1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-04-09 18:50:54 +03:00
occt/src/ShapeUpgrade/ShapeUpgrade_UnifySameDomain.cxx
jgv 4a3610588f 0029915: Porting to VC 2017 : Regressions in Modeling Algorithms on VC 2017
Methods GeomConvert::ConcatG1, GeomConvert::ConcatC1, Geom2dConvert::ConcatG1, Geom2dConvert::ConcatC1 are corrected to prevent exceeding maximum degree of BSpline curve in case of closed contour.
2018-08-01 16:42:35 +03:00

1866 lines
66 KiB
C++

// Created on: 2012-06-09
// Created by: jgv@ROLEX
// Copyright (c) 2012-2014 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
#include <BRep_Builder.hxx>
#include <BRep_Tool.hxx>
#include <BRepLib.hxx>
#include <BRepLib_MakeEdge.hxx>
#include <BRepTopAdaptor_TopolTool.hxx>
#include <GC_MakeCircle.hxx>
#include <Geom2d_Line.hxx>
#include <Geom2d_TrimmedCurve.hxx>
#include <Geom2dConvert.hxx>
#include <Geom2dConvert_CompCurveToBSplineCurve.hxx>
#include <Geom_BezierCurve.hxx>
#include <Geom_BSplineCurve.hxx>
#include <Geom_Circle.hxx>
#include <Geom_CylindricalSurface.hxx>
#include <Geom_ElementarySurface.hxx>
#include <Geom_Line.hxx>
#include <Geom_OffsetSurface.hxx>
#include <Geom_Plane.hxx>
#include <Geom_RectangularTrimmedSurface.hxx>
#include <Geom_Surface.hxx>
#include <Geom_SurfaceOfLinearExtrusion.hxx>
#include <Geom_SurfaceOfRevolution.hxx>
#include <Geom_SweptSurface.hxx>
#include <Geom_TrimmedCurve.hxx>
#include <GeomAdaptor_HSurface.hxx>
#include <GeomConvert.hxx>
#include <GeomConvert_CompCurveToBSplineCurve.hxx>
#include <GeomLib_IsPlanarSurface.hxx>
#include <gp_Cylinder.hxx>
#include <gp_Dir.hxx>
#include <gp_Lin.hxx>
#include <IntPatch_ImpImpIntersection.hxx>
#include <ShapeAnalysis_Edge.hxx>
#include <ShapeAnalysis_WireOrder.hxx>
#include <ShapeBuild_Edge.hxx>
#include <ShapeBuild_ReShape.hxx>
#include <ShapeFix_Edge.hxx>
#include <ShapeFix_Face.hxx>
#include <ShapeFix_Shell.hxx>
#include <ShapeFix_Wire.hxx>
#include <ShapeUpgrade_UnifySameDomain.hxx>
#include <Standard_Type.hxx>
#include <TColGeom2d_Array1OfBSplineCurve.hxx>
#include <TColGeom2d_HArray1OfBSplineCurve.hxx>
#include <TColGeom2d_SequenceOfBoundedCurve.hxx>
#include <TColGeom_Array1OfBSplineCurve.hxx>
#include <TColGeom_HArray1OfBSplineCurve.hxx>
#include <TColGeom_SequenceOfSurface.hxx>
#include <TColStd_Array1OfReal.hxx>
#include <TColStd_MapOfInteger.hxx>
#include <TopExp.hxx>
#include <TopExp_Explorer.hxx>
#include <TopoDS.hxx>
#include <TopoDS_Edge.hxx>
#include <TopoDS_Face.hxx>
#include <TopoDS_Shape.hxx>
#include <TopTools_IndexedDataMapOfShapeListOfShape.hxx>
#include <TopTools_IndexedMapOfShape.hxx>
#include <TopTools_ListIteratorOfListOfShape.hxx>
#include <TopTools_MapOfShape.hxx>
#include <TopTools_SequenceOfShape.hxx>
#include <gp_Circ.hxx>
#include <BRepAdaptor_Curve.hxx>
#include <BRepAdaptor_Curve2d.hxx>
#include <gp_Vec2d.hxx>
IMPLEMENT_STANDARD_RTTIEXT(ShapeUpgrade_UnifySameDomain,Standard_Transient)
struct SubSequenceOfEdges
{
TopTools_SequenceOfShape SeqsEdges;
TopoDS_Edge UnionEdges;
};
static Standard_Boolean IsLikeSeam(const TopoDS_Edge& anEdge,
const TopoDS_Face& aFace,
const Handle(Geom_Surface)& aBaseSurface)
{
if (!aBaseSurface->IsUPeriodic() && !aBaseSurface->IsVPeriodic())
return Standard_False;
BRepAdaptor_Curve2d BAcurve2d(anEdge, aFace);
gp_Pnt2d FirstPoint, LastPoint;
gp_Vec2d FirstDir, LastDir;
BAcurve2d.D1(BAcurve2d.FirstParameter(), FirstPoint, FirstDir);
BAcurve2d.D1(BAcurve2d.LastParameter(), LastPoint, LastDir);
Standard_Real Length = FirstDir.Magnitude();
if (Length <= gp::Resolution())
return Standard_False;
else
FirstDir /= Length;
Length = LastDir.Magnitude();
if (Length <= gp::Resolution())
return Standard_False;
else
LastDir /= Length;
Standard_Real Tol = 1.e-7;
if (aBaseSurface->IsUPeriodic() &&
(Abs(FirstDir.X()) < Tol) &&
(Abs(LastDir.X()) < Tol))
return Standard_True;
if (aBaseSurface->IsVPeriodic() &&
(Abs(FirstDir.Y()) < Tol) &&
(Abs(LastDir.Y()) < Tol))
return Standard_True;
return Standard_False;
}
//=======================================================================
//function : AddOrdinaryEdges
//purpose : auxilary
//=======================================================================
// adds edges from the shape to the sequence
// seams and equal edges are dropped
// Returns true if one of original edges dropped
static Standard_Boolean AddOrdinaryEdges(TopTools_SequenceOfShape& edges,
const TopoDS_Shape aShape,
Standard_Integer& anIndex)
{
//map of edges
TopTools_IndexedMapOfShape aNewEdges;
//add edges without seams
for(TopExp_Explorer exp(aShape,TopAbs_EDGE); exp.More(); exp.Next()) {
TopoDS_Shape edge = exp.Current();
if(aNewEdges.Contains(edge))
aNewEdges.RemoveKey(edge);
else
aNewEdges.Add(edge);
}
Standard_Boolean isDropped = Standard_False;
//merge edges and drop seams
Standard_Integer i;
for (i = 1; i <= edges.Length(); i++) {
TopoDS_Shape current = edges(i);
if(aNewEdges.Contains(current)) {
aNewEdges.RemoveKey(current);
edges.Remove(i);
i--;
if(!isDropped) {
isDropped = Standard_True;
anIndex = i;
}
}
}
//add edges to the sequence
for (i = 1; i <= aNewEdges.Extent(); i++)
edges.Append(aNewEdges(i));
return isDropped;
}
//=======================================================================
//function : getCylinder
//purpose : auxilary
//=======================================================================
static Standard_Boolean getCylinder(Handle(Geom_Surface)& theInSurface,
gp_Cylinder& theOutCylinder)
{
Standard_Boolean isCylinder = Standard_False;
if (theInSurface->IsKind(STANDARD_TYPE(Geom_CylindricalSurface))) {
Handle(Geom_CylindricalSurface) aGC = Handle(Geom_CylindricalSurface)::DownCast(theInSurface);
theOutCylinder = aGC->Cylinder();
isCylinder = Standard_True;
}
else if (theInSurface->IsKind(STANDARD_TYPE(Geom_SurfaceOfRevolution))) {
Handle(Geom_SurfaceOfRevolution) aRS =
Handle(Geom_SurfaceOfRevolution)::DownCast(theInSurface);
Handle(Geom_Curve) aBasis = aRS->BasisCurve();
if (aBasis->IsKind(STANDARD_TYPE(Geom_Line))) {
Handle(Geom_Line) aBasisLine = Handle(Geom_Line)::DownCast(aBasis);
gp_Dir aDir = aRS->Direction();
gp_Dir aBasisDir = aBasisLine->Position().Direction();
if (aBasisDir.IsParallel(aDir, Precision::Angular())) {
// basis line is parallel to the revolution axis: it is a cylinder
gp_Pnt aLoc = aRS->Location();
Standard_Real aR = aBasisLine->Lin().Distance(aLoc);
gp_Ax3 aCylAx (aLoc, aDir);
theOutCylinder = gp_Cylinder(aCylAx, aR);
isCylinder = Standard_True;
}
}
}
else if (theInSurface->IsKind(STANDARD_TYPE(Geom_SurfaceOfLinearExtrusion))) {
Handle(Geom_SurfaceOfLinearExtrusion) aLES =
Handle(Geom_SurfaceOfLinearExtrusion)::DownCast(theInSurface);
Handle(Geom_Curve) aBasis = aLES->BasisCurve();
if (aBasis->IsKind(STANDARD_TYPE(Geom_Circle))) {
Handle(Geom_Circle) aBasisCircle = Handle(Geom_Circle)::DownCast(aBasis);
gp_Dir aDir = aLES->Direction();
gp_Dir aBasisDir = aBasisCircle->Position().Direction();
if (aBasisDir.IsParallel(aDir, Precision::Angular())) {
// basis circle is normal to the extrusion axis: it is a cylinder
gp_Pnt aLoc = aBasisCircle->Location();
Standard_Real aR = aBasisCircle->Radius();
gp_Ax3 aCylAx (aLoc, aDir);
theOutCylinder = gp_Cylinder(aCylAx, aR);
isCylinder = Standard_True;
}
}
}
else {
}
return isCylinder;
}
//=======================================================================
//function : ClearRts
//purpose : auxilary
//=======================================================================
static Handle(Geom_Surface) ClearRts(const Handle(Geom_Surface)& aSurface)
{
if(aSurface->IsKind(STANDARD_TYPE(Geom_RectangularTrimmedSurface))) {
Handle(Geom_RectangularTrimmedSurface) rts =
Handle(Geom_RectangularTrimmedSurface)::DownCast(aSurface);
return rts->BasisSurface();
}
return aSurface;
}
//=======================================================================
//function : GetNormalToSurface
//purpose : Gets the normal to surface by the given parameter on edge.
// Returns True if normal was computed.
//=======================================================================
static Standard_Boolean GetNormalToSurface(const TopoDS_Face& theFace,
const TopoDS_Edge& theEdge,
const Standard_Real theP,
gp_Dir& theNormal)
{
Standard_Real f, l;
// get 2d curve to get point in 2d
const Handle(Geom2d_Curve)& aC2d = BRep_Tool::CurveOnSurface(theEdge, theFace, f, l);
if (aC2d.IsNull()) {
return Standard_False;
}
//
// 2d point
gp_Pnt2d aP2d;
aC2d->D0(theP, aP2d);
//
// get D1
gp_Vec aDU, aDV;
gp_Pnt aP3d;
TopLoc_Location aLoc;
const Handle(Geom_Surface)& aS = BRep_Tool::Surface(theFace, aLoc);
aS->D1(aP2d.X(), aP2d.Y(), aP3d, aDU, aDV);
//
// compute normal
gp_Vec aVNormal = aDU.Crossed(aDV);
if (aVNormal.Magnitude() < Precision::Confusion()) {
return Standard_False;
}
//
if (theFace.Orientation() == TopAbs_REVERSED) {
aVNormal.Reverse();
}
//
aVNormal.Transform(aLoc.Transformation());
theNormal = gp_Dir(aVNormal);
return Standard_True;
}
//=======================================================================
//function : IsSameDomain
//purpose :
//=======================================================================
static Standard_Boolean IsSameDomain(const TopoDS_Face& aFace,
const TopoDS_Face& aCheckedFace,
const Standard_Real theLinTol,
const Standard_Real theAngTol)
{
//checking the same handles
TopLoc_Location L1, L2;
Handle(Geom_Surface) S1, S2;
S1 = BRep_Tool::Surface(aFace,L1);
S2 = BRep_Tool::Surface(aCheckedFace,L2);
if (S1 == S2 && L1 == L2)
return Standard_True;
S1 = BRep_Tool::Surface(aFace);
S2 = BRep_Tool::Surface(aCheckedFace);
S1 = ClearRts(S1);
S2 = ClearRts(S2);
//Handle(Geom_OffsetSurface) aGOFS1, aGOFS2;
//aGOFS1 = Handle(Geom_OffsetSurface)::DownCast(S1);
//aGOFS2 = Handle(Geom_OffsetSurface)::DownCast(S2);
//if (!aGOFS1.IsNull()) S1 = aGOFS1->BasisSurface();
//if (!aGOFS2.IsNull()) S2 = aGOFS2->BasisSurface();
// case of two planar surfaces:
// all kinds of surfaces checked, including b-spline and bezier
GeomLib_IsPlanarSurface aPlanarityChecker1(S1, theLinTol);
if (aPlanarityChecker1.IsPlanar()) {
GeomLib_IsPlanarSurface aPlanarityChecker2(S2, theLinTol);
if (aPlanarityChecker2.IsPlanar()) {
gp_Pln aPln1 = aPlanarityChecker1.Plan();
gp_Pln aPln2 = aPlanarityChecker2.Plan();
if (aPln1.Position().Direction().IsParallel(aPln2.Position().Direction(), theAngTol) &&
aPln1.Distance(aPln2) < theLinTol) {
return Standard_True;
}
}
}
// case of two elementary surfaces: use OCCT tool
// elementary surfaces: ConicalSurface, CylindricalSurface,
// Plane, SphericalSurface and ToroidalSurface
if (S1->IsKind(STANDARD_TYPE(Geom_ElementarySurface)) &&
S2->IsKind(STANDARD_TYPE(Geom_ElementarySurface)))
{
Handle(GeomAdaptor_HSurface) aGA1 = new GeomAdaptor_HSurface(S1);
Handle(GeomAdaptor_HSurface) aGA2 = new GeomAdaptor_HSurface(S2);
Handle(BRepTopAdaptor_TopolTool) aTT1 = new BRepTopAdaptor_TopolTool();
Handle(BRepTopAdaptor_TopolTool) aTT2 = new BRepTopAdaptor_TopolTool();
try {
IntPatch_ImpImpIntersection anIIInt(aGA1, aTT1, aGA2, aTT2, theLinTol, theLinTol);
if (!anIIInt.IsDone() || anIIInt.IsEmpty())
return Standard_False;
return anIIInt.TangentFaces();
}
catch (Standard_Failure) {
return Standard_False;
}
}
// case of two cylindrical surfaces, at least one of which is a swept surface
// swept surfaces: SurfaceOfLinearExtrusion, SurfaceOfRevolution
if ((S1->IsKind(STANDARD_TYPE(Geom_CylindricalSurface)) ||
S1->IsKind(STANDARD_TYPE(Geom_SweptSurface))) &&
(S2->IsKind(STANDARD_TYPE(Geom_CylindricalSurface)) ||
S2->IsKind(STANDARD_TYPE(Geom_SweptSurface))))
{
gp_Cylinder aCyl1, aCyl2;
if (getCylinder(S1, aCyl1) && getCylinder(S2, aCyl2)) {
if (fabs(aCyl1.Radius() - aCyl2.Radius()) < theLinTol) {
gp_Dir aDir1 = aCyl1.Position().Direction();
gp_Dir aDir2 = aCyl2.Position().Direction();
if (aDir1.IsParallel(aDir2, Precision::Angular())) {
gp_Pnt aLoc1 = aCyl1.Location();
gp_Pnt aLoc2 = aCyl2.Location();
gp_Vec aVec12 (aLoc1, aLoc2);
if (aVec12.SquareMagnitude() < theLinTol*theLinTol ||
aVec12.IsParallel(aDir1, Precision::Angular())) {
return Standard_True;
}
}
}
}
}
return Standard_False;
}
//=======================================================================
//function : UpdateMapOfShapes
//purpose :
//=======================================================================
static void UpdateMapOfShapes(TopTools_MapOfShape& theMapOfShapes,
Handle(ShapeBuild_ReShape)& theContext)
{
for (TopTools_MapIteratorOfMapOfShape it(theMapOfShapes); it.More(); it.Next()) {
const TopoDS_Shape& aShape = it.Value();
TopoDS_Shape aContextShape = theContext->Apply(aShape);
if (!aContextShape.IsSame(aShape))
theMapOfShapes.Add(aContextShape);
}
}
//=======================================================================
//function : GlueEdgesWithPCurves
//purpose : Glues the pcurves of the sequence of edges
// and glues their 3d curves
//=======================================================================
static TopoDS_Edge GlueEdgesWithPCurves(const TopTools_SequenceOfShape& aChain,
const TopoDS_Vertex& FirstVertex,
const TopoDS_Vertex& LastVertex)
{
Standard_Integer i, j;
TopoDS_Edge FirstEdge = TopoDS::Edge(aChain(1));
TColGeom_SequenceOfSurface SurfSeq;
NCollection_Sequence<TopLoc_Location> LocSeq;
for (int aCurveIndex = 0;; aCurveIndex++)
{
Handle(Geom2d_Curve) aCurve;
Handle(Geom_Surface) aSurface;
TopLoc_Location aLocation;
Standard_Real aFirst, aLast;
BRep_Tool::CurveOnSurface (FirstEdge, aCurve, aSurface, aLocation, aFirst, aLast, aCurveIndex);
if (aCurve.IsNull())
break;
SurfSeq.Append(aSurface);
LocSeq.Append(aLocation);
}
Standard_Real fpar, lpar;
BRep_Tool::Range(FirstEdge, fpar, lpar);
TopoDS_Edge PrevEdge = FirstEdge;
TopoDS_Vertex CV;
Standard_Real MaxTol = 0.;
TopoDS_Edge ResEdge;
BRep_Builder BB;
Standard_Integer nb_curve = aChain.Length(); //number of curves
TColGeom_Array1OfBSplineCurve tab_c3d(0,nb_curve-1); //array of the curves
TColStd_Array1OfReal tabtolvertex(0,nb_curve-1); //(0,nb_curve-2); //array of the tolerances
TopoDS_Vertex PrevVertex = FirstVertex;
for (i = 1; i <= nb_curve; i++)
{
TopoDS_Edge anEdge = TopoDS::Edge(aChain(i));
TopoDS_Vertex VF, VL;
TopExp::Vertices(anEdge, VF, VL);
Standard_Boolean ToReverse = (!VF.IsSame(PrevVertex));
Standard_Real Tol1 = BRep_Tool::Tolerance(VF);
Standard_Real Tol2 = BRep_Tool::Tolerance(VL);
if (Tol1 > MaxTol)
MaxTol = Tol1;
if (Tol2 > MaxTol)
MaxTol = Tol2;
if (i > 1)
{
TopExp::CommonVertex(PrevEdge, anEdge, CV);
Standard_Real Tol = BRep_Tool::Tolerance(CV);
tabtolvertex(i-2) = Tol;
}
Handle(Geom_Curve) aCurve = BRep_Tool::Curve(anEdge, fpar, lpar);
Handle(Geom_TrimmedCurve) aTrCurve = new Geom_TrimmedCurve(aCurve, fpar, lpar);
tab_c3d(i-1) = GeomConvert::CurveToBSplineCurve(aTrCurve);
GeomConvert::C0BSplineToC1BSplineCurve(tab_c3d(i-1), Precision::Confusion());
if (ToReverse)
tab_c3d(i-1)->Reverse();
PrevVertex = (ToReverse)? VF : VL;
PrevEdge = anEdge;
}
Handle(TColGeom_HArray1OfBSplineCurve) concatcurve; //array of the concatenated curves
Handle(TColStd_HArray1OfInteger) ArrayOfIndices; //array of the remining Vertex
Standard_Boolean closed_flag = Standard_False;
GeomConvert::ConcatC1(tab_c3d,
tabtolvertex,
ArrayOfIndices,
concatcurve,
closed_flag,
Precision::Confusion()); //C1 concatenation
if (concatcurve->Length() > 1)
{
GeomConvert_CompCurveToBSplineCurve Concat(concatcurve->Value(concatcurve->Lower()));
for (i = concatcurve->Lower()+1; i <= concatcurve->Upper(); i++)
Concat.Add( concatcurve->Value(i), MaxTol, Standard_True );
concatcurve->SetValue(concatcurve->Lower(), Concat.BSplineCurve());
}
Handle(Geom_BSplineCurve) ResCurve = concatcurve->Value(concatcurve->Lower());
TColGeom2d_SequenceOfBoundedCurve ResPCurves;
for (j = 1; j <= SurfSeq.Length(); j++)
{
TColGeom2d_Array1OfBSplineCurve tab_c2d(0,nb_curve-1); //array of the pcurves
PrevVertex = FirstVertex;
PrevEdge = FirstEdge;
for (i = 1; i <= nb_curve; i++)
{
TopoDS_Edge anEdge = TopoDS::Edge(aChain(i));
TopoDS_Vertex VF, VL;
TopExp::Vertices(anEdge, VF, VL);
Standard_Boolean ToReverse = (!VF.IsSame(PrevVertex));
Handle(Geom2d_Curve) aPCurve =
BRep_Tool::CurveOnSurface(anEdge, SurfSeq(j), LocSeq(j), fpar, lpar);
if (aPCurve.IsNull())
continue;
Handle(Geom2d_TrimmedCurve) aTrPCurve = new Geom2d_TrimmedCurve(aPCurve, fpar, lpar);
tab_c2d(i-1) = Geom2dConvert::CurveToBSplineCurve(aTrPCurve);
Geom2dConvert::C0BSplineToC1BSplineCurve(tab_c2d(i-1), Precision::Confusion());
if (ToReverse)
tab_c2d(i-1)->Reverse();
PrevVertex = (ToReverse)? VF : VL;
PrevEdge = anEdge;
}
Handle(TColGeom2d_HArray1OfBSplineCurve) concatc2d; //array of the concatenated curves
Handle(TColStd_HArray1OfInteger) ArrayOfInd2d; //array of the remining Vertex
closed_flag = Standard_False;
Geom2dConvert::ConcatC1(tab_c2d,
tabtolvertex,
ArrayOfInd2d,
concatc2d,
closed_flag,
Precision::Confusion()); //C1 concatenation
if (concatc2d->Length() > 1)
{
Geom2dConvert_CompCurveToBSplineCurve Concat2d(concatc2d->Value(concatc2d->Lower()));
for (i = concatc2d->Lower()+1; i <= concatc2d->Upper(); i++)
Concat2d.Add( concatc2d->Value(i), MaxTol, Standard_True );
concatc2d->SetValue(concatc2d->Lower(), Concat2d.BSplineCurve());
}
Handle(Geom2d_BSplineCurve) aResPCurve = concatc2d->Value(concatc2d->Lower());
ResPCurves.Append(aResPCurve);
}
ResEdge = BRepLib_MakeEdge(ResCurve,
FirstVertex, LastVertex,
ResCurve->FirstParameter(), ResCurve->LastParameter());
BB.SameRange(ResEdge, Standard_False);
BB.SameParameter(ResEdge, Standard_False);
for (j = 1; j <= ResPCurves.Length(); j++)
{
BB.UpdateEdge(ResEdge, ResPCurves(j), SurfSeq(j), LocSeq(j), MaxTol);
BB.Range(ResEdge, SurfSeq(j), LocSeq(j), ResPCurves(j)->FirstParameter(), ResPCurves(j)->LastParameter());
}
BRepLib::SameParameter(ResEdge, MaxTol, Standard_True);
return ResEdge;
}
//=======================================================================
//function : MergeSubSeq
//purpose : Merges a sequence of edges into one edge if possible
//=======================================================================
static Standard_Boolean MergeSubSeq(const TopTools_SequenceOfShape& aChain,
TopoDS_Edge& OutEdge,
double theAngTol,
Standard_Boolean ConcatBSplines,
Standard_Boolean isSafeInputMode,
Handle(ShapeBuild_ReShape)& theContext)
{
ShapeAnalysis_Edge sae;
BRep_Builder B;
// union edges in chain
int j;
Standard_Real fp1,lp1,fp2,lp2;
Standard_Boolean IsUnionOfLinesPossible = Standard_True;
Standard_Boolean IsUnionOfCirclesPossible = Standard_True;
Handle(Geom_Curve) c3d1, c3d2;
for(j=1; j<aChain.Length(); j++)
{
TopoDS_Edge edge1 = TopoDS::Edge(aChain.Value(j));
c3d1 = BRep_Tool::Curve(edge1,fp1,lp1);
TopoDS_Edge edge2 = TopoDS::Edge(aChain.Value(j+1));
c3d2 = BRep_Tool::Curve(edge2,fp2,lp2);
if(c3d1.IsNull() || c3d2.IsNull())
return Standard_False;
while(c3d1->IsKind(STANDARD_TYPE(Geom_TrimmedCurve))) {
Handle(Geom_TrimmedCurve) tc =
Handle(Geom_TrimmedCurve)::DownCast(c3d1);
c3d1 = tc->BasisCurve();
}
while(c3d2->IsKind(STANDARD_TYPE(Geom_TrimmedCurve))) {
Handle(Geom_TrimmedCurve) tc =
Handle(Geom_TrimmedCurve)::DownCast(c3d2);
c3d2 = tc->BasisCurve();
}
if( c3d1->IsKind(STANDARD_TYPE(Geom_Line)) && c3d2->IsKind(STANDARD_TYPE(Geom_Line)) ) {
Handle(Geom_Line) L1 = Handle(Geom_Line)::DownCast(c3d1);
Handle(Geom_Line) L2 = Handle(Geom_Line)::DownCast(c3d2);
gp_Dir Dir1 = L1->Position().Direction();
gp_Dir Dir2 = L2->Position().Direction();
if(!Dir1.IsParallel(Dir2,theAngTol))
IsUnionOfLinesPossible = Standard_False;
}
else
IsUnionOfLinesPossible = Standard_False;
if( c3d1->IsKind(STANDARD_TYPE(Geom_Circle)) && c3d2->IsKind(STANDARD_TYPE(Geom_Circle)) ) {
Handle(Geom_Circle) C1 = Handle(Geom_Circle)::DownCast(c3d1);
Handle(Geom_Circle) C2 = Handle(Geom_Circle)::DownCast(c3d2);
gp_Pnt P01 = C1->Location();
gp_Pnt P02 = C2->Location();
if (P01.Distance(P02) > Precision::Confusion())
IsUnionOfCirclesPossible = Standard_False;
}
else
IsUnionOfCirclesPossible = Standard_False;
}
if (IsUnionOfLinesPossible && IsUnionOfCirclesPossible)
return Standard_False;
//union of lines is possible
if (IsUnionOfLinesPossible)
{
TopoDS_Vertex V[2];
V[0] = sae.FirstVertex(TopoDS::Edge(aChain.First()));
gp_Pnt PV1 = BRep_Tool::Pnt(V[0]);
V[1] = sae.LastVertex(TopoDS::Edge(aChain.Last()));
gp_Pnt PV2 = BRep_Tool::Pnt(V[1]);
gp_Vec Vec(PV1, PV2);
if (isSafeInputMode) {
for (int k = 0; k < 2; k++) {
if (!theContext->IsRecorded(V[k])) {
TopoDS_Vertex Vcopy = TopoDS::Vertex(V[k].EmptyCopied());
theContext->Replace(V[k], Vcopy);
V[k] = Vcopy;
}
else
V[k] = TopoDS::Vertex(theContext->Apply(V[k]));
}
}
Handle(Geom_Line) L = new Geom_Line(gp_Ax1(PV1,Vec));
Standard_Real dist = PV1.Distance(PV2);
Handle(Geom_TrimmedCurve) tc = new Geom_TrimmedCurve(L,0.0,dist);
TopoDS_Edge E;
B.MakeEdge (E, tc ,Precision::Confusion());
B.Add (E,V[0]); B.Add (E,V[1]);
B.UpdateVertex(V[0], 0., E, 0.);
B.UpdateVertex(V[1], dist, E, 0.);
OutEdge = E;
return Standard_True;
}
if (IsUnionOfCirclesPossible)
{
double f,l;
TopoDS_Edge FE = TopoDS::Edge(aChain.First());
Handle(Geom_Curve) c3d = BRep_Tool::Curve(FE,f,l);
while(c3d->IsKind(STANDARD_TYPE(Geom_TrimmedCurve))) {
Handle(Geom_TrimmedCurve) tc =
Handle(Geom_TrimmedCurve)::DownCast(c3d);
c3d = tc->BasisCurve();
}
Handle(Geom_Circle) Cir = Handle(Geom_Circle)::DownCast(c3d);
TopoDS_Vertex V[2];
V[0] = sae.FirstVertex(FE);
V[1] = sae.LastVertex(TopoDS::Edge(aChain.Last()));
TopoDS_Edge E;
if (V[0].IsSame(V[1])) {
// closed chain
BRepAdaptor_Curve adef(FE);
Handle(Geom_Circle) Cir1;
double FP, LP;
if ( FE.Orientation() == TopAbs_FORWARD)
{
FP = adef.FirstParameter();
LP = adef.LastParameter();
}
else
{
FP = adef.LastParameter();
LP = adef.FirstParameter();
}
if (Abs(FP) < Precision::PConfusion())
{
B.MakeEdge (E,Cir, Precision::Confusion());
B.Add(E,V[0]);
B.Add(E,V[1]);
E.Orientation(FE.Orientation());
}
else
{
GC_MakeCircle MC1 (adef.Value(FP), adef.Value((FP + LP) * 0.5), adef.Value(LP));
if (MC1.IsDone())
Cir1 = MC1.Value();
else
return Standard_False;
B.MakeEdge (E, Cir1, Precision::Confusion());
B.Add(E,V[0]);
B.Add(E,V[1]);
}
}
else {
if (isSafeInputMode) {
for (int k = 0; k < 2; k++) {
if (!theContext->IsRecorded(V[k])) {
TopoDS_Vertex Vcopy = TopoDS::Vertex(V[k].EmptyCopied());
theContext->Replace(V[k], Vcopy);
V[k] = Vcopy;
}
else
V[k] = TopoDS::Vertex(theContext->Apply(V[k]));
}
}
gp_Pnt PV1 = BRep_Tool::Pnt(V[0]);
gp_Pnt PV2 = BRep_Tool::Pnt(V[1]);
TopoDS_Vertex VM = sae.LastVertex(FE);
gp_Pnt PVM = BRep_Tool::Pnt(VM);
GC_MakeCircle MC (PV1,PVM,PV2);
Handle(Geom_Circle) C = MC.Value();
gp_Pnt P0 = C->Location();
gp_Dir D1(gp_Vec(P0,PV1));
gp_Dir D2(gp_Vec(P0,PV2));
Standard_Real fpar = C->XAxis().Direction().Angle(D1);
if(fabs(fpar)>Precision::Confusion()) {
// check orientation
gp_Dir ND = C->XAxis().Direction().Crossed(D1);
if(ND.IsOpposite(C->Axis().Direction(),Precision::Confusion())) {
fpar = -fpar;
}
}
Standard_Real lpar = C->XAxis().Direction().Angle(D2);
if(fabs(lpar)>Precision::Confusion()) {
// check orientation
gp_Dir ND = C->XAxis().Direction().Crossed(D2);
if(ND.IsOpposite(C->Axis().Direction(),Precision::Confusion())) {
lpar = -lpar;
}
}
if (lpar < fpar) lpar += 2*M_PI;
Handle(Geom_TrimmedCurve) tc = new Geom_TrimmedCurve(C,fpar,lpar);
B.MakeEdge (E,tc,Precision::Confusion());
B.Add(E,V[0]);
B.Add(E,V[1]);
B.UpdateVertex(V[0], fpar, E, 0.);
B.UpdateVertex(V[1], lpar, E, 0.);
}
OutEdge = E;
return Standard_True;
}
if (aChain.Length() > 1 && ConcatBSplines) {
// second step: union edges with various curves
// skl for bug 0020052 from Mantis: perform such unions
// only if curves are bspline or bezier
TopoDS_Vertex VF = sae.FirstVertex(TopoDS::Edge(aChain.First()));
TopoDS_Vertex VL = sae.LastVertex(TopoDS::Edge(aChain.Last()));
Standard_Boolean NeedUnion = Standard_True;
for(j=1; j<=aChain.Length(); j++) {
TopoDS_Edge edge = TopoDS::Edge(aChain.Value(j));
TopLoc_Location Loc;
Handle(Geom_Curve) c3d = BRep_Tool::Curve(edge,Loc,fp1,lp1);
if(c3d.IsNull()) continue;
while(c3d->IsKind(STANDARD_TYPE(Geom_TrimmedCurve))) {
Handle(Geom_TrimmedCurve) tc =
Handle(Geom_TrimmedCurve)::DownCast(c3d);
c3d = tc->BasisCurve();
}
if( ( c3d->IsKind(STANDARD_TYPE(Geom_BSplineCurve)) ||
c3d->IsKind(STANDARD_TYPE(Geom_BezierCurve)) ) ) continue;
NeedUnion = Standard_False;
break;
}
if(NeedUnion) {
#ifdef OCCT_DEBUG
cout<<"can not make analitical union => make approximation"<<endl;
#endif
TopoDS_Edge E = GlueEdgesWithPCurves(aChain, VF, VL);
OutEdge = E;
return Standard_True;
}
else {
#ifdef OCCT_DEBUG
cout<<"can not make approximation for such types of curves"<<endl;
#endif
return Standard_False;
}
}
return Standard_False;
}
//=======================================================================
//function : IsMergingPossible
//purpose : Checks if merging of two edges is possible
//=======================================================================
static Standard_Boolean IsMergingPossible(const TopoDS_Edge& edge1, const TopoDS_Edge& edge2,
double theAngTol, double theLinTol,
const TopTools_MapOfShape& AvoidEdgeVrt, const bool theLineDirectionOk,
const gp_Pnt& theFirstPoint, const gp_Vec& theDirectionVec)
{
TopoDS_Vertex CV = TopExp::LastVertex(edge1, Standard_True);
if (CV.IsNull() || AvoidEdgeVrt.Contains(CV))
return Standard_False;
BRepAdaptor_Curve ade1(edge1);
BRepAdaptor_Curve ade2(edge2);
GeomAbs_CurveType t1 = ade1.GetType();
GeomAbs_CurveType t2 = ade2.GetType();
if( t1 == GeomAbs_Circle && t2 == GeomAbs_Circle)
{
if (ade1.Circle().Location().Distance(ade2.Circle().Location()) > Precision::Confusion())
return Standard_False;
}
if( ( (t1 != GeomAbs_BezierCurve && t1 != GeomAbs_BSplineCurve) ||
(t2 != GeomAbs_BezierCurve && t2 != GeomAbs_BSplineCurve)) && t1 != t2)
return Standard_False;
gp_Vec Diff1, Diff2;
gp_Pnt P1, P2;
if (edge1.Orientation() == TopAbs_FORWARD)
ade1.D1(ade1.LastParameter(), P1, Diff1);
else
{
ade1.D1(ade1.FirstParameter(), P1, Diff1);
Diff1 = -Diff1;
}
if (edge2.Orientation() == TopAbs_FORWARD)
ade2.D1(ade2.FirstParameter(), P2, Diff2);
else
{
ade2.D1(ade2.LastParameter(), P2, Diff2);
Diff2 = -Diff2;
}
if (Diff1.Angle(Diff2) > theAngTol)
return Standard_False;
if (theLineDirectionOk && t2 == GeomAbs_Line)
{
// Check that the accumulated deflection does not exceed the linear tolerance
Standard_Real aLast = (edge2.Orientation() == TopAbs_FORWARD) ?
ade2.LastParameter() : ade2.FirstParameter();
gp_Vec aCurV(theFirstPoint, ade2.Value(aLast));
Standard_Real aDD = theDirectionVec.CrossSquareMagnitude(aCurV);
if (aDD > theLinTol*theLinTol)
return Standard_False;
// Check that the accumulated angle does not exceed the angular tolerance.
// For symmetry, check the angle between vectors of:
// - first edge and resulting curve, and
// - the last edge and resulting curve.
if (theDirectionVec.Angle(aCurV) > theAngTol || Diff2.Angle(aCurV) > theAngTol)
return Standard_False;
}
return Standard_True;
}
//=======================================================================
//function : GetLineEdgePoints
//purpose :
//=======================================================================
static Standard_Boolean GetLineEdgePoints(const TopoDS_Edge& theInpEdge, gp_Pnt& theFirstPoint, gp_Vec& theDirectionVec)
{
double f, l;
Handle(Geom_Curve) aCur = BRep_Tool::Curve(theInpEdge, f, l);
if(aCur.IsNull())
return Standard_False;
Handle(Geom_TrimmedCurve) aTC = Handle(Geom_TrimmedCurve)::DownCast(aCur);
if (!aTC.IsNull())
aCur = aTC->BasisCurve();
if (aCur->DynamicType() != STANDARD_TYPE(Geom_Line))
return Standard_False;
if (theInpEdge.Orientation() == TopAbs_REVERSED) {
Standard_Real tmp = f;
f = l;
l = tmp;
}
theFirstPoint = aCur->Value(f);
gp_Pnt aLP = aCur->Value(l);
theDirectionVec = aLP.XYZ().Subtracted(theFirstPoint.XYZ());
theDirectionVec.Normalize();
return Standard_True;
}
//=======================================================================
//function : GenerateSubSeq
//purpose : Generates sub-sequences of edges from sequence of edges
//Edges from each subsequences can be merged into the one edge
//=======================================================================
static void GenerateSubSeq (const TopTools_SequenceOfShape& anInpEdgeSeq,
NCollection_Sequence<SubSequenceOfEdges>& SeqOfSubSeqOfEdges,
Standard_Boolean IsClosed, double theAngTol, double theLinTol,
const TopTools_MapOfShape& AvoidEdgeVrt)
{
Standard_Boolean isOk = Standard_False;
TopoDS_Edge edge1, edge2;
SubSequenceOfEdges SubSeq;
TopoDS_Edge RefEdge = TopoDS::Edge(anInpEdgeSeq(1));
SubSeq.SeqsEdges.Append(RefEdge);
SeqOfSubSeqOfEdges.Append(SubSeq);
gp_Pnt aFirstPoint;
gp_Vec aDirectionVec;
Standard_Boolean isLineDirectionOk = GetLineEdgePoints(RefEdge, aFirstPoint, aDirectionVec);
for (int i = 1; i < anInpEdgeSeq.Length(); i++)
{
edge1 = TopoDS::Edge(anInpEdgeSeq(i));
edge2 = TopoDS::Edge(anInpEdgeSeq(i+1));
isOk = IsMergingPossible(edge1, edge2, theAngTol, theLinTol, AvoidEdgeVrt, isLineDirectionOk, aFirstPoint, aDirectionVec);
if (!isOk)
{
SubSequenceOfEdges aSubSeq;
aSubSeq.SeqsEdges.Append(edge2);
SeqOfSubSeqOfEdges.Append(aSubSeq);
isLineDirectionOk = GetLineEdgePoints(edge2, aFirstPoint, aDirectionVec);
}
else
SeqOfSubSeqOfEdges.ChangeLast().SeqsEdges.Append(edge2);
}
/// check first and last chain segments
if (IsClosed && SeqOfSubSeqOfEdges.Length() > 1)
{
edge1 = TopoDS::Edge(anInpEdgeSeq.Last());
edge2 = TopoDS::Edge(anInpEdgeSeq.First());
if (IsMergingPossible(edge1, edge2, theAngTol, theLinTol, AvoidEdgeVrt, Standard_False, aFirstPoint, aDirectionVec))
{
SeqOfSubSeqOfEdges.ChangeLast().SeqsEdges.Append(SeqOfSubSeqOfEdges.ChangeFirst().SeqsEdges);
SeqOfSubSeqOfEdges.Remove(1);
}
}
}
//=======================================================================
//function : MergeEdges
//purpose : auxilary
//=======================================================================
static Standard_Boolean MergeEdges(TopTools_SequenceOfShape& SeqEdges,
const Standard_Real theAngTol,
const Standard_Real theLinTol,
const Standard_Boolean ConcatBSplines,
const Standard_Boolean isSafeInputMode,
Handle(ShapeBuild_ReShape)& theContext,
NCollection_Sequence<SubSequenceOfEdges>& SeqOfSubSeqOfEdges,
const TopTools_MapOfShape& NonMergVrt)
{
// skip degenerated edges, and forbid merging through them
TopTools_IndexedDataMapOfShapeListOfShape aMapVE;
Standard_Integer j;
TopTools_MapOfShape VerticesToAvoid;
for (j = 1; j <= SeqEdges.Length(); j++)
{
TopoDS_Edge anEdge = TopoDS::Edge(SeqEdges(j));
if (BRep_Tool::Degenerated(anEdge))
{
TopoDS_Vertex V1, V2;
TopExp::Vertices(anEdge, V1, V2);
VerticesToAvoid.Add(V1);
VerticesToAvoid.Add(V2);
SeqEdges.Remove(j--);
}
else
{
// fill in the map V-E
for (TopoDS_Iterator it(anEdge.Oriented(TopAbs_FORWARD)); it.More(); it.Next())
{
TopoDS_Shape aV = it.Value();
if (aV.Orientation() == TopAbs_FORWARD || aV.Orientation() == TopAbs_REVERSED)
{
if (!aMapVE.Contains(aV))
aMapVE.Add(aV, TopTools_ListOfShape());
aMapVE.ChangeFromKey(aV).Append(anEdge);
}
}
}
}
VerticesToAvoid.Unite(NonMergVrt);
// do loop while there are unused edges
TopTools_MapOfShape aUsedEdges;
for (;;)
{
TopoDS_Edge edge;
for(j=1; j <= SeqEdges.Length(); j++)
{
edge = TopoDS::Edge(SeqEdges.Value(j));
if (!aUsedEdges.Contains(edge))
break;
}
if (j > SeqEdges.Length())
break; // all edges have been used
// make chain for unite
TopTools_SequenceOfShape aChain;
aChain.Append(edge);
aUsedEdges.Add(edge);
TopoDS_Vertex V[2];
TopExp::Vertices(edge, V[0], V[1], Standard_True);
// connect more edges to the chain in both directions
for (j = 0; j < 2; j++)
{
Standard_Boolean isAdded = Standard_True;
while (isAdded)
{
isAdded = Standard_False;
if (V[j].IsNull())
break;
const TopTools_ListOfShape& aLE = aMapVE.FindFromKey(V[j]);
for (TopTools_ListIteratorOfListOfShape itL(aLE); itL.More(); itL.Next())
{
edge = TopoDS::Edge(itL.Value());
if (!aUsedEdges.Contains(edge))
{
TopoDS_Vertex V2[2];
TopExp::Vertices(edge, V2[0], V2[1], Standard_True);
// the neighboring edge must have V[j] reversed and located on the opposite end
if (V2[1 - j].IsEqual(V[j].Reversed()))
{
if (j == 0)
aChain.Prepend(edge);
else
aChain.Append(edge);
aUsedEdges.Add(edge);
V[j] = V2[j];
isAdded = Standard_True;
break;
}
}
}
}
}
if (aChain.Length() < 2)
continue;
Standard_Boolean IsClosed = Standard_False;
if (V[0].IsSame ( V[1] ))
IsClosed = Standard_True;
// split chain by vertices at which merging is not possible
NCollection_Sequence<SubSequenceOfEdges> aOneSeq;
GenerateSubSeq(aChain, aOneSeq, IsClosed, theAngTol, theLinTol, VerticesToAvoid);
// put sub-chains in the result
SeqOfSubSeqOfEdges.Append(aOneSeq);
}
for (int i = 1; i <= SeqOfSubSeqOfEdges.Length(); i++)
{
TopoDS_Edge UE;
if (SeqOfSubSeqOfEdges(i).SeqsEdges.Length() < 2)
continue;
if (MergeSubSeq(SeqOfSubSeqOfEdges(i).SeqsEdges, UE, theAngTol,
ConcatBSplines, isSafeInputMode, theContext))
SeqOfSubSeqOfEdges(i).UnionEdges = UE;
}
return Standard_True;
}
//=======================================================================
//function : MergeSeq
//purpose : Tries to unify the sequence of edges with the set of
// another edges which lies on the same geometry
//=======================================================================
static Standard_Boolean MergeSeq (TopTools_SequenceOfShape& SeqEdges,
const Standard_Real theAngTol,
const Standard_Real theLinTol,
const Standard_Boolean ConcatBSplines,
const Standard_Boolean isSafeInputMode,
Handle(ShapeBuild_ReShape)& theContext,
const TopTools_MapOfShape& nonMergVert)
{
NCollection_Sequence<SubSequenceOfEdges> SeqOfSubsSeqOfEdges;
if (MergeEdges(SeqEdges, theAngTol, theLinTol, ConcatBSplines, isSafeInputMode,
theContext, SeqOfSubsSeqOfEdges, nonMergVert))
{
for (Standard_Integer i = 1; i <= SeqOfSubsSeqOfEdges.Length(); i++ )
{
if (SeqOfSubsSeqOfEdges(i).UnionEdges.IsNull())
continue;
theContext->Merge(SeqOfSubsSeqOfEdges(i).SeqsEdges,
SeqOfSubsSeqOfEdges(i).UnionEdges);
}
return Standard_True;
}
return Standard_False;
}
//=======================================================================
//function : CheckSharedVertices
//purpose : Checks the sequence of edges on the presence of shared vertex
//=======================================================================
static void CheckSharedVertices(const TopTools_SequenceOfShape& theSeqEdges,
const TopTools_IndexedDataMapOfShapeListOfShape& theMapEdgesVertex,
const TopTools_MapOfShape& theMapKeepShape,
TopTools_MapOfShape& theShareVertMap)
{
ShapeAnalysis_Edge sae;
TopTools_SequenceOfShape SeqVertexes;
TopTools_MapOfShape MapVertexes;
for (Standard_Integer k = 1; k <= theSeqEdges.Length(); k++ )
{
TopoDS_Vertex aV1 = sae.FirstVertex(TopoDS::Edge(theSeqEdges(k)));
TopoDS_Vertex aV2 = sae.LastVertex(TopoDS::Edge(theSeqEdges(k)));
if (!MapVertexes.Add(aV1))
SeqVertexes.Append(aV1);
if (!MapVertexes.Add(aV2))
SeqVertexes.Append(aV2);
}
for (Standard_Integer k = 1; k <= SeqVertexes.Length()/* && !IsSharedVertexPresent*/; k++ )
{
const TopTools_ListOfShape& ListEdgesV1 = theMapEdgesVertex.FindFromKey(SeqVertexes(k));
if (ListEdgesV1.Extent() > 2 || theMapKeepShape.Contains(SeqVertexes(k)))
theShareVertMap.Add(SeqVertexes(k));
}
//return theShareVertMap.IsEmpty() ? false : true;
}
//=======================================================================
//function : ShapeUpgrade_UnifySameDomain
//purpose : Constructor
//=======================================================================
ShapeUpgrade_UnifySameDomain::ShapeUpgrade_UnifySameDomain()
: myLinTol(Precision::Confusion()),
myAngTol(Precision::Angular()),
myUnifyFaces(Standard_True),
myUnifyEdges (Standard_True),
myConcatBSplines (Standard_False),
myAllowInternal (Standard_False),
mySafeInputMode(Standard_True),
myHistory(new BRepTools_History)
{
myContext = new ShapeBuild_ReShape;
}
//=======================================================================
//function : ShapeUpgrade_UnifySameDomain
//purpose : Constructor
//=======================================================================
ShapeUpgrade_UnifySameDomain::ShapeUpgrade_UnifySameDomain(const TopoDS_Shape& aShape,
const Standard_Boolean UnifyEdges,
const Standard_Boolean UnifyFaces,
const Standard_Boolean ConcatBSplines)
: myInitShape (aShape),
myLinTol(Precision::Confusion()),
myAngTol(Precision::Angular()),
myUnifyFaces(UnifyFaces),
myUnifyEdges (UnifyEdges),
myConcatBSplines (ConcatBSplines),
myAllowInternal (Standard_False),
mySafeInputMode (Standard_True),
myShape (aShape),
myHistory(new BRepTools_History)
{
myContext = new ShapeBuild_ReShape;
}
//=======================================================================
//function : Initialize
//purpose :
//=======================================================================
void ShapeUpgrade_UnifySameDomain::Initialize(const TopoDS_Shape& aShape,
const Standard_Boolean UnifyEdges,
const Standard_Boolean UnifyFaces,
const Standard_Boolean ConcatBSplines)
{
myInitShape = aShape;
myShape = aShape;
myUnifyEdges = UnifyEdges;
myUnifyFaces = UnifyFaces;
myConcatBSplines = ConcatBSplines;
myContext->Clear();
myKeepShapes.Clear();
myHistory->Clear();
}
//=======================================================================
//function : AllowInternalEdges
//purpose :
//=======================================================================
void ShapeUpgrade_UnifySameDomain::AllowInternalEdges (const Standard_Boolean theValue)
{
myAllowInternal = theValue;
}
//=======================================================================
//function : SetSafeInputMode
//purpose :
//=======================================================================
void ShapeUpgrade_UnifySameDomain::SetSafeInputMode(Standard_Boolean theValue)
{
mySafeInputMode = theValue;
}
//=======================================================================
//function : KeepShape
//purpose :
//=======================================================================
void ShapeUpgrade_UnifySameDomain::KeepShape(const TopoDS_Shape& theShape)
{
if (theShape.ShapeType() == TopAbs_EDGE || theShape.ShapeType() == TopAbs_VERTEX)
myKeepShapes.Add(theShape);
}
//=======================================================================
//function : KeepShapes
//purpose :
//=======================================================================
void ShapeUpgrade_UnifySameDomain::KeepShapes(const TopTools_MapOfShape& theShapes)
{
for (TopTools_MapIteratorOfMapOfShape it(theShapes); it.More(); it.Next()) {
if (it.Value().ShapeType() == TopAbs_EDGE || it.Value().ShapeType() == TopAbs_VERTEX)
myKeepShapes.Add(it.Value());
}
}
//=======================================================================
//function : UnifyFaces
//purpose :
//=======================================================================
void ShapeUpgrade_UnifySameDomain::UnifyFaces()
{
// creating map of edge faces for the whole shape
TopTools_IndexedDataMapOfShapeListOfShape aGMapEdgeFaces;
TopExp::MapShapesAndAncestors(myShape, TopAbs_EDGE, TopAbs_FACE, aGMapEdgeFaces);
// unify faces in each shell separately
TopExp_Explorer exps;
for (exps.Init(myShape, TopAbs_SHELL); exps.More(); exps.Next())
IntUnifyFaces(exps.Current(), aGMapEdgeFaces);
// gather all faces out of shells in one compound and unify them at once
BRep_Builder aBB;
TopoDS_Compound aCmp;
aBB.MakeCompound(aCmp);
Standard_Integer nbf = 0;
for (exps.Init(myShape, TopAbs_FACE, TopAbs_SHELL); exps.More(); exps.Next(), nbf++)
aBB.Add(aCmp, exps.Current());
if (nbf > 0)
IntUnifyFaces(aCmp, aGMapEdgeFaces);
myShape = myContext->Apply(myShape);
}
//=======================================================================
//function : SetFixWireModes
//purpose :
//=======================================================================
static void SetFixWireModes(ShapeFix_Face& theSff)
{
Handle(ShapeFix_Wire) aFixWire = theSff.FixWireTool();
aFixWire->FixSelfIntersectionMode() = 0;
aFixWire->FixNonAdjacentIntersectingEdgesMode() = 0;
aFixWire->FixLackingMode() = 0;
aFixWire->FixNotchedEdgesMode() = 0;
aFixWire->ModifyTopologyMode() = Standard_False;
aFixWire->ModifyRemoveLoopMode() = 0;
aFixWire->FixGapsByRangesMode() = Standard_False;
aFixWire->FixSmallMode() = 0;
}
//=======================================================================
//function : IntUnifyFaces
//purpose :
//=======================================================================
void ShapeUpgrade_UnifySameDomain::IntUnifyFaces(const TopoDS_Shape& theInpShape,
TopTools_IndexedDataMapOfShapeListOfShape& theGMapEdgeFaces)
{
// creating map of edge faces for the shape
TopTools_IndexedDataMapOfShapeListOfShape aMapEdgeFaces;
TopExp::MapShapesAndAncestors(theInpShape, TopAbs_EDGE, TopAbs_FACE, aMapEdgeFaces);
// map of processed shapes
TopTools_MapOfShape aProcessed;
// processing each face
TopExp_Explorer exp;
for (exp.Init(theInpShape, TopAbs_FACE); exp.More(); exp.Next()) {
const TopoDS_Face& aFaceOriginal = TopoDS::Face(exp.Current());
TopoDS_Face aFace = TopoDS::Face(aFaceOriginal.Oriented(TopAbs_FORWARD));
if (aProcessed.Contains(aFace))
continue;
// Boundary edges for the new face
TopTools_SequenceOfShape edges;
Standard_Integer dummy;
AddOrdinaryEdges(edges, aFace, dummy);
// Faces to get unified with the current faces
TopTools_SequenceOfShape faces;
// Add the current face for unification
faces.Append(aFace);
// surface and location to construct result
TopLoc_Location aBaseLocation;
Handle(Geom_Surface) aBaseSurface = BRep_Tool::Surface(aFace,aBaseLocation);
aBaseSurface = ClearRts(aBaseSurface);
// find adjacent faces to union
Standard_Integer i;
for (i = 1; i <= edges.Length(); i++) {
TopoDS_Edge edge = TopoDS::Edge(edges(i));
if (BRep_Tool::Degenerated(edge))
continue;
// get connectivity of the edge in the global shape
const TopTools_ListOfShape& aGList = theGMapEdgeFaces.FindFromKey(edge);
if (!myAllowInternal && (aGList.Extent() != 2 || myKeepShapes.Contains(edge))) {
// non manifold case is not processed unless myAllowInternal
continue;
}
//
// Get the faces connected through the edge in the current shape
const TopTools_ListOfShape& aList = aMapEdgeFaces.FindFromKey(edge);
if (aList.Extent() < 2) {
continue;
}
// for a planar face create and store pcurve of edge on face
// to speed up all operations
if (!mySafeInputMode && aBaseSurface->IsKind(STANDARD_TYPE(Geom_Plane)))
BRepLib::BuildPCurveForEdgeOnPlane(edge, aFace);
// get normal of the face to compare it with normals of other faces
gp_Dir aDN1;
//
// take intermediate point on edge to compute the normal
Standard_Real f, l;
BRep_Tool::Range(edge, f, l);
Standard_Real aTMid = (f + l) * .5;
//
Standard_Boolean bCheckNormals = GetNormalToSurface(aFaceOriginal, edge, aTMid, aDN1);
//
// Process the faces
TopTools_ListIteratorOfListOfShape anIter(aList);
for (; anIter.More(); anIter.Next()) {
const TopoDS_Face& aCheckedFaceOriginal = TopoDS::Face(anIter.Value());
TopoDS_Face anCheckedFace = TopoDS::Face(aCheckedFaceOriginal.Oriented(TopAbs_FORWARD));
if (anCheckedFace.IsSame(aFace))
continue;
if (aProcessed.Contains(anCheckedFace))
continue;
if (bCheckNormals) {
// get normal of checked face using the same parameter on edge
gp_Dir aDN2;
if (GetNormalToSurface(aCheckedFaceOriginal, edge, aTMid, aDN2)) {
// and check if the adjacent faces are having approximately same normals
Standard_Real anAngle = aDN1.Angle(aDN2);
if (anAngle > myAngTol) {
continue;
}
}
}
//
if (IsSameDomain(aFace,anCheckedFace, myLinTol, myAngTol)) {
// hotfix for 27271: prevent merging along periodic direction.
if (IsLikeSeam(edge, anCheckedFace, aBaseSurface))
continue;
if (AddOrdinaryEdges(edges,anCheckedFace,dummy)) {
// sequence edges is modified
i = dummy;
}
faces.Append(anCheckedFace);
aProcessed.Add(anCheckedFace);
break;
}
}
}
if (faces.Length() > 1) {
// fill in the connectivity map for selected faces
TopTools_IndexedDataMapOfShapeListOfShape aMapEF;
for (i = 1; i <= faces.Length(); i++) {
TopExp::MapShapesAndAncestors(faces(i), TopAbs_EDGE, TopAbs_FACE, aMapEF);
}
// Collect keep edges and multi-connected edges, i.e. edges that are internal to
// the set of selected faces and have connections to other faces.
TopTools_ListOfShape aKeepEdges;
for (i = 1; i <= aMapEF.Extent(); i++) {
const TopTools_ListOfShape& aLF = aMapEF(i);
if (aLF.Extent() == 2) {
const TopoDS_Shape& aE = aMapEF.FindKey(i);
const TopTools_ListOfShape& aGLF = theGMapEdgeFaces.FindFromKey(aE);
if (aGLF.Extent() > 2 || myKeepShapes.Contains(aE)) {
aKeepEdges.Append(aE);
}
}
}
if (!aKeepEdges.IsEmpty()) {
if (!myAllowInternal) {
// Remove from the selection the faces which have no other connect edges
// and contain multi-connected edges and/or keep edges.
TopTools_MapOfShape anAvoidFaces;
TopTools_ListIteratorOfListOfShape it(aKeepEdges);
for (; it.More(); it.Next()) {
const TopoDS_Shape& aE = it.Value();
const TopTools_ListOfShape& aLF = aMapEF.FindFromKey(aE);
anAvoidFaces.Add(aLF.First());
anAvoidFaces.Add(aLF.Last());
}
for (i = 1; i <= faces.Length(); i++) {
if (anAvoidFaces.Contains(faces(i))) {
// update the boundaries of merged area, for that
// remove from 'edges' the edges of this face and add to 'edges'
// the edges of this face that were not present in 'edges' before
Standard_Boolean hasConnectAnotherFaces = Standard_False;
TopExp_Explorer ex(faces(i), TopAbs_EDGE);
for (; ex.More() && !hasConnectAnotherFaces; ex.Next()) {
TopoDS_Shape aE = ex.Current();
const TopTools_ListOfShape& aLF = aMapEF.FindFromKey(aE);
if (aLF.Extent() > 1) {
for (it.Init(aLF); it.More() && !hasConnectAnotherFaces; it.Next()) {
if (!anAvoidFaces.Contains(it.Value()))
hasConnectAnotherFaces = Standard_True;
}
}
}
if (!hasConnectAnotherFaces) {
AddOrdinaryEdges(edges, faces(i), dummy);
faces.Remove(i);
i--;
}
}
}
// check if the faces with keep edges contained in
// already updated the boundaries of merged area
if (!faces.IsEmpty()) {
TopTools_MapOfShape aMapFaces;
for (i = 1; i <= faces.Length(); i++) {
aMapFaces.Add(faces(i));
}
for (it.Init(aKeepEdges); it.More(); it.Next()) {
const TopoDS_Shape& aE = it.Value();
const TopTools_ListOfShape& aLF = aMapEF.FindFromKey(aE);
if (aLF.Extent() < 2)
continue;
if (aMapFaces.Contains(aLF.First()) &&
aMapFaces.Contains(aLF.Last())) {
for (i = 1; i <= faces.Length(); i++) {
if (faces(i).IsEqual(aLF.First()) ||
faces(i).IsEqual(aLF.Last())) {
AddOrdinaryEdges(edges, faces(i), dummy);
faces.Remove(i);
i--;
}
}
}
}
}
}
else {
// add multi-connected and keep edges as internal in new face
TopTools_ListIteratorOfListOfShape it(aKeepEdges);
for (; it.More(); it.Next()) {
const TopoDS_Shape& aE = it.Value();
edges.Append(aE.Oriented(TopAbs_INTERNAL));
}
}
}
}
// all faces collected in the sequence. Perform union of faces
if (faces.Length() > 1) {
TopoDS_Face aResult;
BRep_Builder B;
B.MakeFace(aResult,aBaseSurface,aBaseLocation,0);
Standard_Integer nbWires = 0;
TopoDS_Face tmpF = TopoDS::Face(faces(1).Oriented(TopAbs_FORWARD));
// connecting wires
while (edges.Length()>0) {
Standard_Boolean isEdge3d = Standard_False;
nbWires++;
TopTools_MapOfShape aVertices;
TopoDS_Wire aWire;
B.MakeWire(aWire);
TopoDS_Edge anEdge = TopoDS::Edge(edges(1));
edges.Remove(1);
// collect internal edges in separate wires
Standard_Boolean isInternal = (anEdge.Orientation() == TopAbs_INTERNAL);
isEdge3d |= !BRep_Tool::Degenerated(anEdge);
B.Add(aWire,anEdge);
TopoDS_Vertex V1,V2;
TopExp::Vertices(anEdge,V1,V2);
aVertices.Add(V1);
aVertices.Add(V2);
Standard_Boolean isNewFound = Standard_False;
do {
isNewFound = Standard_False;
for(Standard_Integer j = 1; j <= edges.Length(); j++) {
anEdge = TopoDS::Edge(edges(j));
// check if the current edge orientation corresponds to the first one
Standard_Boolean isCurrInternal = (anEdge.Orientation() == TopAbs_INTERNAL);
if (isCurrInternal != isInternal)
continue;
TopExp::Vertices(anEdge,V1,V2);
if(aVertices.Contains(V1) || aVertices.Contains(V2)) {
isEdge3d |= !BRep_Tool::Degenerated(anEdge);
aVertices.Add(V1);
aVertices.Add(V2);
B.Add(aWire,anEdge);
edges.Remove(j);
j--;
isNewFound = Standard_True;
}
}
} while (isNewFound);
// sorting any type of edges
aWire.Closed (BRep_Tool::IsClosed (aWire));
Handle(ShapeFix_Wire) sfw = new ShapeFix_Wire(aWire,tmpF,Precision::Confusion());
if (mySafeInputMode)
sfw->SetContext(myContext);
sfw->FixReorder();
Standard_Boolean isDegRemoved = Standard_False;
if(!sfw->StatusReorder ( ShapeExtend_FAIL )) {
// clear degenerated edges if at least one with 3d curve exist
if(isEdge3d) {
Handle(ShapeExtend_WireData) sewd = sfw->WireData();
for(Standard_Integer j = 1; j<=sewd->NbEdges();j++) {
TopoDS_Edge E = sewd->Edge(j);
if(BRep_Tool::Degenerated(E)) {
sewd->Remove(j);
isDegRemoved = Standard_True;
j--;
}
}
}
sfw->FixShifted();
if(isDegRemoved)
sfw->FixDegenerated();
}
aWire = sfw->Wire();
// add resulting wire
if(isEdge3d) {
B.Add(aResult,aWire);
}
else {
// sorting edges
Handle(ShapeExtend_WireData) sbwd = sfw->WireData();
Standard_Integer nbEdges = sbwd->NbEdges();
// sort degenerated edges and create one edge instead of several ones
ShapeAnalysis_WireOrder sawo(Standard_False, 0);
ShapeAnalysis_Edge sae;
Standard_Integer aLastEdge = nbEdges;
for(Standard_Integer j = 1; j <= nbEdges; j++) {
Standard_Real f,l;
//smh protection on NULL pcurve
Handle(Geom2d_Curve) c2d;
if(!sae.PCurve(sbwd->Edge(j),tmpF,c2d,f,l)) {
aLastEdge--;
continue;
}
sawo.Add(c2d->Value(f).XY(),c2d->Value(l).XY());
}
if (sawo.NbEdges() == 0)
continue;
sawo.Perform();
// constructind one degenerative edge
gp_XY aStart, anEnd, tmp;
Standard_Integer nbFirst = sawo.Ordered(1);
TopoDS_Edge anOrigE = TopoDS::Edge(sbwd->Edge(nbFirst).Oriented(TopAbs_FORWARD));
ShapeBuild_Edge sbe;
TopoDS_Vertex aDummyV;
TopoDS_Edge E = sbe.CopyReplaceVertices(anOrigE,aDummyV,aDummyV);
sawo.XY(nbFirst,aStart,tmp);
sawo.XY(sawo.Ordered(aLastEdge),tmp,anEnd);
gp_XY aVec = anEnd-aStart;
Handle(Geom2d_Line) aLine = new Geom2d_Line(aStart,gp_Dir2d(anEnd-aStart));
B.UpdateEdge(E,aLine,tmpF,0.);
B.Range(E,tmpF,0.,aVec.Modulus());
Handle(Geom_Curve) C3d;
B.UpdateEdge(E,C3d,0.);
B.Degenerated(E,Standard_True);
TopoDS_Wire aW;
B.MakeWire(aW);
B.Add(aW,E);
aW.Closed (Standard_True);
B.Add(aResult,aW);
}
}
ShapeFix_Face sff (aResult);
//Initializing by tolerances
sff.SetPrecision(Precision::Confusion());
sff.SetMinTolerance(Precision::Confusion());
sff.SetMaxTolerance(1.);
//Setting modes
SetFixWireModes(sff);
if (mySafeInputMode)
sff.SetContext(myContext);
// Applying the fixes
sff.Perform();
if(!sff.Status(ShapeExtend_FAIL))
{
// perform substitution of faces
aResult = sff.Face();
myContext->Merge(faces, aResult);
}
}
} // end processing each face
}
//=======================================================================
//function : UnifyEdges
//purpose :
//=======================================================================
void ShapeUpgrade_UnifySameDomain::UnifyEdges()
{
TopoDS_Shape aRes = myContext->Apply(myShape);
// creating map of edge faces
TopTools_IndexedDataMapOfShapeListOfShape aMapEdgeFaces;
TopExp::MapShapesAndAncestors(aRes, TopAbs_EDGE, TopAbs_FACE, aMapEdgeFaces);
// creating map of vertex edges
TopTools_IndexedDataMapOfShapeListOfShape aMapEdgesVertex;
TopExp::MapShapesAndUniqueAncestors(aRes, TopAbs_VERTEX, TopAbs_EDGE, aMapEdgesVertex);
if (mySafeInputMode)
UpdateMapOfShapes(myKeepShapes, myContext);
// Sequence of the edges of the shape
TopTools_SequenceOfShape aSeqEdges;
const Standard_Integer aNbE = aMapEdgeFaces.Extent();
for (Standard_Integer i = 1; i <= aNbE; ++i)
aSeqEdges.Append(aMapEdgeFaces.FindKey(i));
// Prepare map of shared vertices (with the number of connected edges greater then 2)
TopTools_MapOfShape aSharedVert;
CheckSharedVertices(aSeqEdges, aMapEdgesVertex, myKeepShapes, aSharedVert);
// Merge the edges avoiding removal of the shared vertices
Standard_Boolean isMerged = MergeSeq(aSeqEdges, myAngTol, myLinTol, myConcatBSplines,
mySafeInputMode, myContext, aSharedVert);
// Collect faces to rebuild
TopTools_IndexedMapOfShape aChangedFaces;
if (isMerged)
{
for (Standard_Integer i = 1; i <= aNbE; ++i)
{
const TopoDS_Shape& aE = aMapEdgeFaces.FindKey(i);
if (myContext->IsRecorded(aE))
{
TopTools_ListIteratorOfListOfShape it(aMapEdgeFaces(i));
for (; it.More(); it.Next())
aChangedFaces.Add(it.Value());
}
}
}
// fix changed faces and replace them in the local context
Standard_Real aPrec = Precision::Confusion();
for (Standard_Integer i = 1; i <= aChangedFaces.Extent(); i++) {
TopoDS_Face aFace = TopoDS::Face(myContext->Apply(aChangedFaces.FindKey(i)));
if (aFace.IsNull())
continue;
// for a planar face create and store pcurve of edge on face
// to speed up all operations; but this is allowed only when non-safe mode in force
if (!mySafeInputMode)
{
TopLoc_Location aLoc;
Handle(Geom_Surface) aSurface = BRep_Tool::Surface(aFace, aLoc);
aSurface = ClearRts(aSurface);
if (aSurface->IsKind(STANDARD_TYPE(Geom_Plane)))
{
TopTools_ListOfShape aLE;
for (TopExp_Explorer anEx(aFace, TopAbs_EDGE); anEx.More(); anEx.Next())
aLE.Append(anEx.Current());
BRepLib::BuildPCurveForEdgesOnPlane(aLE, aFace);
}
}
ShapeFix_Face sff(aFace);
if (mySafeInputMode)
sff.SetContext(myContext);
sff.SetPrecision(aPrec);
sff.SetMinTolerance(aPrec);
sff.SetMaxTolerance(Max(1., aPrec*1000.));
sff.FixOrientationMode() = 0;
sff.FixAddNaturalBoundMode() = 0;
sff.FixIntersectingWiresMode() = 0;
sff.FixLoopWiresMode() = 0;
sff.FixSplitFaceMode() = 0;
sff.FixPeriodicDegeneratedMode() = 0;
SetFixWireModes(sff);
sff.Perform();
TopoDS_Shape aNewFace = sff.Face();
myContext->Replace(aFace,aNewFace);
}
if (aChangedFaces.Extent() > 0) {
// fix changed shell and replace it in the local context
TopoDS_Shape aRes1 = myContext->Apply(aRes);
Standard_Boolean isChanged = Standard_False;
TopExp_Explorer expsh;
for (expsh.Init(aRes1, TopAbs_SHELL); expsh.More(); expsh.Next()) {
TopoDS_Shell aShell = TopoDS::Shell(expsh.Current());
Handle(ShapeFix_Shell) sfsh = new ShapeFix_Shell;
sfsh->FixFaceOrientation(aShell);
TopoDS_Shape aNewShell = sfsh->Shell();
if (!aNewShell.IsSame(aShell)) {
myContext->Replace(aShell, aNewShell);
isChanged = Standard_True;
}
}
if (isChanged)
aRes1 = myContext->Apply(aRes1);
myContext->Replace(myShape, aRes1);
}
myShape = myContext->Apply(myShape);
}
//=======================================================================
//function : Build
//purpose : builds the resulting shape
//=======================================================================
void ShapeUpgrade_UnifySameDomain::Build()
{
if (myUnifyFaces)
UnifyFaces();
if (myUnifyEdges)
UnifyEdges();
// Fill the history of modifications during the operation
FillHistory();
}
//=======================================================================
//function : FillHistory
//purpose : Fill the history of modifications during the operation
//=======================================================================
void ShapeUpgrade_UnifySameDomain::FillHistory()
{
if (myHistory.IsNull())
// History is not requested
return;
// Only Vertices, Edges and Faces can be modified during unification.
// Thus, only these kind of shapes should be checked.
// Get history from the context.
// It contains all modifications of the operation. Some of these
// modifications become not relevant and should be filtered.
Handle(BRepTools_History) aCtxHistory = myContext->History();
// Explore the history of the context and fill
// the history of UnifySameDomain algorithm
Handle(BRepTools_History) aUSDHistory = new BRepTools_History();
// Map all Vertices, Edges, Faces and Solids in the input shape
TopTools_IndexedMapOfShape aMapInputShape;
TopExp::MapShapes(myInitShape, TopAbs_VERTEX, aMapInputShape);
TopExp::MapShapes(myInitShape, TopAbs_EDGE , aMapInputShape);
TopExp::MapShapes(myInitShape, TopAbs_FACE , aMapInputShape);
TopExp::MapShapes(myInitShape, TopAbs_SOLID , aMapInputShape);
// Map all Vertices, Edges, Faces and Solids in the result shape
TopTools_IndexedMapOfShape aMapResultShapes;
TopExp::MapShapes(myShape, TopAbs_VERTEX, aMapResultShapes);
TopExp::MapShapes(myShape, TopAbs_EDGE , aMapResultShapes);
TopExp::MapShapes(myShape, TopAbs_FACE , aMapResultShapes);
TopExp::MapShapes(myShape, TopAbs_SOLID , aMapResultShapes);
// Iterate on all input shapes and get their modifications
Standard_Integer i, aNb = aMapInputShape.Extent();
for (i = 1; i <= aNb; ++i)
{
const TopoDS_Shape& aS = aMapInputShape(i);
// Check the shape itself to be present in the result
if (aMapResultShapes.Contains(aS))
{
// The shape is present in the result as is, thus has not been modified
continue;
}
// Check if the shape has been modified during the operation
const TopTools_ListOfShape& aLSImages = aCtxHistory->Modified(aS);
if (aLSImages.IsEmpty())
{
// The shape has not been modified and not present in the result,
// thus it has been removed
aUSDHistory->Remove(aS);
continue;
}
// Check the images of the shape to be present in the result
Standard_Boolean bRemoved = Standard_True;
TopTools_ListIteratorOfListOfShape aItLSIm(aLSImages);
for (; aItLSIm.More(); aItLSIm.Next())
{
const TopoDS_Shape& aSIm = aItLSIm.Value();
if (aMapResultShapes.Contains(aSIm))
{
if (!aSIm.IsSame(aS))
// Image is found in the result, thus the shape has been modified
aUSDHistory->AddModified(aS, aSIm);
bRemoved = Standard_False;
}
}
if (bRemoved)
{
// No images are found in the result, thus the shape has been removed
aUSDHistory->Remove(aS);
}
}
// Merge the history of the operation into global history
myHistory->Merge(aUSDHistory);
}