1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-04-07 18:30:55 +03:00
occt/src/GeomToStep/GeomToStep_MakeBSplineSurfaceWithKnots.cxx

154 lines
5.5 KiB
C++

// Created on: 1993-08-05
// Created by: Martine LANGLOIS
// Copyright (c) 1993-1999 Matra Datavision
// Copyright (c) 1999-2014 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
#include <Geom_BSplineSurface.hxx>
#include <GeomAbs_BSplKnotDistribution.hxx>
#include <GeomToStep_MakeBSplineSurfaceWithKnots.hxx>
#include <GeomToStep_MakeCartesianPoint.hxx>
#include <StdFail_NotDone.hxx>
#include <StepGeom_BSplineSurfaceWithKnots.hxx>
#include <StepGeom_CartesianPoint.hxx>
#include <StepGeom_HArray2OfCartesianPoint.hxx>
#include <StepGeom_KnotType.hxx>
#include <TColgp_Array2OfPnt.hxx>
#include <TCollection_HAsciiString.hxx>
#include <TColStd_HArray1OfInteger.hxx>
#include <TColStd_HArray1OfReal.hxx>
#include <TColStd_HArray2OfReal.hxx>
//=============================================================================
// Creation d' une bspline_Surface_with_knots_and_rational_bspline_Surface de
// prostep a partir d' une BSplineSurface de Geom
//=============================================================================
GeomToStep_MakeBSplineSurfaceWithKnots::
GeomToStep_MakeBSplineSurfaceWithKnots( const
Handle(Geom_BSplineSurface)& BS )
{
Handle(StepGeom_BSplineSurfaceWithKnots) BSWK;
Standard_Integer aUDegree, aVDegree, NU, NV, i, j, NUknots, NVknots, itampon;
Standard_Real rtampon;
Handle(StepGeom_CartesianPoint) Pt = new StepGeom_CartesianPoint;
Handle(StepGeom_HArray2OfCartesianPoint) aControlPointsList;
StepGeom_BSplineSurfaceForm aSurfaceForm;
StepData_Logical aUClosed, aVClosed, aSelfIntersect;
Handle(TColStd_HArray1OfInteger) aUMultiplicities, aVMultiplicities;
Handle(TColStd_HArray1OfReal) aUKnots, aVKnots;
Handle(TColStd_HArray2OfReal) aWeightsData;
GeomAbs_BSplKnotDistribution UDistribution, VDistribution;
StepGeom_KnotType KnotSpec;
aUDegree = BS->UDegree();
aVDegree = BS->VDegree();
NU = BS->NbUPoles();
NV = BS->NbVPoles();
TColgp_Array2OfPnt P(1,NU,1,NV);
BS->Poles(P);
aControlPointsList = new StepGeom_HArray2OfCartesianPoint(1,NU,1,NV);
for ( i=P.LowerRow(); i<=P.UpperRow(); i++) {
for ( j=P.LowerCol(); j<=P.UpperCol(); j++) {
GeomToStep_MakeCartesianPoint MkPoint(P.Value(i,j));
Pt = MkPoint.Value();
aControlPointsList->SetValue(i, j, Pt);
}
}
aSurfaceForm = StepGeom_bssfUnspecified;
if (BS->IsUClosed())
aUClosed = StepData_LTrue;
else
aUClosed = StepData_LFalse;
if (BS->IsVClosed())
aVClosed = StepData_LTrue;
else
aVClosed = StepData_LFalse;
aSelfIntersect = StepData_LFalse;
NUknots = BS->NbUKnots();
NVknots = BS->NbVKnots();
TColStd_Array1OfInteger MU(1,NUknots);
BS->UMultiplicities(MU);
aUMultiplicities = new TColStd_HArray1OfInteger(1,NUknots);
for ( i=MU.Lower(); i<=MU.Upper(); i++) {
itampon = MU.Value(i);
aUMultiplicities->SetValue(i, itampon);
}
TColStd_Array1OfInteger MV(1,NVknots);
BS->VMultiplicities(MV);
aVMultiplicities = new TColStd_HArray1OfInteger(1,NVknots);
for ( i=MV.Lower(); i<=MV.Upper(); i++) {
itampon = MV.Value(i);
aVMultiplicities->SetValue(i, itampon);
}
TColStd_Array1OfReal KU(1,NUknots);
TColStd_Array1OfReal KV(1,NVknots);
BS->UKnots(KU);
BS->VKnots(KV);
aUKnots = new TColStd_HArray1OfReal(1,NUknots);
aVKnots = new TColStd_HArray1OfReal(1,NVknots);
for ( i=KU.Lower(); i<=KU.Upper(); i++) {
rtampon = KU.Value(i);
aUKnots->SetValue(i, rtampon);
}
for ( i=KV.Lower(); i<=KV.Upper(); i++) {
rtampon = KV.Value(i);
aVKnots->SetValue(i, rtampon);
}
UDistribution = BS->UKnotDistribution();
VDistribution = BS->VKnotDistribution();
if ( UDistribution == GeomAbs_NonUniform &&
VDistribution == GeomAbs_NonUniform )
KnotSpec = StepGeom_ktUnspecified;
else if ( UDistribution == GeomAbs_Uniform &&
VDistribution == GeomAbs_Uniform )
KnotSpec = StepGeom_ktUniformKnots;
else if ( UDistribution == GeomAbs_QuasiUniform &&
VDistribution == GeomAbs_QuasiUniform )
KnotSpec = StepGeom_ktQuasiUniformKnots;
else if ( UDistribution == GeomAbs_PiecewiseBezier &&
VDistribution == GeomAbs_PiecewiseBezier )
KnotSpec = StepGeom_ktPiecewiseBezierKnots;
else
KnotSpec = StepGeom_ktUnspecified;
BSWK = new StepGeom_BSplineSurfaceWithKnots;
Handle(TCollection_HAsciiString) name = new TCollection_HAsciiString("");
BSWK->Init(name, aUDegree, aVDegree, aControlPointsList, aSurfaceForm,
aUClosed, aVClosed, aSelfIntersect, aUMultiplicities,
aVMultiplicities, aUKnots, aVKnots, KnotSpec );
theBSplineSurfaceWithKnots = BSWK;
done = Standard_True;
}
//=============================================================================
// renvoi des valeurs
//=============================================================================
const Handle(StepGeom_BSplineSurfaceWithKnots) &
GeomToStep_MakeBSplineSurfaceWithKnots::Value() const
{
StdFail_NotDone_Raise_if (!done, "GeomToStep_MakeBSplineSurfaceWithKnots::Value() - no result");
return theBSplineSurfaceWithKnots;
}