0;
if (theU == myFirst) {
myBspl->LocateU(myFirst, PosTol, Ideb, Ifin);
if (Ideb<1) Ideb=1;
if (Ideb>=Ifin) Ifin = Ideb+1;
}
if (theU == myLast) {
myBspl->LocateU(myLast, PosTol, Ideb, Ifin);
if (Ifin>myBspl->NbKnots()) Ifin = myBspl->NbKnots();
if (Ideb>=Ifin) Ideb = Ifin-1;
}
myBspl->LocalD0(theU, Ideb, Ifin, theP);
return;
}
else if (!myCurveCache.IsNull()) // use cached B-spline data
{
if (!myCurveCache->IsCacheValid(theU))
RebuildCache(theU);
myCurveCache->D0(theU, theP);
return;
}
myCurve->D0(theU, theP);
}
//=======================================================================
//function : D0Offset
//purpose :
//=======================================================================
void GeomAdaptor_Curve::D0Offset(const Standard_Real theU, gp_Pnt& theP) const
{
theP = ValueOffset(theU);
}
//=======================================================================
//function : D1
//purpose :
//=======================================================================
void GeomAdaptor_Curve::D1(const Standard_Real U, gp_Pnt& P, gp_Vec& V) const
{
if (myTypeCurve == GeomAbs_BSplineCurve)
D1BSpline(U, P, V);
else if (myCurve->DynamicType() == STANDARD_TYPE(Geom_OffsetCurve))
D1Offset(U, P, V);
else
myCurve->D1(U, P, V);
}
//=======================================================================
//function : D1BSpline
//purpose :
//=======================================================================
void GeomAdaptor_Curve::D1BSpline(const Standard_Real theU, gp_Pnt& theP, gp_Vec& theV) const
{
if (theU == myFirst || theU == myLast)
{
Standard_Integer Ideb = 0, Ifin = 0;
if (theU == myFirst) {
myBspl->LocateU(myFirst, PosTol, Ideb, Ifin);
if (Ideb<1) Ideb=1;
if (Ideb>=Ifin) Ifin = Ideb+1;
}
if (theU == myLast) {
myBspl->LocateU(myLast, PosTol, Ideb, Ifin);
if (Ifin>myBspl->NbKnots()) Ifin = myBspl->NbKnots();
if (Ideb>=Ifin) Ideb = Ifin-1;
}
myBspl->LocalD1(theU, Ideb, Ifin, theP, theV);
return;
}
else if (!myCurveCache.IsNull()) // use cached B-spline data
{
if (!myCurveCache->IsCacheValid(theU))
RebuildCache(theU);
myCurveCache->D1(theU, theP, theV);
return;
}
myCurve->D1(theU, theP, theV);
}
//=======================================================================
//function : D1Offset
//purpose :
//=======================================================================
void GeomAdaptor_Curve::D1Offset(const Standard_Real theU, gp_Pnt& theP, gp_Vec& theV) const
{
gp_Vec aV2;
myOffsetBaseCurveAdaptor->D2 (theU, theP, theV, aV2);
Standard_Boolean IsDirectionChange = Standard_False;
if(theV.SquareMagnitude() <= gp::Resolution())
IsDirectionChange = AdjustDerivative(myOffsetBaseCurveAdaptor, 2, theU, theV, aV2);
Handle(Geom_OffsetCurve) anOffC = Handle(Geom_OffsetCurve)::DownCast(myCurve);
Standard_Real anOffsetVal = anOffC->Offset();
const gp_Dir& anOffsetDir = anOffC->Direction();
CSLib_Offset::D1(theP, theV, aV2, anOffsetDir, anOffsetVal, IsDirectionChange, theP, theV);
}
//=======================================================================
//function : D2
//purpose :
//=======================================================================
void GeomAdaptor_Curve::D2(const Standard_Real U,
gp_Pnt& P, gp_Vec& V1, gp_Vec& V2) const
{
if (myTypeCurve == GeomAbs_BSplineCurve)
D2BSpline(U, P, V1, V2);
else if (myCurve->DynamicType() == STANDARD_TYPE(Geom_OffsetCurve))
D2Offset(U, P, V1, V2);
else
myCurve->D2(U, P, V1, V2);
}
//=======================================================================
//function : D2BSpline
//purpose :
//=======================================================================
void GeomAdaptor_Curve::D2BSpline(const Standard_Real theU, gp_Pnt& theP,
gp_Vec& theV1, gp_Vec& theV2) const
{
if (theU == myFirst || theU == myLast)
{
Standard_Integer Ideb = 0, Ifin = 0;
if (theU == myFirst) {
myBspl->LocateU(myFirst, PosTol, Ideb, Ifin);
if (Ideb<1) Ideb=1;
if (Ideb>=Ifin) Ifin = Ideb+1;
}
if (theU == myLast) {
myBspl->LocateU(myLast, PosTol, Ideb, Ifin);
if (Ifin>myBspl->NbKnots()) Ifin = myBspl->NbKnots();
if (Ideb>=Ifin) Ideb = Ifin-1;
}
myBspl->LocalD2(theU, Ideb, Ifin, theP, theV1, theV2);
return;
}
else if (!myCurveCache.IsNull()) // use cached B-spline data
{
if (!myCurveCache->IsCacheValid(theU))
RebuildCache(theU);
myCurveCache->D2(theU, theP, theV1, theV2);
return;
}
myCurve->D2(theU, theP, theV1, theV2);
}
//=======================================================================
//function : D2Offset
//purpose :
//=======================================================================
void GeomAdaptor_Curve::D2Offset(const Standard_Real theU, gp_Pnt& theP,
gp_Vec& theV1, gp_Vec& theV2) const
{
gp_Vec V3;
myOffsetBaseCurveAdaptor->D3 (theU, theP, theV1, theV2, V3);
Standard_Boolean IsDirectionChange = Standard_False;
if(theV1.SquareMagnitude() <= gp::Resolution())
IsDirectionChange = AdjustDerivative(myOffsetBaseCurveAdaptor, 3, theU, theV1, theV2, V3);
Handle(Geom_OffsetCurve) anOffC = Handle(Geom_OffsetCurve)::DownCast(myCurve);
Standard_Real anOffsetVal = anOffC->Offset();
const gp_Dir& anOffsetDir = anOffC->Direction();
CSLib_Offset::D2(theP, theV1, theV2, V3, anOffsetDir, anOffsetVal, IsDirectionChange, theP, theV1, theV2);
}
//=======================================================================
//function : D3
//purpose :
//=======================================================================
void GeomAdaptor_Curve::D3(const Standard_Real U,
gp_Pnt& P, gp_Vec& V1,
gp_Vec& V2, gp_Vec& V3) const
{
if (myTypeCurve == GeomAbs_BSplineCurve)
D3BSpline(U, P, V1, V2, V3);
else if (myCurve->DynamicType() == STANDARD_TYPE(Geom_OffsetCurve))
D3Offset(U, P, V1, V2, V3);
else
myCurve->D3(U, P, V1, V2, V3);
}
//=======================================================================
//function : D3BSpline
//purpose :
//=======================================================================
void GeomAdaptor_Curve::D3BSpline(const Standard_Real theU,
gp_Pnt& theP, gp_Vec& theV1,
gp_Vec& theV2, gp_Vec& theV3) const
{
if (theU == myFirst || theU == myLast)
{
Standard_Integer Ideb = 0, Ifin = 0;
if (theU == myFirst) {
myBspl->LocateU(myFirst, PosTol, Ideb, Ifin);
if (Ideb<1) Ideb=1;
if (Ideb>=Ifin) Ifin = Ideb+1;
}
if (theU == myLast) {
myBspl->LocateU(myLast, PosTol, Ideb, Ifin);
if (Ifin>myBspl->NbKnots()) Ifin = myBspl->NbKnots();
if (Ideb>=Ifin) Ideb = Ifin-1;
}
myBspl->LocalD3(theU, Ideb, Ifin, theP, theV1, theV2, theV3);
return;
}
else if (!myCurveCache.IsNull()) // use cached B-spline data
{
if (!myCurveCache->IsCacheValid(theU))
RebuildCache(theU);
myCurveCache->D3(theU, theP, theV1, theV2, theV3);
return;
}
myCurve->D3(theU, theP, theV1, theV2, theV3);
}
//=======================================================================
//function : D3Offset
//purpose :
//=======================================================================
void GeomAdaptor_Curve::D3Offset(const Standard_Real theU,
gp_Pnt& theP, gp_Vec& theV1,
gp_Vec& theV2, gp_Vec& theV3) const
{
myOffsetBaseCurveAdaptor->D3 (theU, theP, theV1, theV2, theV3);
gp_Vec V4 = myOffsetBaseCurveAdaptor->DN(theU, 4);
Standard_Boolean IsDirectionChange = Standard_False;
if(theV1.SquareMagnitude() <= gp::Resolution())
IsDirectionChange = AdjustDerivative(myOffsetBaseCurveAdaptor, 4, theU, theV1, theV2, theV3, V4);
Handle(Geom_OffsetCurve) anOffC = Handle(Geom_OffsetCurve)::DownCast(myCurve);
Standard_Real anOffsetVal = anOffC->Offset();
const gp_Dir& anOffsetDir = anOffC->Direction();
CSLib_Offset::D3(theP, theV1, theV2, theV3, V4, anOffsetDir, anOffsetVal, IsDirectionChange,
theP, theV1, theV2, theV3);
}
//=======================================================================
//function : DN
//purpose :
//=======================================================================
gp_Vec GeomAdaptor_Curve::DN(const Standard_Real U,
const Standard_Integer N) const
{
if (myTypeCurve == GeomAbs_BSplineCurve)
return DNBSpline(U, N);
else if (myCurve->DynamicType() == STANDARD_TYPE(Geom_OffsetCurve))
return DNOffset(U, N);
return myCurve->DN(U, N);
}
gp_Vec GeomAdaptor_Curve::DNBSpline(const Standard_Real U,
const Standard_Integer N) const
{
if ((U==myFirst || U==myLast))
{
Standard_Integer Ideb = 0, Ifin = 0;
if (U==myFirst) {
myBspl->LocateU(myFirst, PosTol, Ideb, Ifin);
if (Ideb<1) Ideb=1;
if (Ideb>=Ifin) Ifin = Ideb+1;
}
if (U==myLast) {
myBspl->LocateU(myLast, PosTol, Ideb, Ifin);
if (Ifin>myBspl->NbKnots()) Ifin = myBspl->NbKnots();
if (Ideb>=Ifin) Ideb = Ifin-1;
}
return myBspl->LocalDN( U, Ideb, Ifin, N);
}
return myCurve->DN( U, N);
}
gp_Vec GeomAdaptor_Curve::DNOffset(const Standard_Real U,
const Standard_Integer N) const
{
gp_Pnt aPnt;
gp_Vec aVec, aVN;
switch (N)
{
case 1:
D1Offset(U, aPnt, aVN);
break;
case 2:
D2Offset(U, aPnt, aVec, aVN);
break;
case 3:
D3Offset(U, aPnt, aVec, aVec, aVN);
break;
default:
aVN = myCurve->DN(U, N);
}
return aVN;
}
//=======================================================================
//function : Resolution
//purpose :
//=======================================================================
Standard_Real GeomAdaptor_Curve::Resolution(const Standard_Real R3D) const
{
switch ( myTypeCurve) {
case GeomAbs_Line :
return R3D;
case GeomAbs_Circle: {
Standard_Real R = Handle(Geom_Circle)::DownCast (myCurve)->Circ().Radius();
if ( R > R3D/2. )
return 2*ASin(R3D/(2*R));
else
return 2*M_PI;
}
case GeomAbs_Ellipse: {
return R3D / Handle(Geom_Ellipse)::DownCast (myCurve)->MajorRadius();
}
case GeomAbs_BezierCurve: {
Standard_Real res;
Handle(Geom_BezierCurve)::DownCast (myCurve)->Resolution(R3D,res);
return res;
}
case GeomAbs_BSplineCurve: {
Standard_Real res;
Handle(Geom_BSplineCurve)::DownCast (myCurve)->Resolution(R3D,res);
return res;
}
default:
return Precision::Parametric(R3D);
}
}
// --
// -- The following methods must be called when GetType returned
// -- the corresponding type.
// --
//=======================================================================
//function : Line
//purpose :
//=======================================================================
gp_Lin GeomAdaptor_Curve::Line() const
{
Standard_NoSuchObject_Raise_if(myTypeCurve != GeomAbs_Line, "");
return Handle(Geom_Line)::DownCast (myCurve)->Lin();
}
//=======================================================================
//function : Circle
//purpose :
//=======================================================================
gp_Circ GeomAdaptor_Curve::Circle() const
{
Standard_NoSuchObject_Raise_if(myTypeCurve != GeomAbs_Circle, "");
return Handle(Geom_Circle)::DownCast (myCurve)->Circ();
}
//=======================================================================
//function : Ellipse
//purpose :
//=======================================================================
gp_Elips GeomAdaptor_Curve::Ellipse() const
{
Standard_NoSuchObject_Raise_if(myTypeCurve != GeomAbs_Ellipse, "");
return Handle(Geom_Ellipse)::DownCast (myCurve)->Elips();
}
//=======================================================================
//function : Hyperbola
//purpose :
//=======================================================================
gp_Hypr GeomAdaptor_Curve::Hyperbola() const
{
Standard_NoSuchObject_Raise_if(myTypeCurve != GeomAbs_Hyperbola, "");
return Handle(Geom_Hyperbola)::DownCast (myCurve)->Hypr();
}
//=======================================================================
//function : Parabola
//purpose :
//=======================================================================
gp_Parab GeomAdaptor_Curve::Parabola() const
{
Standard_NoSuchObject_Raise_if(myTypeCurve != GeomAbs_Parabola, "");
return Handle(Geom_Parabola)::DownCast (myCurve)->Parab();
}
//=======================================================================
//function : Degree
//purpose :
//=======================================================================
Standard_Integer GeomAdaptor_Curve::Degree() const
{
if (myTypeCurve == GeomAbs_BezierCurve)
return Handle(Geom_BezierCurve)::DownCast (myCurve)->Degree();
else if (myTypeCurve == GeomAbs_BSplineCurve)
return Handle(Geom_BSplineCurve)::DownCast (myCurve)->Degree();
else
Standard_NoSuchObject::Raise();
// portage WNT
return 0;
}
//=======================================================================
//function : IsRational
//purpose :
//=======================================================================
Standard_Boolean GeomAdaptor_Curve::IsRational() const {
switch( myTypeCurve) {
case GeomAbs_BSplineCurve:
return Handle(Geom_BSplineCurve)::DownCast (myCurve)->IsRational();
case GeomAbs_BezierCurve:
return Handle(Geom_BezierCurve)::DownCast (myCurve)->IsRational();
default:
return Standard_False;
}
}
//=======================================================================
//function : NbPoles
//purpose :
//=======================================================================
Standard_Integer GeomAdaptor_Curve::NbPoles() const
{
if (myTypeCurve == GeomAbs_BezierCurve)
return Handle(Geom_BezierCurve)::DownCast (myCurve)->NbPoles();
else if (myTypeCurve == GeomAbs_BSplineCurve)
return Handle(Geom_BSplineCurve)::DownCast (myCurve)->NbPoles();
else
Standard_NoSuchObject::Raise();
// portage WNT
return 0;
}
//=======================================================================
//function : NbKnots
//purpose :
//=======================================================================
Standard_Integer GeomAdaptor_Curve::NbKnots() const
{
if ( myTypeCurve != GeomAbs_BSplineCurve)
Standard_NoSuchObject::Raise("GeomAdaptor_Curve::NbKnots");
return Handle(Geom_BSplineCurve)::DownCast (myCurve)->NbKnots();
}
//=======================================================================
//function : Bezier
//purpose :
//=======================================================================
Handle(Geom_BezierCurve) GeomAdaptor_Curve::Bezier() const
{
if ( myTypeCurve != GeomAbs_BezierCurve)
Standard_NoSuchObject::Raise("GeomAdaptor_Curve::Bezier");
return Handle(Geom_BezierCurve)::DownCast (myCurve);
}
//=======================================================================
//function : BSpline
//purpose :
//=======================================================================
Handle(Geom_BSplineCurve) GeomAdaptor_Curve::BSpline() const
{
if ( myTypeCurve != GeomAbs_BSplineCurve)
Standard_NoSuchObject::Raise("GeomAdaptor_Curve::BSpline");
return Handle(Geom_BSplineCurve)::DownCast (myCurve);
}
// ============= Auxiliary functions ===================
Standard_Boolean AdjustDerivative(const Handle(Adaptor3d_HCurve)& theAdaptor, Standard_Integer theMaxDerivative,
Standard_Real theU, gp_Vec& theD1, gp_Vec& theD2,
gp_Vec& theD3, gp_Vec& theD4)
{
static const Standard_Real aTol = gp::Resolution();
Standard_Boolean IsDirectionChange = Standard_False;
const Standard_Real anUinfium = theAdaptor->FirstParameter();
const Standard_Real anUsupremum = theAdaptor->LastParameter();
const Standard_Real DivisionFactor = 1.e-3;
Standard_Real du;
if((anUsupremum >= RealLast()) || (anUinfium <= RealFirst()))
du = 0.0;
else
du = anUsupremum - anUinfium;
const Standard_Real aDelta = Max(du * DivisionFactor, MinStep);
//Derivative is approximated by Taylor-series
Standard_Integer anIndex = 1; //Derivative order
gp_Vec V;
do
{
V = theAdaptor->DN(theU, ++anIndex);
}
while((V.SquareMagnitude() <= aTol) && anIndex < maxDerivOrder);
Standard_Real u;
if(theU-anUinfium < aDelta)
u = theU+aDelta;
else
u = theU-aDelta;
gp_Pnt P1, P2;
theAdaptor->D0(Min(theU, u), P1);
theAdaptor->D0(Max(theU, u), P2);
gp_Vec V1(P1, P2);
IsDirectionChange = V.Dot(V1) < 0.0;
Standard_Real aSign = IsDirectionChange ? -1.0 : 1.0;
theD1 = V * aSign;
gp_Vec* aDeriv[3] = {&theD2, &theD3, &theD4};
for (Standard_Integer i = 1; i < theMaxDerivative; i++)
*(aDeriv[i-1]) = theAdaptor->DN(theU, anIndex + i) * aSign;
return IsDirectionChange;
}