mirror of
https://git.dev.opencascade.org/repos/occt.git
synced 2025-04-03 17:56:21 +03:00
1189 lines
36 KiB
Plaintext
1189 lines
36 KiB
Plaintext
// Copyright (c) 1995-1999 Matra Datavision
|
|
// Copyright (c) 1999-2014 OPEN CASCADE SAS
|
|
//
|
|
// This file is part of Open CASCADE Technology software library.
|
|
//
|
|
// This library is free software; you can redistribute it and/or modify it under
|
|
// the terms of the GNU Lesser General Public License version 2.1 as published
|
|
// by the Free Software Foundation, with special exception defined in the file
|
|
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
|
|
// distribution for complete text of the license and disclaimer of any warranty.
|
|
//
|
|
// Alternatively, this file may be used under the terms of Open CASCADE
|
|
// commercial license or contractual agreement.
|
|
|
|
#include <algorithm>
|
|
#include <memory>
|
|
#include <TopoDS_Edge.hxx>
|
|
#include <Geom_Curve.hxx>
|
|
#include <BRepAdaptor_Curve.hxx>
|
|
#include <Adaptor3d_Surface.hxx>
|
|
#include <Adaptor3d_CurveOnSurface.hxx>
|
|
#include <Adaptor3d_CurveOnSurface.hxx>
|
|
#include <GeomAbs_SurfaceType.hxx>
|
|
#include <BRep_Tool.hxx>
|
|
#include <Geom_Line.hxx>
|
|
#include <Geom_Plane.hxx>
|
|
#include <Geom_CylindricalSurface.hxx>
|
|
#include <Geom_ConicalSurface.hxx>
|
|
#include <Geom_SphericalSurface.hxx>
|
|
#include <Geom_ToroidalSurface.hxx>
|
|
#include <gp_Lin.hxx>
|
|
#include <gp_Vec.hxx>
|
|
#include <gp_Dir.hxx>
|
|
#include <gp_Cylinder.hxx>
|
|
#include <gp_Ax1.hxx>
|
|
#include <gp_Lin.hxx>
|
|
|
|
#include <GeomAdaptor_Curve.hxx>
|
|
#include <GeomAdaptor_Surface.hxx>
|
|
#include <Precision.hxx>
|
|
#include <Extrema_ExtCC.hxx>
|
|
//#include <Extrema_ExtCS.hxx>
|
|
#include <Extrema_POnCurv.hxx>
|
|
#include <IntCurveSurface_HInter.hxx>
|
|
|
|
#include <math_FunctionSample.hxx>
|
|
#include <math_FunctionAllRoots.hxx>
|
|
#include <TColgp_SequenceOfPnt.hxx>
|
|
|
|
// Modified by skv - Tue Aug 31 12:13:51 2004 OCC569
|
|
|
|
#include <Precision.hxx>
|
|
#include <IntSurf_Quadric.hxx>
|
|
#include <math_Function.hxx>
|
|
#include <math_BrentMinimum.hxx>
|
|
#include <math_Matrix.hxx>
|
|
#include <math_Vector.hxx>
|
|
#include <NCollection_Array1.hxx>
|
|
|
|
#ifdef OCCT_DEBUG
|
|
#include <Geom_Circle.hxx>
|
|
#include <Geom_Ellipse.hxx>
|
|
#include <Geom_Hyperbola.hxx>
|
|
#include <Geom_Parabola.hxx>
|
|
#include <Geom_BezierCurve.hxx>
|
|
#include <Geom_BSplineCurve.hxx>
|
|
#include <GeomLib.hxx>
|
|
#endif
|
|
|
|
|
|
static Standard_Boolean IsDegenerated(const Handle(Adaptor3d_CurveOnSurface)& theCurve);
|
|
static Standard_Boolean IsDegenerated(const IntSurf_Quadric& theQuadric);
|
|
|
|
static void FindVertex (const TheArc&,
|
|
const Handle(TheTopolTool)&,
|
|
TheFunction&,
|
|
IntStart_SequenceOfPathPoint&,
|
|
const Standard_Real);
|
|
|
|
|
|
static void BoundedArc (const TheArc& A,
|
|
const Handle(TheTopolTool)& Domain,
|
|
const Standard_Real Pdeb,
|
|
const Standard_Real Pfin,
|
|
TheFunction& Func,
|
|
IntStart_SequenceOfPathPoint& pnt,
|
|
IntStart_SequenceOfSegment& seg,
|
|
const Standard_Real TolBoundary,
|
|
const Standard_Real TolTangency,
|
|
Standard_Boolean& Arcsol,
|
|
const Standard_Boolean RecheckOnRegularity);
|
|
|
|
static void PointProcess (const gp_Pnt&,
|
|
const Standard_Real,
|
|
const TheArc&,
|
|
const Handle(TheTopolTool)&,
|
|
IntStart_SequenceOfPathPoint&,
|
|
const Standard_Real,
|
|
Standard_Integer&);
|
|
|
|
static Standard_Integer TreatLC (const TheArc& A,
|
|
const Handle(TheTopolTool)& aDomain,
|
|
const IntSurf_Quadric& aQuadric,
|
|
const Standard_Real TolBoundary,
|
|
IntStart_SequenceOfPathPoint& pnt);
|
|
|
|
static Standard_Boolean IsRegularity(const TheArc& A,
|
|
const Handle(TheTopolTool)& aDomain);
|
|
|
|
class MinFunction : public math_Function
|
|
{
|
|
public:
|
|
MinFunction(TheFunction &theFunc) : myFunc(&theFunc) {};
|
|
|
|
//returns value of the one-dimension-function when parameter
|
|
//is equal to theX
|
|
virtual Standard_Boolean Value(const Standard_Real theX,
|
|
Standard_Real& theFVal)
|
|
{
|
|
if(!myFunc->Value(theX, theFVal))
|
|
return Standard_False;
|
|
|
|
theFVal *= theFVal;
|
|
return Standard_True;
|
|
}
|
|
|
|
//see analogical method for abstract owner class math_Function
|
|
virtual Standard_Integer GetStateNumber()
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
private:
|
|
TheFunction *myFunc;
|
|
};
|
|
|
|
|
|
//=======================================================================
|
|
//function : FindVertex
|
|
//purpose :
|
|
//=======================================================================
|
|
void FindVertex (const TheArc& A,
|
|
const Handle(TheTopolTool)& Domain,
|
|
TheFunction& Func,
|
|
IntStart_SequenceOfPathPoint& pnt,
|
|
const Standard_Real Toler)
|
|
{
|
|
|
|
// Find the vertex of the arc A restriction solutions. It stores
|
|
// Vertex in the list solutions pnt.
|
|
|
|
|
|
TheVertex vtx;
|
|
Standard_Real param,valf;
|
|
Standard_Integer itemp;
|
|
|
|
Domain->Initialize(A);
|
|
Domain->InitVertexIterator();
|
|
while (Domain->MoreVertex()) {
|
|
vtx = Domain->Vertex();
|
|
param = TheSOBTool::Parameter(vtx,A);
|
|
|
|
// Evaluate the function and look compared to tolerance of the
|
|
// Vertex. If distance <= tolerance then add a vertex to the list of solutions.
|
|
// The arc is already assumed in the load function.
|
|
|
|
Func.Value(param,valf);
|
|
if (Abs(valf) <= Toler) {
|
|
itemp = Func.GetStateNumber();
|
|
pnt.Append(IntStart_ThePathPoint(Func.Valpoint(itemp),Toler, vtx,A,param));
|
|
// Solution is added
|
|
}
|
|
Domain->NextVertex();
|
|
}
|
|
}
|
|
|
|
Standard_Boolean IsDegenerated(const Handle(Adaptor3d_CurveOnSurface)& theCurve)
|
|
{
|
|
if (theCurve->GetType() == GeomAbs_Circle)
|
|
{
|
|
gp_Circ aCirc = theCurve->Circle();
|
|
if (aCirc.Radius() <= Precision::Confusion())
|
|
return Standard_True;
|
|
}
|
|
return Standard_False;
|
|
}
|
|
|
|
Standard_Boolean IsDegenerated(const IntSurf_Quadric& theQuadric)
|
|
{
|
|
GeomAbs_SurfaceType TypeQuad = theQuadric.TypeQuadric();
|
|
if (TypeQuad == GeomAbs_Cone)
|
|
{
|
|
gp_Cone aCone = theQuadric.Cone();
|
|
Standard_Real aSemiAngle = Abs(aCone.SemiAngle());
|
|
if (aSemiAngle < 0.02 || aSemiAngle > 1.55)
|
|
return Standard_True;
|
|
}
|
|
return Standard_False;
|
|
}
|
|
|
|
class SolInfo
|
|
{
|
|
public:
|
|
SolInfo() : myMathIndex(-1), myValue(RealLast())
|
|
{
|
|
}
|
|
|
|
void Init(const math_FunctionAllRoots& theSolution, const Standard_Integer theIndex)
|
|
{
|
|
myMathIndex = theIndex;
|
|
myValue = theSolution.GetPoint(theIndex);
|
|
}
|
|
|
|
void Init(const IntCurveSurface_HInter& theSolution, const Standard_Integer theIndex)
|
|
{
|
|
myMathIndex = theIndex;
|
|
myValue = theSolution.Point(theIndex).W();
|
|
}
|
|
|
|
Standard_Real Value() const
|
|
{
|
|
return myValue;
|
|
}
|
|
|
|
Standard_Integer Index() const
|
|
{
|
|
return myMathIndex;
|
|
}
|
|
|
|
bool operator>(const SolInfo& theOther) const
|
|
{
|
|
return myValue > theOther.myValue;
|
|
}
|
|
|
|
bool operator<(const SolInfo& theOther) const
|
|
{
|
|
return myValue < theOther.myValue;
|
|
}
|
|
|
|
bool operator==(const SolInfo& theOther) const
|
|
{
|
|
return myValue == theOther.myValue;
|
|
}
|
|
|
|
Standard_Real& ChangeValue()
|
|
{
|
|
return myValue;
|
|
}
|
|
|
|
private:
|
|
Standard_Integer myMathIndex;
|
|
Standard_Real myValue;
|
|
};
|
|
|
|
static
|
|
void BoundedArc (const TheArc& A,
|
|
const Handle(TheTopolTool)& Domain,
|
|
const Standard_Real Pdeb,
|
|
const Standard_Real Pfin,
|
|
TheFunction& Func,
|
|
IntStart_SequenceOfPathPoint& pnt,
|
|
IntStart_SequenceOfSegment& seg,
|
|
const Standard_Real TolBoundary,
|
|
const Standard_Real TolTangency,
|
|
Standard_Boolean& Arcsol,
|
|
const Standard_Boolean RecheckOnRegularity)
|
|
{
|
|
// Recherche des points solutions et des bouts d arc solution sur un arc donne.
|
|
// On utilise la fonction math_FunctionAllRoots. Ne convient donc que pour
|
|
// des arcs ayant un point debut et un point de fin (intervalle ferme de
|
|
// parametrage).
|
|
|
|
Standard_Integer i, Nbi = 0, Nbp = 0;
|
|
|
|
gp_Pnt ptdeb,ptfin;
|
|
Standard_Real pardeb = 0., parfin = 0.;
|
|
Standard_Integer ideb,ifin,range,ranged,rangef;
|
|
|
|
// Creer l echantillonage (math_FunctionSample ou classe heritant)
|
|
// Appel a math_FunctionAllRoots
|
|
|
|
//@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
|
|
//@@@ La Tolerance est asociee a l arc ( Incoherence avec le cheminement )
|
|
//@@@ ( EpsX ~ 1e-5 et ResolutionU et V ~ 1e-9 )
|
|
//@@@ le vertex trouve ici n'est pas retrouve comme point d arret d une
|
|
//@@@ ligne de cheminement
|
|
//@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
|
|
Standard_Real EpsX = 1.e-10;
|
|
//@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
|
|
//@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
|
|
//@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
|
|
|
|
// Standard_Integer NbEchant = TheSOBTool::NbSamplesOnArc(A);
|
|
Standard_Integer NbEchant = Func.NbSamples();
|
|
if(NbEchant<100) NbEchant = 100; //-- lbr le 22 Avril 96
|
|
//-- Toujours des pbs
|
|
|
|
//-- Modif 24 Aout 93 -----------------------------
|
|
Standard_Real nTolTangency = TolTangency;
|
|
if((Pfin - Pdeb) < (TolTangency*10.0)) {
|
|
nTolTangency=(Pfin-Pdeb)*0.1;
|
|
}
|
|
if(EpsX>(nTolTangency+nTolTangency)) {
|
|
EpsX = nTolTangency * 0.1;
|
|
}
|
|
|
|
//--------------------------------------------------
|
|
//-- Plante avec un edge avec 2 Samples
|
|
//-- dont les extremites son solutions (f=0)
|
|
//-- et ou la derivee est nulle
|
|
//-- Exemple : un segment diametre d une sphere
|
|
//-- if(NbEchant<3) NbEchant = 3; //-- lbr le 19 Avril 95
|
|
//--------------------------------------------------
|
|
Standard_Real para=0,dist,maxdist;
|
|
|
|
//-------------------------------------------------------------- REJECTIONS le 15 oct 98
|
|
Standard_Boolean Rejection=Standard_True;
|
|
Standard_Real maxdr,maxr,minr,ur,dur;
|
|
minr=RealLast();
|
|
maxr=-minr;
|
|
maxdr=-minr;
|
|
dur=(Pfin-Pdeb)*0.2;
|
|
for(i=1,ur=Pdeb;i<=6;i++) {
|
|
Standard_Real F,D;
|
|
if(Func.Values(ur,F,D)) {
|
|
Standard_Real lminr,lmaxr;
|
|
if(D<0.0) D=-D;
|
|
D*=dur+dur;
|
|
if(D>maxdr) maxdr=D;
|
|
lminr=F-D;
|
|
lmaxr=F+D;
|
|
if(lminr<minr) minr=lminr;
|
|
if(lmaxr>maxr) maxr=lmaxr;
|
|
if(minr<0.0 && maxr>0.0) {
|
|
Rejection=Standard_False;
|
|
break;
|
|
}
|
|
}
|
|
ur+=dur;
|
|
}
|
|
if(Rejection)
|
|
{
|
|
dur=0.001+maxdr+(maxr-minr)*0.1;
|
|
minr-=dur;
|
|
maxr+=dur;
|
|
if(minr<0.0 && maxr>0.0) {
|
|
Rejection=Standard_False;
|
|
}
|
|
}
|
|
|
|
Arcsol=Standard_False;
|
|
|
|
if(Rejection==Standard_False)
|
|
{
|
|
const IntSurf_Quadric& aQuadric = Func.Quadric();
|
|
GeomAbs_SurfaceType TypeQuad = aQuadric.TypeQuadric();
|
|
GeomAbs_CurveType TypeConS = GeomAbs_OtherCurve;
|
|
|
|
IntCurveSurface_HInter IntCS;
|
|
Standard_Boolean IsIntCSdone = Standard_False;
|
|
TColStd_SequenceOfReal Params;
|
|
|
|
std::unique_ptr<math_FunctionAllRoots> pSol;
|
|
|
|
math_FunctionSample Echant(Pdeb,Pfin,NbEchant);
|
|
|
|
Standard_Boolean aelargir=Standard_True;
|
|
//modified by NIZNHY-PKV Thu Apr 12 09:25:19 2001 f
|
|
//
|
|
//maxdist = 100.0*TolBoundary;
|
|
maxdist = TolBoundary+TolTangency;
|
|
//
|
|
//modified by NIZNHY-PKV Thu Apr 12 09:25:23 2001 t
|
|
for(i=1; i<=NbEchant && aelargir;i++) {
|
|
Standard_Real u = Echant.GetParameter(i);
|
|
if(Func.Value(u,dist)) {
|
|
if(dist>maxdist || -dist>maxdist) {
|
|
aelargir=Standard_False;
|
|
}
|
|
}
|
|
}
|
|
if(!(aelargir && maxdist<0.01)) {
|
|
maxdist = TolBoundary;
|
|
}
|
|
|
|
if (TypeQuad != GeomAbs_OtherSurface) //intersection of boundary curve and quadric surface
|
|
{
|
|
//Exact solution
|
|
Handle(Adaptor3d_Surface) aSurf = Func.Surface();
|
|
Adaptor3d_CurveOnSurface ConS(A, aSurf);
|
|
TypeConS = ConS.GetType();
|
|
#ifdef OCCT_DEBUG
|
|
Handle(Geom_Curve) CurveConS;
|
|
switch(TypeConS)
|
|
{
|
|
case GeomAbs_Line:
|
|
{
|
|
CurveConS = new Geom_Line(ConS.Line());
|
|
break;
|
|
}
|
|
case GeomAbs_Circle:
|
|
{
|
|
CurveConS = new Geom_Circle(ConS.Circle());
|
|
break;
|
|
}
|
|
case GeomAbs_Ellipse:
|
|
{
|
|
CurveConS = new Geom_Ellipse(ConS.Ellipse());
|
|
break;
|
|
}
|
|
case GeomAbs_Hyperbola:
|
|
{
|
|
CurveConS = new Geom_Hyperbola(ConS.Hyperbola());
|
|
break;
|
|
}
|
|
case GeomAbs_Parabola:
|
|
{
|
|
CurveConS = new Geom_Parabola(ConS.Parabola());
|
|
break;
|
|
}
|
|
case GeomAbs_BezierCurve:
|
|
{
|
|
CurveConS = ConS.Bezier();
|
|
break;
|
|
}
|
|
case GeomAbs_BSplineCurve:
|
|
{
|
|
CurveConS = ConS.BSpline();
|
|
break;
|
|
}
|
|
default:
|
|
{
|
|
Standard_Real MaxDeviation, AverageDeviation;
|
|
GeomLib::BuildCurve3d(1.e-5, ConS, ConS.FirstParameter(), ConS.LastParameter(),
|
|
CurveConS, MaxDeviation, AverageDeviation);
|
|
break;
|
|
}
|
|
}
|
|
#endif
|
|
Handle(Adaptor3d_CurveOnSurface) HConS = new Adaptor3d_CurveOnSurface(ConS);
|
|
Handle(Geom_Surface) QuadSurf;
|
|
switch (TypeQuad)
|
|
{
|
|
case GeomAbs_Plane:
|
|
{
|
|
QuadSurf = new Geom_Plane(aQuadric.Plane());
|
|
break;
|
|
}
|
|
case GeomAbs_Cylinder:
|
|
{
|
|
QuadSurf = new Geom_CylindricalSurface(aQuadric.Cylinder());
|
|
break;
|
|
}
|
|
case GeomAbs_Cone:
|
|
{
|
|
QuadSurf = new Geom_ConicalSurface(aQuadric.Cone());
|
|
break;
|
|
}
|
|
case GeomAbs_Sphere:
|
|
{
|
|
QuadSurf = new Geom_SphericalSurface(aQuadric.Sphere());
|
|
break;
|
|
}
|
|
case GeomAbs_Torus:
|
|
{
|
|
QuadSurf = new Geom_ToroidalSurface(aQuadric.Torus());
|
|
break;
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
Handle(GeomAdaptor_Surface) GAHsurf = new GeomAdaptor_Surface(QuadSurf);
|
|
|
|
if ((TypeConS == GeomAbs_Line ||
|
|
TypeConS == GeomAbs_Circle ||
|
|
TypeConS == GeomAbs_Ellipse ||
|
|
TypeConS == GeomAbs_Parabola ||
|
|
TypeConS == GeomAbs_Hyperbola) &&
|
|
TypeQuad != GeomAbs_Torus &&
|
|
!IsDegenerated(HConS) &&
|
|
!IsDegenerated(aQuadric))
|
|
{
|
|
//exact intersection for only canonic curves and real quadric surfaces
|
|
IntCS.Perform(HConS, GAHsurf);
|
|
}
|
|
|
|
IsIntCSdone = IntCS.IsDone();
|
|
if (IsIntCSdone)
|
|
{
|
|
Nbp = IntCS.NbPoints();
|
|
Nbi = IntCS.NbSegments();
|
|
}
|
|
//If we have not got intersection, it may be touch with some tolerance,
|
|
//need to be checked
|
|
if (Nbp == 0 && Nbi == 0)
|
|
IsIntCSdone = Standard_False;
|
|
|
|
} //if (TypeQuad != GeomAbs_OtherSurface) - intersection of boundary curve and quadric surface
|
|
|
|
if (!IsIntCSdone)
|
|
{
|
|
pSol.reset(new math_FunctionAllRoots(Func,Echant,EpsX,maxdist,maxdist)); //-- TolBoundary,nTolTangency);
|
|
|
|
if (!pSol->IsDone()) {throw Standard_Failure();}
|
|
|
|
Nbp=pSol->NbPoints();
|
|
}
|
|
//
|
|
//jgv: build solution on the whole boundary
|
|
if (RecheckOnRegularity && Nbp > 0 && IsRegularity(A, Domain))
|
|
{
|
|
//Standard_Real theTol = Domain->MaxTolerance(A);
|
|
//theTol += theTol;
|
|
Standard_Real theTol = 5.e-4;
|
|
math_FunctionAllRoots SolAgain(Func,Echant,EpsX,theTol,theTol); //-- TolBoundary,nTolTangency);
|
|
|
|
if (!SolAgain.IsDone()) {throw Standard_Failure();}
|
|
|
|
Standard_Integer Nbi_again = SolAgain.NbIntervals();
|
|
|
|
if (Nbi_again > 0)
|
|
{
|
|
Standard_Integer NbSamples = 10;
|
|
Standard_Real delta = (Pfin - Pdeb)/NbSamples;
|
|
Standard_Real GlobalTol = theTol*10;
|
|
Standard_Boolean SolOnBoundary = Standard_True;
|
|
for (i = 0; i <= NbSamples; i++)
|
|
{
|
|
Standard_Real aParam = Pdeb + i*delta;
|
|
Standard_Real aValue;
|
|
Func.Value(aParam, aValue);
|
|
if (Abs(aValue) > GlobalTol)
|
|
{
|
|
SolOnBoundary = Standard_False;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (SolOnBoundary)
|
|
{
|
|
for (i = 1; i <= Nbi_again; i++)
|
|
{
|
|
IntStart_TheSegment newseg;
|
|
newseg.SetValue(A);
|
|
// Recuperer point debut et fin, et leur parametre.
|
|
SolAgain.GetInterval(i,pardeb,parfin);
|
|
|
|
if (Abs(pardeb - Pdeb) <= Precision::PConfusion())
|
|
pardeb = Pdeb;
|
|
if (Abs(parfin - Pfin) <= Precision::PConfusion())
|
|
parfin = Pfin;
|
|
|
|
SolAgain.GetIntervalState(i,ideb,ifin);
|
|
|
|
//-- cout<<" Debug : IntStart_SearchOnBoundaries_1.gxx : i= "<<i<<" ParDeb:"<<pardeb<<" ParFin:"<<parfin<<endl;
|
|
|
|
ptdeb=Func.Valpoint(ideb);
|
|
ptfin=Func.Valpoint(ifin);
|
|
|
|
PointProcess(ptdeb,pardeb,A,Domain,pnt,theTol,ranged);
|
|
newseg.SetLimitPoint(pnt.Value(ranged),Standard_True);
|
|
PointProcess(ptfin,parfin,A,Domain,pnt,theTol,rangef);
|
|
newseg.SetLimitPoint(pnt.Value(rangef),Standard_False);
|
|
seg.Append(newseg);
|
|
}
|
|
Arcsol=Standard_True;
|
|
return;
|
|
}
|
|
}
|
|
} //if (RecheckOnRegularity && Nbp > 0 && IsRegularity(A, Domain))
|
|
////////////////////////////////////////////
|
|
|
|
//-- detection du cas ou la fonction est quasi tangente et que les
|
|
//-- zeros sont quasi confondus.
|
|
//-- Dans ce cas on prend le point "milieu"
|
|
//-- On suppose que les solutions sont triees.
|
|
|
|
if(Nbp) {
|
|
NCollection_Array1<SolInfo> aSI(1, Nbp);
|
|
|
|
for(i=1;i<=Nbp;i++)
|
|
{
|
|
if (IsIntCSdone)
|
|
aSI(i).Init(IntCS, i);
|
|
else
|
|
aSI(i).Init(*pSol, i);
|
|
}
|
|
|
|
std::sort(aSI.begin(), aSI.end());
|
|
|
|
//modified by NIZNHY-PKV Wed Mar 21 18:34:18 2001 f
|
|
//////////////////////////////////////////////////////////
|
|
// The treatment of the situation when line(arc) that is
|
|
// tangent to cylinder(domain).
|
|
// We should have only one solution i.e Nbp=1. Ok?
|
|
// But we have 2,3,.. solutions. That is wrong ersult.
|
|
// The TreatLC(...) function is dedicated to solve the pb.
|
|
// PKV Fri Mar 23 12:17:29 2001
|
|
|
|
Standard_Integer ip = TreatLC (A, Domain, aQuadric, TolBoundary, pnt);
|
|
if (ip) {
|
|
//////////////////////////////////////////////////////////
|
|
//modified by NIZNHY-PKV Wed Mar 21 18:34:23 2001 t
|
|
//
|
|
// Using of old usual way proposed by Laurent
|
|
//
|
|
for(i=1;i<Nbp;i++) {
|
|
Standard_Real parap1 = aSI(i + 1).Value();
|
|
para = aSI(i).Value();
|
|
|
|
Standard_Real param=(para+parap1)*0.5;
|
|
Standard_Real yf = 0.0;
|
|
Standard_Real ym = 0.0;
|
|
Standard_Real yl = 0.0;
|
|
if(Func.Value(param,ym) && Abs(ym) < maxdist) {
|
|
Standard_Real sm = Sign(1., ym);
|
|
Standard_Boolean aTang = Func.Value(para,yf) && Func.Value(parap1,yl);
|
|
if (aTang) {
|
|
//Line can be tangent surface if all distances less then maxdist
|
|
aTang = aTang && Abs(yf) < maxdist && Abs(yl) < maxdist;
|
|
}
|
|
if (aTang && IsIntCSdone && TypeConS == GeomAbs_Line) {
|
|
//Interval is got by exact intersection
|
|
//Line can be tangent if all points are on the same side of surface
|
|
//it means that signs of all distances are the same
|
|
Standard_Real sf = Sign(1., yf), sl = Sign(1., yl);
|
|
aTang = aTang && (sm == sf) && (sm == sl);
|
|
}
|
|
if(aTang) {
|
|
// Modified by skv - Tue Aug 31 12:13:51 2004 OCC569 Begin
|
|
// Consider this interval as tangent one. Treat it to find
|
|
// parameter with the lowest function value.
|
|
// Compute the number of nodes.
|
|
Standard_Real aTol = TolBoundary*1000.0;
|
|
if(aTol > 0.001)
|
|
aTol = 0.001;
|
|
|
|
// fix floating point exception 569, chl-922-e9
|
|
parap1 = (Abs(parap1) < 1.e9) ? parap1 : ((parap1 >= 0.) ? 1.e9 : -1.e9);
|
|
para = (Abs(para) < 1.e9) ? para : ((para >= 0.) ? 1.e9 : -1.e9);
|
|
|
|
Standard_Integer aNbNodes = RealToInt(Ceiling((parap1 - para)/aTol));
|
|
|
|
Standard_Real aVal = RealLast();
|
|
Standard_Real aValMax = 0.;
|
|
//Standard_Integer aNbNodes = 23;
|
|
Standard_Real aDelta = (parap1 - para)/(aNbNodes + 1.);
|
|
Standard_Integer ii;
|
|
Standard_Real aCurPar;
|
|
Standard_Real aCurVal;
|
|
|
|
for (ii = 0; ii <= aNbNodes + 1; ii++) {
|
|
aCurPar = (ii < aNbNodes + 1) ? para + ii*aDelta : parap1;
|
|
|
|
if (Func.Value(aCurPar, aCurVal)) {
|
|
Standard_Real anAbsVal = Abs(aCurVal);
|
|
if (anAbsVal < aVal) {
|
|
aVal = anAbsVal;
|
|
param = aCurPar;
|
|
}
|
|
if (anAbsVal > aValMax)
|
|
{
|
|
aValMax = anAbsVal;
|
|
}
|
|
}
|
|
}
|
|
// At last, interval got by exact intersection can be considered as tangent if
|
|
// minimal distance is inside interval and
|
|
// minimal and maximal values are almost the same
|
|
if (IsIntCSdone && aNbNodes > 1) {
|
|
aTang = Abs(param - para) > EpsX && Abs(parap1 - param) > EpsX &&
|
|
0.01*aValMax <= aVal;
|
|
}
|
|
if (aTang)
|
|
{
|
|
aSI(i).ChangeValue() = Pdeb - 1;
|
|
aSI(i + 1).ChangeValue() = param;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
for (i=1; i<=Nbp; i++) {
|
|
para = aSI(i).Value();
|
|
if((para-Pdeb)<EpsX || (Pfin-para)<EpsX)
|
|
continue;
|
|
|
|
if(!Func.Value(para,dist))
|
|
continue;
|
|
|
|
dist = Abs(dist);
|
|
|
|
Standard_Integer anIndx = -1;
|
|
//const Standard_Real aParam = Sol->GetPoint(aSI(i).Index());
|
|
const Standard_Real aParam = aSI(i).Value();
|
|
if (dist < maxdist)
|
|
{
|
|
if (!IsIntCSdone &&
|
|
(Abs(aParam - Pdeb) <= Precision::PConfusion() || Abs(aParam - Pfin) <= Precision::PConfusion()))
|
|
{
|
|
anIndx = pSol->GetPointState(aSI(i).Index());
|
|
}
|
|
}
|
|
|
|
gp_Pnt aPnt(anIndx < 0 ? Func.LastComputedPoint() : Func.Valpoint(anIndx));
|
|
|
|
if (dist > 0.1*Precision::Confusion())
|
|
{
|
|
//Precise found points. It results in following:
|
|
// 1. Make the vertex nearer to the intersection line
|
|
// (see description to issue #27252 in order to
|
|
// understand necessity).
|
|
// 2. Merge two near vertices to single point.
|
|
|
|
//All members in TabSol array has already been sorted in increase order.
|
|
//Now, we limit precise boundaries in order to avoid changing this order.
|
|
const Standard_Real aFPar = (i == 1) ? Pdeb : (para + aSI(i - 1).Value()) / 2.0;
|
|
const Standard_Real aLPar = (i == Nbp) ? Pfin : (para + aSI(i + 1).Value()) / 2.0;
|
|
|
|
MinFunction aNewFunc(Func);
|
|
math_BrentMinimum aMin(Precision::Confusion());
|
|
|
|
aMin.Perform(aNewFunc, aFPar, para, aLPar);
|
|
if(aMin.IsDone())
|
|
{
|
|
para = aMin.Location();
|
|
const gp_Pnt2d aP2d(A->Value(para));
|
|
aPnt = Func.Surface()->Value(aP2d.X(), aP2d.Y());
|
|
}
|
|
}
|
|
|
|
PointProcess(aPnt, para, A, Domain, pnt, TolBoundary, range);
|
|
}
|
|
}// end of if(ip)
|
|
} // end of if(Nbp)
|
|
|
|
// Pour chaque intervalle trouve faire
|
|
// Traiter les extremites comme des points
|
|
// Ajouter intervalle dans la liste des segments
|
|
|
|
if (!IsIntCSdone)
|
|
Nbi = pSol->NbIntervals();
|
|
|
|
if (!RecheckOnRegularity && Nbp) {
|
|
//--cout<<" Debug : IntStart_SearchOnBoundaries_1.gxx :Nbp>0 0 <- Nbi "<<Nbi<<endl;
|
|
Nbi=0;
|
|
}
|
|
|
|
//-- cout<<" Debug : IntStart_SearchOnBoundaries_1.gxx : Nbi : "<<Nbi<<endl;
|
|
|
|
for (i=1; i<=Nbi; i++) {
|
|
IntStart_TheSegment newseg;
|
|
newseg.SetValue(A);
|
|
// Recuperer point debut et fin, et leur parametre.
|
|
if (IsIntCSdone)
|
|
{
|
|
IntCurveSurface_IntersectionSegment IntSeg = IntCS.Segment(i);
|
|
IntCurveSurface_IntersectionPoint End1 = IntSeg.FirstPoint();
|
|
IntCurveSurface_IntersectionPoint End2 = IntSeg.SecondPoint();
|
|
pardeb = End1.W();
|
|
parfin = End2.W();
|
|
ptdeb = End1.Pnt();
|
|
ptfin = End2.Pnt();
|
|
}
|
|
else
|
|
{
|
|
pSol->GetInterval(i,pardeb,parfin);
|
|
pSol->GetIntervalState(i,ideb,ifin);
|
|
|
|
//-- cout<<" Debug : IntStart_SearchOnBoundaries_1.gxx : i= "<<i<<" ParDeb:"<<pardeb<<" ParFin:"<<parfin<<endl;
|
|
|
|
ptdeb=Func.Valpoint(ideb);
|
|
ptfin=Func.Valpoint(ifin);
|
|
}
|
|
|
|
PointProcess(ptdeb,pardeb,A,Domain,pnt,TolBoundary,ranged);
|
|
newseg.SetLimitPoint(pnt.Value(ranged),Standard_True);
|
|
PointProcess(ptfin,parfin,A,Domain,pnt,TolBoundary,rangef);
|
|
newseg.SetLimitPoint(pnt.Value(rangef),Standard_False);
|
|
seg.Append(newseg);
|
|
}
|
|
|
|
if (Nbi==1) {
|
|
if((Abs(pardeb - Pdeb) < Precision::PConfusion()) &&
|
|
(Abs(parfin - Pfin) < Precision::PConfusion()))
|
|
{
|
|
Arcsol=Standard_True;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : ComputeBoundsfromInfinite
|
|
//purpose :
|
|
//=======================================================================
|
|
// - PROVISIONAL - TEMPORARY - NOT GOOD - NYI - TO DO
|
|
// - Temporary - temporary - not good - nyi - to do
|
|
void ComputeBoundsfromInfinite(TheFunction& Func,
|
|
Standard_Real& PDeb,
|
|
Standard_Real& PFin,
|
|
Standard_Integer& NbEchant)
|
|
{
|
|
|
|
// - We are looking for parameters for start and end of the arc (2d curve)
|
|
// - Infinity, a way to intersect the quadric with a portion of arc
|
|
// - Finished.
|
|
//
|
|
// - The quadric is a plane, a cylinder, a cone and a sphere.
|
|
// - Idea: We take any point on the arc and the fact grow
|
|
// - Terminals to the signed distance function values or is likely
|
|
// - S cancel.
|
|
//
|
|
// - WARNING: The following calculations provide a very estimated coarse parameters.
|
|
// - This avoids the raises and allows a case of Boxes
|
|
// - Inifinies walk. It will take this code
|
|
// - With curve surface intersections.
|
|
|
|
NbEchant = 100;
|
|
|
|
Standard_Real U0 = 0.0;
|
|
Standard_Real dU = 0.001;
|
|
Standard_Real Dist0,Dist1;
|
|
|
|
Func.Value(U0 , Dist0);
|
|
Func.Value(U0+dU, Dist1);
|
|
Standard_Real dDist = Dist1 - Dist0;
|
|
if(dDist) {
|
|
U0 -= dU*Dist0 / dDist;
|
|
PDeb = PFin = U0;
|
|
Standard_Real Umin = U0 - 1e5;
|
|
Func.Value(Umin , Dist0);
|
|
Func.Value(Umin+dU, Dist1);
|
|
dDist = Dist1-Dist0;
|
|
if(dDist) {
|
|
Umin -= dU*Dist0 / dDist;
|
|
}
|
|
else {
|
|
Umin-=10.0;
|
|
}
|
|
Standard_Real Umax = U0 + 1e8;
|
|
Func.Value(Umax , Dist0);
|
|
Func.Value(Umax+dU, Dist1);
|
|
dDist = Dist1-Dist0;
|
|
if(dDist) {
|
|
Umax -= dU*Dist0 / dDist;
|
|
}
|
|
else {
|
|
Umax+=10.0;
|
|
}
|
|
if(Umin>U0) { Umin=U0-10.0; }
|
|
if(Umax<U0) { Umax=U0+10.0; }
|
|
|
|
PFin = Umax + 10. * (Umax - Umin);
|
|
PDeb = Umin - 10. * (Umax - Umin);
|
|
}
|
|
else {
|
|
//-- Possibilite de Arc totalement inclu ds Quad
|
|
PDeb = 1e10;
|
|
PFin = -1e10;
|
|
}
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : PointProcess
|
|
//purpose :
|
|
//=======================================================================
|
|
void PointProcess (const gp_Pnt& Pt,
|
|
const Standard_Real Para,
|
|
const TheArc& A,
|
|
const Handle(TheTopolTool)& Domain,
|
|
IntStart_SequenceOfPathPoint& pnt,
|
|
const Standard_Real Tol,
|
|
Standard_Integer& Range)
|
|
{
|
|
|
|
// Check to see if a solution point is coincident with a vertex.
|
|
// If confused, you should find this vertex in the list of
|
|
// Start. It then returns the position of this point in the list pnt.
|
|
// Otherwise, add the point in the list.
|
|
|
|
Standard_Integer k;
|
|
Standard_Boolean found,goon;
|
|
Standard_Real dist,toler;
|
|
|
|
Standard_Integer Nbsol = pnt.Length();
|
|
TheVertex vtx;
|
|
IntStart_ThePathPoint ptsol;
|
|
|
|
Domain->Initialize(A);
|
|
Domain->InitVertexIterator();
|
|
found = Standard_False;
|
|
goon = Domain->MoreVertex();
|
|
while (goon) {
|
|
vtx = Domain->Vertex();
|
|
dist= Abs(Para-TheSOBTool::Parameter(vtx,A));
|
|
toler = TheSOBTool::Tolerance(vtx,A);
|
|
#ifdef OCCT_DEBUG
|
|
if(toler>0.1) {
|
|
std::cout<<"IntStart_SearchOnBoundaries_1.gxx : ** WARNING ** Tol Vertex="<<toler<<std::endl;
|
|
std::cout<<" Ou Edge degenere Ou Kro pointu"<<std::endl;
|
|
if(toler>10000) toler=1e-7;
|
|
}
|
|
#endif
|
|
|
|
if (dist <= toler) {
|
|
// Locate the vertex in the list of solutions
|
|
k=1;
|
|
found = (k>Nbsol);
|
|
while (!found) {
|
|
ptsol = pnt.Value(k);
|
|
if (!ptsol.IsNew()) {
|
|
//jag 940608 if (ptsol.Vertex() == vtx && ptsol.Arc() == A) {
|
|
if (Domain->Identical(ptsol.Vertex(),vtx) &&
|
|
ptsol.Arc() == A &&
|
|
Abs(ptsol.Parameter()-Para) <= toler) {
|
|
found=Standard_True;
|
|
}
|
|
else {
|
|
k=k+1;
|
|
found=(k>Nbsol);
|
|
}
|
|
}
|
|
else {
|
|
k=k+1;
|
|
found=(k>Nbsol);
|
|
}
|
|
}
|
|
if (k<=Nbsol) { // We find the vertex
|
|
Range = k;
|
|
}
|
|
else { // Otherwise
|
|
ptsol.SetValue(Pt,Tol,vtx,A,Para);
|
|
pnt.Append(ptsol);
|
|
Range = pnt.Length();
|
|
}
|
|
found = Standard_True;
|
|
goon = Standard_False;
|
|
}
|
|
else {
|
|
Domain->NextVertex();
|
|
goon = Domain->MoreVertex();
|
|
}
|
|
}
|
|
|
|
if (!found) { // No one is falling on a vertex
|
|
//jgv: do not add segment's extremities if they already exist
|
|
Standard_Boolean found_internal = Standard_False;
|
|
for (k = 1; k <= pnt.Length(); k++)
|
|
{
|
|
ptsol = pnt.Value(k);
|
|
if (ptsol.Arc() != A ||
|
|
!ptsol.IsNew()) //vertex
|
|
continue;
|
|
if (Abs(ptsol.Parameter()-Para) <= Precision::PConfusion())
|
|
{
|
|
found_internal = Standard_True;
|
|
Range = k;
|
|
}
|
|
}
|
|
/////////////////////////////////////////////////////////////
|
|
|
|
if (!found_internal)
|
|
{
|
|
Standard_Real TOL=Tol;
|
|
TOL*=1000.0;
|
|
//if(TOL>0.001) TOL=0.001;
|
|
if(TOL>0.005) TOL=0.005; //#24643
|
|
|
|
ptsol.SetValue(Pt,TOL,A,Para);
|
|
pnt.Append(ptsol);
|
|
Range = pnt.Length();
|
|
}
|
|
}
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : IsRegularity
|
|
//purpose :
|
|
//=======================================================================
|
|
Standard_Boolean IsRegularity(const TheArc& /*A*/,
|
|
const Handle(TheTopolTool)& aDomain)
|
|
{
|
|
Standard_Address anEAddress=aDomain->Edge();
|
|
if (anEAddress==NULL) {
|
|
return Standard_False;
|
|
}
|
|
|
|
TopoDS_Edge* anE=(TopoDS_Edge*)anEAddress;
|
|
|
|
return (BRep_Tool::HasContinuity(*anE));
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : TreatLC
|
|
//purpose :
|
|
//=======================================================================
|
|
Standard_Integer TreatLC (const TheArc& A,
|
|
const Handle(TheTopolTool)& aDomain,
|
|
const IntSurf_Quadric& aQuadric,
|
|
const Standard_Real TolBoundary,
|
|
IntStart_SequenceOfPathPoint& pnt)
|
|
{
|
|
Standard_Integer anExitCode=1, aNbExt;
|
|
|
|
Standard_Address anEAddress=aDomain->Edge();
|
|
if (anEAddress==NULL) {
|
|
return anExitCode;
|
|
}
|
|
|
|
TopoDS_Edge* anE=(TopoDS_Edge*)anEAddress;
|
|
|
|
if (BRep_Tool::Degenerated(*anE)) {
|
|
return anExitCode;
|
|
}
|
|
|
|
GeomAbs_CurveType aTypeE;
|
|
BRepAdaptor_Curve aBAC(*anE);
|
|
aTypeE=aBAC.GetType();
|
|
|
|
if (aTypeE!=GeomAbs_Line) {
|
|
return anExitCode;
|
|
}
|
|
|
|
GeomAbs_SurfaceType aTypeS;
|
|
aTypeS=aQuadric.TypeQuadric();
|
|
|
|
if (aTypeS!=GeomAbs_Cylinder) {
|
|
return anExitCode;
|
|
}
|
|
|
|
Standard_Real f, l, U1f, U1l, U2f, U2l, UEgde, TOL, aDist, aR, aRRel, Tol;
|
|
Handle(Geom_Curve) aCEdge=BRep_Tool::Curve(*anE, f, l);
|
|
|
|
gp_Cylinder aCyl=aQuadric.Cylinder();
|
|
const gp_Ax1& anAx1=aCyl.Axis();
|
|
gp_Lin aLin(anAx1);
|
|
Handle(Geom_Line) aCAxis=new Geom_Line (aLin);
|
|
aR=aCyl.Radius();
|
|
|
|
U1f = aCAxis->FirstParameter();
|
|
U1l = aCAxis->LastParameter();
|
|
|
|
U2f = aCEdge->FirstParameter();
|
|
U2l = aCEdge->LastParameter();
|
|
|
|
|
|
GeomAdaptor_Curve C1, C2;
|
|
|
|
C1.Load(aCAxis);
|
|
C2.Load(aCEdge);
|
|
|
|
Tol = Precision::PConfusion();
|
|
|
|
Extrema_ExtCC anExtCC(C1, C2, U1f, U1l, U2f, U2l, Tol, Tol);
|
|
|
|
aNbExt=anExtCC.NbExt();
|
|
if (aNbExt!=1) {
|
|
return anExitCode;
|
|
}
|
|
|
|
gp_Pnt P1,PEdge;
|
|
Extrema_POnCurv PC1, PC2;
|
|
|
|
anExtCC.Points(1, PC1, PC2);
|
|
|
|
P1 =PC1.Value();
|
|
PEdge=PC2.Value();
|
|
|
|
UEgde=PC2.Parameter();
|
|
|
|
aDist=PEdge.Distance(P1);
|
|
aRRel=fabs(aDist-aR)/aR;
|
|
if (aRRel > TolBoundary) {
|
|
return anExitCode;
|
|
}
|
|
|
|
if (UEgde < (f+TolBoundary) || UEgde > (l-TolBoundary)) {
|
|
return anExitCode;
|
|
}
|
|
//
|
|
// Do not wonder !
|
|
// It was done as into PointProcess(...) function
|
|
//printf("TreatLC()=> tangent line is found\n");
|
|
TOL=1000.*TolBoundary;
|
|
if(TOL>0.001) TOL=0.001;
|
|
|
|
IntStart_ThePathPoint ptsol;
|
|
ptsol.SetValue(PEdge, TOL, A, UEgde);
|
|
pnt.Append(ptsol);
|
|
|
|
anExitCode=0;
|
|
return anExitCode;
|
|
|
|
}
|
|
|
|
|
|
//=======================================================================
|
|
//function : IntStart_SearchOnBoundaries::IntStart_SearchOnBoundaries
|
|
//purpose :
|
|
//=======================================================================
|
|
IntStart_SearchOnBoundaries::IntStart_SearchOnBoundaries ()
|
|
: done(Standard_False),
|
|
all(Standard_False)
|
|
{
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : Perform
|
|
//purpose :
|
|
//=======================================================================
|
|
void IntStart_SearchOnBoundaries::Perform (TheFunction& Func,
|
|
const Handle(TheTopolTool)& Domain,
|
|
const Standard_Real TolBoundary,
|
|
const Standard_Real TolTangency,
|
|
const Standard_Boolean RecheckOnRegularity)
|
|
{
|
|
|
|
done = Standard_False;
|
|
spnt.Clear();
|
|
sseg.Clear();
|
|
|
|
Standard_Boolean Arcsol;
|
|
Standard_Real PDeb,PFin, prm, tol;
|
|
Standard_Integer i, nbknown, nbfound,index;
|
|
gp_Pnt pt;
|
|
|
|
Domain->Init();
|
|
|
|
if (Domain->More()) {
|
|
all = Standard_True;
|
|
}
|
|
else {
|
|
all = Standard_False;
|
|
}
|
|
|
|
while (Domain->More()) {
|
|
TheArc A = Domain->Value();
|
|
if (!TheSOBTool::HasBeenSeen(A)) {
|
|
Func.Set(A);
|
|
FindVertex(A,Domain,Func,spnt,TolBoundary);
|
|
TheSOBTool::Bounds(A,PDeb,PFin);
|
|
if(Precision::IsNegativeInfinite(PDeb) ||
|
|
Precision::IsPositiveInfinite(PFin)) {
|
|
Standard_Integer NbEchant;
|
|
ComputeBoundsfromInfinite(Func,PDeb,PFin,NbEchant);
|
|
}
|
|
BoundedArc(A,Domain,PDeb,PFin,Func,spnt,sseg,TolBoundary,TolTangency,Arcsol,RecheckOnRegularity);
|
|
all = (all && Arcsol);
|
|
}
|
|
|
|
else {
|
|
// as it seems we'll never be here, because
|
|
// TheSOBTool::HasBeenSeen(A) always returns FALSE
|
|
nbfound = spnt.Length();
|
|
|
|
// On recupere les points connus
|
|
nbknown = TheSOBTool::NbPoints(A);
|
|
for (i=1; i<=nbknown; i++) {
|
|
TheSOBTool::Value(A,i,pt,tol,prm);
|
|
if (TheSOBTool::IsVertex(A,i)) {
|
|
TheVertex vtx;
|
|
TheSOBTool::Vertex(A,i,vtx);
|
|
spnt.Append(IntStart_ThePathPoint(pt,tol,vtx,A,prm));
|
|
}
|
|
else {
|
|
spnt.Append(IntStart_ThePathPoint(pt,tol,A,prm));
|
|
}
|
|
}
|
|
// On recupere les arcs solutions
|
|
nbknown = TheSOBTool::NbSegments(A);
|
|
for (i=1; i<=nbknown; i++) {
|
|
IntStart_TheSegment newseg;
|
|
newseg.SetValue(A);
|
|
if (TheSOBTool::HasFirstPoint(A,i,index)) {
|
|
newseg.SetLimitPoint(spnt.Value(nbfound+index),Standard_True);
|
|
}
|
|
if (TheSOBTool::HasLastPoint(A,i,index)) {
|
|
newseg.SetLimitPoint(spnt.Value(nbfound+index),Standard_False);
|
|
}
|
|
sseg.Append(newseg);
|
|
}
|
|
all = (all& TheSOBTool::IsAllSolution(A));
|
|
}
|
|
Domain->Next();
|
|
}
|
|
done = Standard_True;
|
|
}
|