1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-08-09 13:22:24 +03:00
Files
occt/src/GeomFill/GeomFill_FunctionDraft.cxx
bugmaster b311480ed5 0023024: Update headers of OCCT files
Added appropriate copyright and license information in source files
2012-03-21 19:43:04 +04:00

230 lines
6.6 KiB
C++
Executable File

// Created on: 1998-04-27
// Created by: Stephanie HUMEAU
// Copyright (c) 1998-1999 Matra Datavision
// Copyright (c) 1999-2012 OPEN CASCADE SAS
//
// The content of this file is subject to the Open CASCADE Technology Public
// License Version 6.5 (the "License"). You may not use the content of this file
// except in compliance with the License. Please obtain a copy of the License
// at http://www.opencascade.org and read it completely before using this file.
//
// The Initial Developer of the Original Code is Open CASCADE S.A.S., having its
// main offices at: 1, place des Freres Montgolfier, 78280 Guyancourt, France.
//
// The Original Code and all software distributed under the License is
// distributed on an "AS IS" basis, without warranty of any kind, and the
// Initial Developer hereby disclaims all such warranties, including without
// limitation, any warranties of merchantability, fitness for a particular
// purpose or non-infringement. Please see the License for the specific terms
// and conditions governing the rights and limitations under the License.
#include <GeomFill_FunctionDraft.ixx>
#include <GeomAdaptor_HSurface.hxx>
#include <GeomAdaptor_HCurve.hxx>
//#include <Precision.hxx>
#include <gp_Pnt.hxx>
//*******************************************************
// Calcul de la valeur de la fonction :
// G(w(t)) - S(u(t),v(t)) = 0
// ou G = generatrice et S = surface d'arret
// et de ses derivees
//*******************************************************
//*******************************************************
// Function : FunctionDraft
// Purpose : Initialisation de la section et de la surface d'arret
//*******************************************************
GeomFill_FunctionDraft::GeomFill_FunctionDraft
(const Handle(Adaptor3d_HSurface)& S, const Handle(Adaptor3d_HCurve)& C)
{
TheCurve = C ;
TheSurface = S;
}
//*******************************************************
// Function : NbVariables (t, u, v)
// Purpose :
//*******************************************************
Standard_Integer GeomFill_FunctionDraft::NbVariables()const
{
return 3;
}
//*******************************************************
// Function : NbEquations
// Purpose :
//*******************************************************
Standard_Integer GeomFill_FunctionDraft::NbEquations()const
{
return 3;
}
//*******************************************************
// Function : Value
// Purpose : calcul of the value of the function at <X>
//*******************************************************
Standard_Boolean GeomFill_FunctionDraft::Value(const math_Vector& X,
math_Vector& F)
{
gp_Pnt P,P1;
TheCurve->D0(X(1), P);
TheSurface->D0(X(2), X(3), P1);
F(1) = P.Coord(1) - P1.Coord(1);
F(2) = P.Coord(2) - P1.Coord(2);
F(3) = P.Coord(3) - P1.Coord(3);
return Standard_True;
}
//*******************************************************
// Function : Derivatives
// Purpose :calcul of the derivative of the function
//*******************************************************
Standard_Boolean GeomFill_FunctionDraft::Derivatives(const math_Vector& X,
math_Matrix& D)
{
Standard_Integer i;
gp_Pnt P,P1;
gp_Vec DP,DP1U,DP1V;
TheCurve->D1(X(1),P,DP);
TheSurface->D1(X(2),X(3),P1,DP1U,DP1V);
for (i=1;i<=3;i++)
{
D(i,1) = DP.Coord(i);
D(i,2) = -DP1U.Coord(i);
D(i,3) = -DP1V.Coord(i);
}
return Standard_True;
}
//*******************************************************
// Function : Values
// Purpose : calcul of the value and the derivative of the function
//*******************************************************
Standard_Boolean GeomFill_FunctionDraft::Values(const math_Vector& X,
math_Vector& F,
math_Matrix& D)
{
Standard_Integer i;
gp_Pnt P,P1;
gp_Vec DP,DP1U,DP1V;
TheCurve->D1(X(1),P,DP); //derivee de la generatrice
TheSurface->D1(X(2),X(3),P1,DP1U,DP1V); //derivee de la new surface
for (i=1;i<=3;i++)
{
F(i) = P.Coord(i) - P1.Coord(i);
D(i,1) = DP.Coord(i);
D(i,2) = -DP1U.Coord(i);
D(i,3) = -DP1V.Coord(i);
}
return Standard_True;
}
//*******************************************************
// Function : DerivT
// Purpose : calcul of the first derivative from t
//*******************************************************
Standard_Boolean GeomFill_FunctionDraft::DerivT(const Handle(Adaptor3d_HCurve)& C,
const Standard_Real Param,
const Standard_Real W,
const gp_Vec & dN,
const Standard_Real teta,
math_Vector& F)
{
gp_Pnt P;
gp_Vec DP;
C->D1(Param, P, DP); // derivee de la section
F(1) = DP.Coord(1) + W * dN.Coord(1) * Sin(teta);
F(2) = DP.Coord(2) + W * dN.Coord(2) * Sin(teta);
F(3) = DP.Coord(3) + W * dN.Coord(3) * Sin(teta);
return Standard_True;
}
//*******************************************************
// Function : Deriv2T
// Purpose : calcul of the second derivatice from t
//*******************************************************
Standard_Boolean GeomFill_FunctionDraft::Deriv2T(const Handle(Adaptor3d_HCurve)& C,
const Standard_Real Param,
const Standard_Real W,
const gp_Vec & d2N,
const Standard_Real teta,
math_Vector& F)
{
gp_Pnt P;
gp_Vec DP,D2P;
C->D2(Param, P, DP, D2P); // derivee de la section
F(1) = D2P.Coord(1) + W * d2N.Coord(1) * Sin(teta);
F(2) = D2P.Coord(2) + W * d2N.Coord(2) * Sin(teta);
F(3) = D2P.Coord(3) + W * d2N.Coord(3) * Sin(teta);
return Standard_True;
}
//*******************************************************
// Function : DerivTX
// Purpose : calcul of the second derivative from t and x
//*******************************************************
Standard_Boolean GeomFill_FunctionDraft::DerivTX(const gp_Vec & dN,
const Standard_Real teta,
math_Matrix& D)
{
// gp_Pnt P;
// gp_Vec DP,D2P;
Standard_Integer i;
for (i=1;i<=3;i++)
{
D(i,1) = dN.Coord(i)*Sin(teta); //derivee / W
D(i,2) = 0.; // derivee / U
D(i,3) = 0.; // derivee / V
}
return Standard_True;
}
//*******************************************************
// Function : Deriv2X
// Purpose : calcul of the second derivative from x
//*******************************************************
Standard_Boolean GeomFill_FunctionDraft::Deriv2X(const math_Vector & X,
GeomFill_Tensor& T)
{
gp_Pnt P;
gp_Vec DPu,DPv;
gp_Vec D2Pu, D2Pv, D2Puv;
Standard_Integer i;
TheSurface->D2(X(2), X(3), P, DPu, DPv, D2Pu, D2Pv, D2Puv);
T.Init(0.); // tenseur
for (i=1;i<=3;i++)
{
T(i,2,2) = -D2Pu.Coord(i);
T(i,3,2) = T(i,2,3) = -D2Puv.Coord(i);
T(i,3,3) = -D2Pv.Coord(i);
}
return Standard_True;
}