mirror of
https://git.dev.opencascade.org/repos/occt.git
synced 2025-05-06 10:36:12 +03:00
License statement text corrected; compiler warnings caused by Bison 2.41 disabled for MSVC; a few other compiler warnings on 54-bit Windows eliminated by appropriate type cast Wrong license statements corrected in several files. Copyright and license statements added in XSD and GLSL files. Copyright year updated in some files. Obsolete documentation files removed from DrawResources.
471 lines
14 KiB
C++
471 lines
14 KiB
C++
// Created on: 1993-12-02
|
|
// Created by: Jacques GOUSSARD
|
|
// Copyright (c) 1993-1999 Matra Datavision
|
|
// Copyright (c) 1999-2014 OPEN CASCADE SAS
|
|
//
|
|
// This file is part of Open CASCADE Technology software library.
|
|
//
|
|
// This library is free software; you can redistribute it and/or modify it under
|
|
// the terms of the GNU Lesser General Public License version 2.1 as published
|
|
// by the Free Software Foundation, with special exception defined in the file
|
|
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
|
|
// distribution for complete text of the license and disclaimer of any warranty.
|
|
//
|
|
// Alternatively, this file may be used under the terms of Open CASCADE
|
|
// commercial license or contractual agreement.
|
|
|
|
#include <BlendFunc_RuledInv.ixx>
|
|
|
|
#include <Precision.hxx>
|
|
|
|
BlendFunc_RuledInv::BlendFunc_RuledInv(const Handle(Adaptor3d_HSurface)& S1,
|
|
const Handle(Adaptor3d_HSurface)& S2,
|
|
const Handle(Adaptor3d_HCurve)& C) :
|
|
surf1(S1),surf2(S2),curv(C)
|
|
{}
|
|
|
|
void BlendFunc_RuledInv::Set(const Standard_Boolean OnFirst,
|
|
const Handle(Adaptor2d_HCurve2d)& C)
|
|
{
|
|
first = OnFirst;
|
|
csurf = C;
|
|
}
|
|
|
|
Standard_Integer BlendFunc_RuledInv::NbEquations () const
|
|
{
|
|
return 4;
|
|
}
|
|
|
|
void BlendFunc_RuledInv::GetTolerance(math_Vector& Tolerance,
|
|
const Standard_Real Tol) const
|
|
{
|
|
Tolerance(1) = csurf->Resolution(Tol);
|
|
Tolerance(2) = curv->Resolution(Tol);
|
|
if (first) {
|
|
Tolerance(3) = surf2->UResolution(Tol);
|
|
Tolerance(4) = surf2->VResolution(Tol);
|
|
}
|
|
else {
|
|
Tolerance(3) = surf1->UResolution(Tol);
|
|
Tolerance(4) = surf1->VResolution(Tol);
|
|
}
|
|
}
|
|
|
|
void BlendFunc_RuledInv::GetBounds(math_Vector& InfBound,
|
|
math_Vector& SupBound) const
|
|
{
|
|
InfBound(1) = csurf->FirstParameter();
|
|
InfBound(2) = curv->FirstParameter();
|
|
SupBound(1) = csurf->LastParameter();
|
|
SupBound(2) = curv->LastParameter();
|
|
|
|
if (first) {
|
|
InfBound(3) = surf2->FirstUParameter();
|
|
InfBound(4) = surf2->FirstVParameter();
|
|
SupBound(3) = surf2->LastUParameter();
|
|
SupBound(4) = surf2->LastVParameter();
|
|
if(!Precision::IsInfinite(InfBound(3)) &&
|
|
!Precision::IsInfinite(SupBound(3))) {
|
|
const Standard_Real range = (SupBound(3) - InfBound(3));
|
|
InfBound(3) -= range;
|
|
SupBound(3) += range;
|
|
}
|
|
if(!Precision::IsInfinite(InfBound(4)) &&
|
|
!Precision::IsInfinite(SupBound(4))) {
|
|
const Standard_Real range = (SupBound(4) - InfBound(4));
|
|
InfBound(4) -= range;
|
|
SupBound(4) += range;
|
|
}
|
|
}
|
|
else {
|
|
InfBound(3) = surf1->FirstUParameter();
|
|
InfBound(4) = surf1->FirstVParameter();
|
|
SupBound(3) = surf1->LastUParameter();
|
|
SupBound(4) = surf1->LastVParameter();
|
|
if(!Precision::IsInfinite(InfBound(3)) &&
|
|
!Precision::IsInfinite(SupBound(3))) {
|
|
const Standard_Real range = (SupBound(3) - InfBound(3));
|
|
InfBound(3) -= range;
|
|
SupBound(3) += range;
|
|
}
|
|
if(!Precision::IsInfinite(InfBound(4)) &&
|
|
!Precision::IsInfinite(SupBound(4))) {
|
|
const Standard_Real range = (SupBound(4) - InfBound(4));
|
|
InfBound(4) -= range;
|
|
SupBound(4) += range;
|
|
}
|
|
}
|
|
}
|
|
|
|
Standard_Boolean BlendFunc_RuledInv::IsSolution(const math_Vector& Sol,
|
|
const Standard_Real Tol)
|
|
{
|
|
math_Vector valsol(1,4);
|
|
Value(Sol,valsol);
|
|
if (Abs(valsol(1)) <= Tol &&
|
|
Abs(valsol(2)) <= Tol &&
|
|
Abs(valsol(3)) <= Tol &&
|
|
Abs(valsol(4)) <= Tol)
|
|
return Standard_True;
|
|
|
|
return Standard_False;
|
|
}
|
|
|
|
|
|
Standard_Boolean BlendFunc_RuledInv::Value(const math_Vector& X,
|
|
math_Vector& F)
|
|
{
|
|
gp_Pnt ptcur;
|
|
gp_Vec d1cur;
|
|
curv->D1(X(2),ptcur,d1cur);
|
|
|
|
const gp_XYZ nplan = d1cur.Normalized().XYZ();
|
|
const Standard_Real theD = -(nplan.Dot(ptcur.XYZ()));
|
|
const gp_Pnt2d pt2d(csurf->Value(X(1)));
|
|
|
|
gp_Pnt pts1,pts2;
|
|
gp_Vec d1u1,d1v1,d1u2,d1v2;
|
|
if (first)
|
|
{
|
|
surf1->D1(pt2d.X(),pt2d.Y(),pts1,d1u1,d1v1);
|
|
surf2->D1(X(3),X(4),pts2,d1u2,d1v2);
|
|
}
|
|
else
|
|
{
|
|
surf1->D1(X(3),X(4),pts1,d1u1,d1v1);
|
|
surf2->D1(pt2d.X(),pt2d.Y(),pts2,d1u2,d1v2);
|
|
}
|
|
|
|
const gp_XYZ temp(pts2.XYZ()-pts1.XYZ());
|
|
|
|
gp_XYZ ns1 = d1u1.Crossed(d1v1).XYZ();
|
|
gp_XYZ ns2 = d1u2.Crossed(d1v2).XYZ();
|
|
const Standard_Real norm1 = nplan.Crossed(ns1).Modulus();
|
|
const Standard_Real norm2 = nplan.Crossed(ns2).Modulus();
|
|
ns1.SetLinearForm(nplan.Dot(ns1)/norm1,nplan, -1./norm1,ns1);
|
|
ns2.SetLinearForm(nplan.Dot(ns2)/norm2,nplan, -1./norm2,ns2);
|
|
|
|
F(1) = (nplan.Dot(pts1.XYZ())) + theD;
|
|
F(2) = (nplan.Dot(pts2.XYZ())) + theD;
|
|
|
|
F(3) = temp.Dot(ns1);
|
|
F(4) = temp.Dot(ns2);
|
|
|
|
return Standard_True;
|
|
}
|
|
|
|
Standard_Boolean BlendFunc_RuledInv::Derivatives(const math_Vector& X,
|
|
math_Matrix& D)
|
|
{
|
|
gp_Pnt ptcur;
|
|
gp_Vec d1cur,d2cur;
|
|
curv->D2(X(2),ptcur,d1cur,d2cur);
|
|
|
|
const Standard_Real normtgcur = d1cur.Magnitude();
|
|
const gp_Vec nplan = d1cur.Normalized();
|
|
|
|
gp_Vec dnplan;
|
|
dnplan.SetLinearForm(-nplan.Dot(d2cur),nplan,d2cur);
|
|
dnplan /= normtgcur;
|
|
|
|
gp_Pnt2d p2d;
|
|
gp_Vec2d v2d;
|
|
csurf->D1(X(1),p2d,v2d);
|
|
|
|
gp_Pnt pts1,pts2;
|
|
gp_Vec d1u1,d1v1,d1u2,d1v2;
|
|
gp_Vec d2u1,d2v1,d2u2,d2v2,d2uv1,d2uv2;
|
|
gp_Vec dpdt, p1p2;
|
|
if (first)
|
|
{
|
|
surf1->D2(p2d.X(),p2d.Y(),pts1,d1u1,d1v1,d2u1,d2v1,d2uv1);
|
|
surf2->D2(X(3),X(4),pts2,d1u2,d1v2,d2u2,d2v2,d2uv2);
|
|
dpdt.SetLinearForm(v2d.X(),d1u1,v2d.Y(),d1v1);
|
|
p1p2 = gp_Vec(pts1,pts2);
|
|
D(1,1) = dpdt.Dot(nplan);
|
|
D(1,2) = dnplan.XYZ().Dot(pts1.XYZ()-ptcur.XYZ()) - normtgcur;
|
|
D(1,3) = 0.;
|
|
D(1,4) = 0.;
|
|
|
|
D(2,1) = 0.;
|
|
D(2,2) = dnplan.XYZ().Dot(pts2.XYZ()-ptcur.XYZ()) - normtgcur;
|
|
D(2,3) = d1u2.Dot(nplan);
|
|
D(2,4) = d1v2.Dot(nplan);
|
|
}
|
|
else
|
|
{
|
|
surf1->D2(X(3),X(4),pts1,d1u1,d1v1,d2u1,d2v1,d2uv1);
|
|
surf2->D2(p2d.X(),p2d.Y(),pts2,d1u2,d1v2,d2u2,d2v2,d2uv2);
|
|
dpdt.SetLinearForm(v2d.X(),d1u2,v2d.Y(),d1v2);
|
|
p1p2 = gp_Vec(pts1,pts2);
|
|
D(1,1) = 0.;
|
|
D(1,2) = dnplan.XYZ().Dot(pts1.XYZ()-ptcur.XYZ()) - normtgcur;
|
|
D(1,3) = d1u1.Dot(nplan);
|
|
D(1,4) = d1v1.Dot(nplan);
|
|
|
|
D(2,1) = dpdt.Dot(nplan);
|
|
D(2,2) = dnplan.XYZ().Dot(pts2.XYZ()-ptcur.XYZ()) - normtgcur;
|
|
D(2,3) = 0.;
|
|
D(2,4) = 0.;
|
|
}
|
|
|
|
const gp_Vec ns1 = d1u1.Crossed(d1v1);
|
|
const gp_Vec ns2 = d1u2.Crossed(d1v2);
|
|
const gp_Vec ncrossns1 = nplan.Crossed(ns1);
|
|
const gp_Vec ncrossns2 = nplan.Crossed(ns2);
|
|
const Standard_Real norm1 = ncrossns1.Magnitude();
|
|
const Standard_Real norm2 = ncrossns2.Magnitude();
|
|
|
|
const Standard_Real ndotns1 = nplan.Dot(ns1);
|
|
const Standard_Real ndotns2 = nplan.Dot(ns2);
|
|
|
|
gp_Vec nor1,nor2;
|
|
nor1.SetLinearForm(ndotns1/norm1,nplan,-1./norm1,ns1);
|
|
nor2.SetLinearForm(ndotns2/norm2,nplan,-1./norm2,ns2);
|
|
|
|
if (first) {
|
|
D(3,3) = d1u2.Dot(nor1);
|
|
D(3,4) = d1v2.Dot(nor1);
|
|
|
|
D(4,1) = -(dpdt.Dot(nor2));
|
|
}
|
|
else {
|
|
D(3,1) = dpdt.Dot(nor1);
|
|
|
|
D(4,3) = -(d1u1.Dot(nor2));
|
|
D(4,4) = -(d1v1.Dot(nor2));
|
|
}
|
|
|
|
gp_Vec resul1,resul2,temp;
|
|
Standard_Real grosterme;
|
|
|
|
// Derivee de nor1 par rapport a u1
|
|
|
|
temp = d2u1.Crossed(d1v1).Added(d1u1.Crossed(d2uv1));
|
|
grosterme = ncrossns1.Dot(nplan.Crossed(temp))/norm1/norm1;
|
|
resul1.SetLinearForm(-(grosterme*ndotns1-nplan.Dot(temp))/norm1,nplan,
|
|
grosterme/norm1,ns1,
|
|
-1./norm1,temp);
|
|
|
|
// Derivee par rapport a v1
|
|
|
|
temp = d2uv1.Crossed(d1v1).Added(d1u1.Crossed(d2v1));
|
|
grosterme = ncrossns1.Dot(nplan.Crossed(temp))/norm1/norm1;
|
|
resul2.SetLinearForm(-(grosterme*ndotns1-nplan.Dot(temp))/norm1,nplan,
|
|
grosterme/norm1,ns1,
|
|
-1./norm1,temp);
|
|
|
|
if (first) {
|
|
resul1.SetLinearForm(v2d.X(),resul1,v2d.Y(),resul2);
|
|
D(3,1) = p1p2.Dot(resul1) - (dpdt.Dot(nor1));
|
|
}
|
|
else {
|
|
D(3,3) = -(d1u1.Dot(nor1)) + p1p2.Dot(resul1);
|
|
D(3,4) = -(d1v1.Dot(nor1)) + p1p2.Dot(resul2);
|
|
}
|
|
|
|
// Derivee de nor2 par rapport a u2
|
|
temp = d2u2.Crossed(d1v2).Added(d1u2.Crossed(d2uv2));
|
|
grosterme = ncrossns2.Dot(nplan.Crossed(temp))/norm2/norm2;
|
|
resul1.SetLinearForm(-(grosterme*ndotns2-nplan.Dot(temp))/norm2,nplan,
|
|
grosterme/norm2,ns2,
|
|
-1./norm2,temp);
|
|
|
|
// Derivee par rapport a v2
|
|
temp = d2uv2.Crossed(d1v2).Added(d1u2.Crossed(d2v2));
|
|
grosterme = ncrossns2.Dot(nplan.Crossed(temp))/norm2/norm2;
|
|
resul2.SetLinearForm(-(grosterme*ndotns2-nplan.Dot(temp))/norm2,nplan,
|
|
grosterme/norm2,ns2,
|
|
-1./norm2,temp);
|
|
|
|
if (first) {
|
|
D(4,3) = d1u2.Dot(nor2) + p1p2.Dot(resul1);
|
|
D(4,4) = d1v2.Dot(nor2) + p1p2.Dot(resul2);
|
|
}
|
|
else {
|
|
resul1.SetLinearForm(v2d.X(),resul1,v2d.Y(),resul2);
|
|
D(4,1) = p1p2.Dot(resul1) + dpdt.Dot(nor2) ;
|
|
}
|
|
|
|
|
|
// derivee par rapport a w (parametre sur ligne guide)
|
|
|
|
grosterme = ncrossns1.Dot(dnplan.Crossed(ns1))/norm1/norm1;
|
|
resul1.SetLinearForm(-(grosterme*ndotns1-dnplan.Dot(ns1))/norm1,nplan,
|
|
ndotns1/norm1,dnplan,
|
|
grosterme/norm1,ns1);
|
|
|
|
|
|
grosterme = ncrossns2.Dot(dnplan.Crossed(ns2))/norm2/norm2;
|
|
resul2.SetLinearForm(-(grosterme*ndotns2-dnplan.Dot(ns2))/norm2,nplan,
|
|
ndotns2/norm2,dnplan,
|
|
grosterme/norm2,ns2);
|
|
|
|
D(3,2) = p1p2.Dot(resul1);
|
|
D(4,2) = p1p2.Dot(resul2);
|
|
|
|
return Standard_True;
|
|
}
|
|
|
|
|
|
Standard_Boolean BlendFunc_RuledInv::Values(const math_Vector& X,
|
|
math_Vector& F,
|
|
math_Matrix& D)
|
|
{
|
|
gp_Pnt ptcur;
|
|
gp_Vec d1cur,d2cur;
|
|
curv->D2(X(2),ptcur,d1cur,d2cur);
|
|
|
|
const Standard_Real normtgcur = d1cur.Magnitude();
|
|
const gp_Vec nplan = d1cur.Normalized();
|
|
const Standard_Real theD = -(nplan.XYZ().Dot(ptcur.XYZ()));
|
|
|
|
gp_Vec dnplan;
|
|
dnplan.SetLinearForm(-nplan.Dot(d2cur),nplan,d2cur);
|
|
dnplan /= normtgcur;
|
|
|
|
gp_Pnt2d p2d;
|
|
gp_Vec2d v2d;
|
|
csurf->D1(X(1),p2d,v2d);
|
|
|
|
gp_Pnt pts1,pts2;
|
|
gp_Vec d1u1,d1v1,d1u2,d1v2;
|
|
gp_Vec d2u1,d2v1,d2u2,d2v2,d2uv1,d2uv2;
|
|
gp_Vec dpdt,p1p2;
|
|
if (first)
|
|
{
|
|
surf1->D2(p2d.X(),p2d.Y(),pts1,d1u1,d1v1,d2u1,d2v1,d2uv1);
|
|
surf2->D2(X(3),X(4),pts2,d1u2,d1v2,d2u2,d2v2,d2uv2);
|
|
dpdt.SetLinearForm(v2d.X(),d1u1,v2d.Y(),d1v1);
|
|
p1p2 = gp_Vec(pts1,pts2);
|
|
D(1,1) = dpdt.Dot(nplan);
|
|
D(1,2) = dnplan.XYZ().Dot(pts1.XYZ()-ptcur.XYZ()) - normtgcur;
|
|
D(1,3) = 0.;
|
|
D(1,4) = 0.;
|
|
|
|
D(2,1) = 0.;
|
|
D(2,2) = dnplan.XYZ().Dot(pts2.XYZ()-ptcur.XYZ()) - normtgcur;
|
|
D(2,3) = d1u2.Dot(nplan);
|
|
D(2,4) = d1v2.Dot(nplan);
|
|
}
|
|
else
|
|
{
|
|
surf1->D2(X(3),X(4),pts1,d1u1,d1v1,d2u1,d2v1,d2uv1);
|
|
surf2->D2(p2d.X(),p2d.Y(),pts2,d1u2,d1v2,d2u2,d2v2,d2uv2);
|
|
dpdt.SetLinearForm(v2d.X(),d1u2,v2d.Y(),d1v2);
|
|
p1p2 = gp_Vec(pts1,pts2);
|
|
D(1,1) = 0.;
|
|
D(1,2) = dnplan.XYZ().Dot(pts1.XYZ()-ptcur.XYZ()) - normtgcur;
|
|
D(1,3) = d1u1.Dot(nplan);
|
|
D(1,4) = d1v1.Dot(nplan);
|
|
|
|
D(2,1) = dpdt.Dot(nplan);
|
|
D(2,2) = dnplan.XYZ().Dot(pts2.XYZ()-ptcur.XYZ()) - normtgcur;
|
|
D(2,3) = 0.;
|
|
D(2,4) = 0.;
|
|
}
|
|
|
|
const gp_Vec ns1 = d1u1.Crossed(d1v1);
|
|
const gp_Vec ns2 = d1u2.Crossed(d1v2);
|
|
const gp_Vec ncrossns1 = nplan.Crossed(ns1);
|
|
const gp_Vec ncrossns2 = nplan.Crossed(ns2);
|
|
const Standard_Real norm1 = ncrossns1.Magnitude();
|
|
const Standard_Real norm2 = ncrossns2.Magnitude();
|
|
|
|
const Standard_Real ndotns1 = nplan.Dot(ns1);
|
|
const Standard_Real ndotns2 = nplan.Dot(ns2);
|
|
|
|
gp_Vec nor1,nor2;
|
|
nor1.SetLinearForm(ndotns1/norm1,nplan,-1./norm1,ns1);
|
|
nor2.SetLinearForm(ndotns2/norm2,nplan,-1./norm2,ns2);
|
|
|
|
F(1) = (nplan.Dot(pts1.XYZ())) + theD;
|
|
F(2) = (nplan.Dot(pts2.XYZ())) + theD;
|
|
|
|
F(3) = p1p2.Dot(nor1);
|
|
F(4) = p1p2.Dot(nor2);
|
|
|
|
if (first) {
|
|
D(3,3) = d1u2.Dot(nor1);
|
|
D(3,4) = d1v2.Dot(nor1);
|
|
|
|
D(4,1) = -(dpdt.Dot(nor2));
|
|
}
|
|
else {
|
|
D(3,1) = dpdt.Dot(nor1);
|
|
|
|
D(4,3) = -(d1u1.Dot(nor2));
|
|
D(4,4) = -(d1v1.Dot(nor2));
|
|
}
|
|
|
|
gp_Vec resul1,resul2,temp;
|
|
Standard_Real grosterme;
|
|
|
|
// Derivee de nor1 par rapport a u1
|
|
|
|
temp = d2u1.Crossed(d1v1).Added(d1u1.Crossed(d2uv1));
|
|
grosterme = ncrossns1.Dot(nplan.Crossed(temp))/norm1/norm1;
|
|
resul1.SetLinearForm(-(grosterme*ndotns1-nplan.Dot(temp))/norm1,nplan,
|
|
grosterme/norm1,ns1,
|
|
-1./norm1,temp);
|
|
|
|
// Derivee par rapport a v1
|
|
|
|
temp = d2uv1.Crossed(d1v1).Added(d1u1.Crossed(d2v1));
|
|
grosterme = ncrossns1.Dot(nplan.Crossed(temp))/norm1/norm1;
|
|
resul2.SetLinearForm(-(grosterme*ndotns1-nplan.Dot(temp))/norm1,nplan,
|
|
grosterme/norm1,ns1,
|
|
-1./norm1,temp);
|
|
|
|
if (first) {
|
|
resul1.SetLinearForm(v2d.X(),resul1,v2d.Y(),resul2);
|
|
D(3,1) = p1p2.Dot(resul1) - (dpdt.Dot(nor1));
|
|
}
|
|
else {
|
|
D(3,3) = -(d1u1.Dot(nor1)) + p1p2.Dot(resul1);
|
|
D(3,4) = -(d1v1.Dot(nor1)) + p1p2.Dot(resul2);
|
|
}
|
|
|
|
// Derivee de nor2 par rapport a u2
|
|
temp = d2u2.Crossed(d1v2).Added(d1u2.Crossed(d2uv2));
|
|
grosterme = ncrossns2.Dot(nplan.Crossed(temp))/norm2/norm2;
|
|
resul1.SetLinearForm(-(grosterme*ndotns2-nplan.Dot(temp))/norm2,nplan,
|
|
grosterme/norm2,ns2,
|
|
-1./norm2,temp);
|
|
|
|
// Derivee par rapport a v2
|
|
temp = d2uv2.Crossed(d1v2).Added(d1u2.Crossed(d2v2));
|
|
grosterme = ncrossns2.Dot(nplan.Crossed(temp))/norm2/norm2;
|
|
resul2.SetLinearForm(-(grosterme*ndotns2-nplan.Dot(temp))/norm2,nplan,
|
|
grosterme/norm2,ns2,
|
|
-1./norm2,temp);
|
|
|
|
if (first) {
|
|
D(4,3) = d1u2.Dot(nor2) + p1p2.Dot(resul1);
|
|
D(4,4) = d1v2.Dot(nor2) + p1p2.Dot(resul2);
|
|
}
|
|
else {
|
|
resul1.SetLinearForm(v2d.X(),resul1,v2d.Y(),resul2);
|
|
D(4,1) = p1p2.Dot(resul1) + dpdt.Dot(nor2) ;
|
|
}
|
|
|
|
|
|
// derivee par rapport a w (parametre sur ligne guide)
|
|
|
|
grosterme = ncrossns1.Dot(dnplan.Crossed(ns1))/norm1/norm1;
|
|
resul1.SetLinearForm(-(grosterme*ndotns1-dnplan.Dot(ns1))/norm1,nplan,
|
|
ndotns1/norm1,dnplan,
|
|
grosterme/norm1,ns1);
|
|
|
|
|
|
grosterme = ncrossns2.Dot(dnplan.Crossed(ns2))/norm2/norm2;
|
|
resul2.SetLinearForm(-(grosterme*ndotns2-dnplan.Dot(ns2))/norm2,nplan,
|
|
ndotns2/norm2,dnplan,
|
|
grosterme/norm2,ns2);
|
|
|
|
D(3,2) = p1p2.Dot(resul1);
|
|
D(4,2) = p1p2.Dot(resul2);
|
|
|
|
return Standard_True;
|
|
}
|