1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-06-10 11:34:06 +03:00
occt/src/gp/gp_Quaternion.cxx
mkrylova d5477f8c82 0032137: Coding Rules - merge redundant .lxx files into header files within Package gp
- merged .lxx files into header files within Package gp
- fixed code style
2021-06-03 18:02:58 +03:00

460 lines
14 KiB
C++

// Created on: 2010-05-11
// Created by: Kirill GAVRILOV
// Copyright (c) 2010-2014 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
// Note: implementation is based on free samples from
// http://www.gamedev.ru/code/articles/?id=4215&page=3
// and maths found in Wikipedia and elsewhere
#include <gp_Quaternion.hxx>
#include <gp_Vec.hxx>
#include <gp_Mat.hxx>
//=======================================================================
//function : IsEqual
//purpose :
//=======================================================================
Standard_Boolean gp_Quaternion::IsEqual (const gp_Quaternion& theOther) const
{
if (this == &theOther)
return Standard_True;
return Abs (x - theOther.x) <= gp::Resolution() &&
Abs (y - theOther.y) <= gp::Resolution() &&
Abs (z - theOther.z) <= gp::Resolution() &&
Abs (w - theOther.w) <= gp::Resolution();
}
//=======================================================================
//function : SetRotation
//purpose :
//=======================================================================
void gp_Quaternion::SetRotation (const gp_Vec& theVecFrom, const gp_Vec& theVecTo)
{
gp_Vec aVecCross (theVecFrom.Crossed (theVecTo));
Set (aVecCross.X(), aVecCross.Y(), aVecCross.Z(), theVecFrom.Dot (theVecTo));
Normalize(); // if "from" or "to" not unit, normalize quat
w += 1.0; // reducing angle to halfangle
if (w <= gp::Resolution()) // angle close to PI
{
if ((theVecFrom.Z() * theVecFrom.Z()) > (theVecFrom.X() * theVecFrom.X()))
Set ( 0.0, theVecFrom.Z(), -theVecFrom.Y(), w); // theVecFrom * gp_Vec(1,0,0)
else
Set (theVecFrom.Y(), -theVecFrom.X(), 0.0, w); // theVecFrom * gp_Vec(0,0,1)
}
Normalize();
}
//=======================================================================
//function : SetRotation
//purpose :
//=======================================================================
void gp_Quaternion::SetRotation (const gp_Vec& theVecFrom, const gp_Vec& theVecTo, const gp_Vec& theHelpCrossVec)
{
gp_Vec aVecCross (theVecFrom.Crossed (theVecTo));
Set (aVecCross.X(), aVecCross.Y(), aVecCross.Z(), theVecFrom.Dot (theVecTo));
Normalize(); // if "from" or "to" not unit, normalize quat
w += 1.0; // reducing angle to halfangle
if (w <= gp::Resolution()) // angle close to PI
{
gp_Vec theAxis = theVecFrom.Crossed (theHelpCrossVec);
Set (theAxis.X(), theAxis.Y(), theAxis.Z(), w);
}
Normalize();
}
//=======================================================================
//function : SetVectorAndAngle
//purpose :
//=======================================================================
void gp_Quaternion::SetVectorAndAngle (const gp_Vec& theAxis, const Standard_Real theAngle)
{
gp_Vec anAxis = theAxis.Normalized();
Standard_Real anAngleHalf = 0.5 * theAngle;
Standard_Real sin_a = Sin (anAngleHalf);
Set (anAxis.X() * sin_a, anAxis.Y() * sin_a, anAxis.Z() * sin_a, Cos (anAngleHalf));
}
//=======================================================================
//function : GetVectorAndAngle
//purpose :
//=======================================================================
void gp_Quaternion::GetVectorAndAngle (gp_Vec& theAxis, Standard_Real& theAngle) const
{
Standard_Real vl = Sqrt (x * x + y * y + z * z);
if (vl > gp::Resolution())
{
Standard_Real ivl = 1.0 / vl;
theAxis.SetCoord (x * ivl, y * ivl, z * ivl);
if (w < 0.0)
{
theAngle = 2.0 * ATan2 (-vl, -w); // [-PI, 0]
}
else
{
theAngle = 2.0 * ATan2 ( vl, w); // [ 0, PI]
}
}
else
{
theAxis.SetCoord (0.0, 0.0, 1.0);
theAngle = 0.0;
}
}
//=======================================================================
//function : SetMatrix
//purpose :
//=======================================================================
void gp_Quaternion::SetMatrix (const gp_Mat& theMat)
{
Standard_Real tr = theMat (1, 1) + theMat (2, 2) + theMat(3, 3); // trace of martix
if (tr > 0.0)
{ // if trace positive than "w" is biggest component
Set (theMat (3, 2) - theMat (2, 3),
theMat (1, 3) - theMat (3, 1),
theMat (2, 1) - theMat (1, 2),
tr + 1.0);
Scale (0.5 / Sqrt (w)); // "w" contain the "norm * 4"
}
else if ((theMat (1, 1) > theMat (2, 2)) && (theMat (1, 1) > theMat (3, 3)))
{ // Some of vector components is bigger
Set (1.0 + theMat (1, 1) - theMat (2, 2) - theMat (3, 3),
theMat (1, 2) + theMat (2, 1),
theMat (1, 3) + theMat (3, 1),
theMat (3, 2) - theMat (2, 3));
Scale (0.5 / Sqrt (x));
}
else if (theMat (2, 2) > theMat (3, 3))
{
Set (theMat (1, 2) + theMat (2, 1),
1.0 + theMat (2, 2) - theMat (1, 1) - theMat (3, 3),
theMat (2, 3) + theMat (3, 2),
theMat (1, 3) - theMat (3, 1));
Scale (0.5 / Sqrt (y));
}
else
{
Set (theMat (1, 3) + theMat (3, 1),
theMat (2, 3) + theMat (3, 2),
1.0 + theMat (3, 3) - theMat (1, 1) - theMat (2, 2),
theMat (2, 1) - theMat (1, 2));
Scale (0.5 / Sqrt (z));
}
}
//=======================================================================
//function : GetMatrix
//purpose :
//=======================================================================
gp_Mat gp_Quaternion::GetMatrix () const
{
Standard_Real wx, wy, wz, xx, yy, yz, xy, xz, zz, x2, y2, z2;
Standard_Real s = 2.0 / SquareNorm();
x2 = x * s; y2 = y * s; z2 = z * s;
xx = x * x2; xy = x * y2; xz = x * z2;
yy = y * y2; yz = y * z2; zz = z * z2;
wx = w * x2; wy = w * y2; wz = w * z2;
gp_Mat aMat;
aMat (1, 1) = 1.0 - (yy + zz);
aMat (1, 2) = xy - wz;
aMat (1, 3) = xz + wy;
aMat (2, 1) = xy + wz;
aMat (2, 2) = 1.0 - (xx + zz);
aMat (2, 3) = yz - wx;
aMat (3, 1) = xz - wy;
aMat (3, 2) = yz + wx;
aMat (3, 3) = 1.0 - (xx + yy);
// 1 division 16 multiplications 15 addidtions 12 variables
return aMat;
}
namespace { // anonymous namespace
//=======================================================================
//function : translateEulerSequence
//purpose :
// Code supporting conversion between quaternion and generalized
// Euler angles (sequence of three rotations) is based on
// algorithm by Ken Shoemake, published in Graphics Gems IV, p. 222-22
// http://tog.acm.org/resources/GraphicsGems/gemsiv/euler_angle/EulerAngles.c
//=======================================================================
struct gp_EulerSequence_Parameters
{
Standard_Integer i; // first rotation axis
Standard_Integer j; // next axis of rotation
Standard_Integer k; // third axis
Standard_Boolean isOdd; // true if order of two first rotation axes is odd permutation, e.g. XZ
Standard_Boolean isTwoAxes; // true if third rotation is about the same axis as first
Standard_Boolean isExtrinsic; // true if rotations are made around fixed axes
gp_EulerSequence_Parameters (Standard_Integer theAx1,
Standard_Boolean theisOdd,
Standard_Boolean theisTwoAxes,
Standard_Boolean theisExtrinsic)
: i(theAx1),
j(1 + (theAx1 + (theisOdd ? 1 : 0)) % 3),
k(1 + (theAx1 + (theisOdd ? 0 : 1)) % 3),
isOdd(theisOdd),
isTwoAxes(theisTwoAxes),
isExtrinsic(theisExtrinsic)
{}
};
gp_EulerSequence_Parameters translateEulerSequence (const gp_EulerSequence theSeq)
{
typedef gp_EulerSequence_Parameters Params;
const Standard_Boolean F = Standard_False;
const Standard_Boolean T = Standard_True;
switch (theSeq)
{
case gp_Extrinsic_XYZ: return Params (1, F, F, T);
case gp_Extrinsic_XZY: return Params (1, T, F, T);
case gp_Extrinsic_YZX: return Params (2, F, F, T);
case gp_Extrinsic_YXZ: return Params (2, T, F, T);
case gp_Extrinsic_ZXY: return Params (3, F, F, T);
case gp_Extrinsic_ZYX: return Params (3, T, F, T);
// Conversion of intrinsic angles is made by the same code as for extrinsic,
// using equivalence rule: intrinsic rotation is equivalent to extrinsic
// rotation by the same angles but with inverted order of elemental rotations.
// Swapping of angles (Alpha <-> Gamma) is done inside conversion procedure;
// sequence of axes is inverted by setting appropriate parameters here.
// Note that proper Euler angles (last block below) are symmetric for sequence of axes.
case gp_Intrinsic_XYZ: return Params (3, T, F, F);
case gp_Intrinsic_XZY: return Params (2, F, F, F);
case gp_Intrinsic_YZX: return Params (1, T, F, F);
case gp_Intrinsic_YXZ: return Params (3, F, F, F);
case gp_Intrinsic_ZXY: return Params (2, T, F, F);
case gp_Intrinsic_ZYX: return Params (1, F, F, F);
case gp_Extrinsic_XYX: return Params (1, F, T, T);
case gp_Extrinsic_XZX: return Params (1, T, T, T);
case gp_Extrinsic_YZY: return Params (2, F, T, T);
case gp_Extrinsic_YXY: return Params (2, T, T, T);
case gp_Extrinsic_ZXZ: return Params (3, F, T, T);
case gp_Extrinsic_ZYZ: return Params (3, T, T, T);
case gp_Intrinsic_XYX: return Params (1, F, T, F);
case gp_Intrinsic_XZX: return Params (1, T, T, F);
case gp_Intrinsic_YZY: return Params (2, F, T, F);
case gp_Intrinsic_YXY: return Params (2, T, T, F);
case gp_Intrinsic_ZXZ: return Params (3, F, T, F);
case gp_Intrinsic_ZYZ: return Params (3, T, T, F);
default:
case gp_EulerAngles : return Params (3, F, T, F); // = Intrinsic_ZXZ
case gp_YawPitchRoll: return Params (1, F, F, F); // = Intrinsic_ZYX
};
}
} // anonymous namespace
//=======================================================================
//function : SetEulerAngles
//purpose :
//=======================================================================
void gp_Quaternion::SetEulerAngles (const gp_EulerSequence theOrder,
const Standard_Real theAlpha,
const Standard_Real theBeta,
const Standard_Real theGamma)
{
gp_EulerSequence_Parameters o = translateEulerSequence (theOrder);
Standard_Real a = theAlpha, b = theBeta, c = theGamma;
if ( ! o.isExtrinsic )
{
a = theGamma;
c = theAlpha;
}
if ( o.isOdd )
b = -b;
Standard_Real ti = 0.5 * a;
Standard_Real tj = 0.5 * b;
Standard_Real th = 0.5 * c;
Standard_Real ci = Cos (ti);
Standard_Real cj = Cos (tj);
Standard_Real ch = Cos (th);
Standard_Real si = Sin (ti);
Standard_Real sj = Sin (tj);
Standard_Real sh = Sin (th);
Standard_Real cc = ci * ch;
Standard_Real cs = ci * sh;
Standard_Real sc = si * ch;
Standard_Real ss = si * sh;
Standard_Real values[4]; // w, x, y, z
if ( o.isTwoAxes )
{
values[o.i] = cj * (cs + sc);
values[o.j] = sj * (cc + ss);
values[o.k] = sj * (cs - sc);
values[0] = cj * (cc - ss);
}
else
{
values[o.i] = cj * sc - sj * cs;
values[o.j] = cj * ss + sj * cc;
values[o.k] = cj * cs - sj * sc;
values[0] = cj * cc + sj * ss;
}
if ( o.isOdd )
values[o.j] = -values[o.j];
x = values[1];
y = values[2];
z = values[3];
w = values[0];
}
//=======================================================================
//function : GetEulerAngles
//purpose :
//=======================================================================
void gp_Quaternion::GetEulerAngles (const gp_EulerSequence theOrder,
Standard_Real& theAlpha,
Standard_Real& theBeta,
Standard_Real& theGamma) const
{
gp_Mat M = GetMatrix();
gp_EulerSequence_Parameters o = translateEulerSequence (theOrder);
if ( o.isTwoAxes )
{
double sy = sqrt (M(o.i, o.j) * M(o.i, o.j) + M(o.i, o.k) * M(o.i, o.k));
if (sy > 16 * DBL_EPSILON)
{
theAlpha = ATan2 (M(o.i, o.j), M(o.i, o.k));
theGamma = ATan2 (M(o.j, o.i), -M(o.k, o.i));
}
else
{
theAlpha = ATan2 (-M(o.j, o.k), M(o.j, o.j));
theGamma = 0.;
}
theBeta = ATan2 (sy, M(o.i, o.i));
}
else
{
double cy = sqrt (M(o.i, o.i) * M(o.i, o.i) + M(o.j, o.i) * M(o.j, o.i));
if (cy > 16 * DBL_EPSILON)
{
theAlpha = ATan2 (M(o.k, o.j), M(o.k, o.k));
theGamma = ATan2 (M(o.j, o.i), M(o.i, o.i));
}
else
{
theAlpha = ATan2 (-M(o.j, o.k), M(o.j, o.j));
theGamma = 0.;
}
theBeta = ATan2 (-M(o.k, o.i), cy);
}
if ( o.isOdd )
{
theAlpha = -theAlpha;
theBeta = -theBeta;
theGamma = -theGamma;
}
if ( ! o.isExtrinsic )
{
Standard_Real aFirst = theAlpha;
theAlpha = theGamma;
theGamma = aFirst;
}
}
//=======================================================================
//function : StabilizeLength
//purpose :
//=======================================================================
void gp_Quaternion::StabilizeLength()
{
Standard_Real cs = Abs (x) + Abs (y) + Abs (z) + Abs (w);
if (cs > 0.0)
{
x /= cs; y /= cs; z /= cs; w /= cs;
}
else
{
SetIdent();
}
}
//=======================================================================
//function : Normalize
//purpose :
//=======================================================================
void gp_Quaternion::Normalize()
{
Standard_Real aMagn = Norm();
if (aMagn < gp::Resolution())
{
StabilizeLength();
aMagn = Norm();
}
Scale (1.0 / aMagn);
}
//=======================================================================
//function : Normalize
//purpose :
//=======================================================================
Standard_Real gp_Quaternion::GetRotationAngle() const
{
if (w < 0.0)
{
return 2.0 * ATan2 (-Sqrt (x * x + y * y + z * z), -w);
}
else
{
return 2.0 * ATan2 ( Sqrt (x * x + y * y + z * z), w);
}
}
//=======================================================================
//function : Multiply
//purpose :
//=======================================================================
gp_Vec gp_Quaternion::Multiply (const gp_Vec& theVec) const
{
gp_Quaternion theQ (theVec.X() * w + theVec.Z() * y - theVec.Y() * z,
theVec.Y() * w + theVec.X() * z - theVec.Z() * x,
theVec.Z() * w + theVec.Y() * x - theVec.X() * y,
theVec.X() * x + theVec.Y() * y + theVec.Z() * z);
return gp_Vec (w * theQ.x + x * theQ.w + y * theQ.z - z * theQ.y,
w * theQ.y + y * theQ.w + z * theQ.x - x * theQ.z,
w * theQ.z + z * theQ.w + x * theQ.y - y * theQ.x) * (1.0 / SquareNorm());
}