1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-04-03 17:56:21 +03:00
occt/src/IntStart/IntStart_SearchOnBoundaries.gxx
gelin 492b09dcae 0032850: Modeling Algorithms - Surface Surface Intersect Lost one line
IntStart_SearchOnBoundaries.gxx - improving tangent criteria
2022-10-31 18:09:15 +03:00

1189 lines
36 KiB
Plaintext

// Copyright (c) 1995-1999 Matra Datavision
// Copyright (c) 1999-2014 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
#include <algorithm>
#include <memory>
#include <TopoDS_Edge.hxx>
#include <Geom_Curve.hxx>
#include <BRepAdaptor_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor3d_CurveOnSurface.hxx>
#include <Adaptor3d_CurveOnSurface.hxx>
#include <GeomAbs_SurfaceType.hxx>
#include <BRep_Tool.hxx>
#include <Geom_Line.hxx>
#include <Geom_Plane.hxx>
#include <Geom_CylindricalSurface.hxx>
#include <Geom_ConicalSurface.hxx>
#include <Geom_SphericalSurface.hxx>
#include <Geom_ToroidalSurface.hxx>
#include <gp_Lin.hxx>
#include <gp_Vec.hxx>
#include <gp_Dir.hxx>
#include <gp_Cylinder.hxx>
#include <gp_Ax1.hxx>
#include <gp_Lin.hxx>
#include <GeomAdaptor_Curve.hxx>
#include <GeomAdaptor_Surface.hxx>
#include <Precision.hxx>
#include <Extrema_ExtCC.hxx>
//#include <Extrema_ExtCS.hxx>
#include <Extrema_POnCurv.hxx>
#include <IntCurveSurface_HInter.hxx>
#include <math_FunctionSample.hxx>
#include <math_FunctionAllRoots.hxx>
#include <TColgp_SequenceOfPnt.hxx>
// Modified by skv - Tue Aug 31 12:13:51 2004 OCC569
#include <Precision.hxx>
#include <IntSurf_Quadric.hxx>
#include <math_Function.hxx>
#include <math_BrentMinimum.hxx>
#include <math_Matrix.hxx>
#include <math_Vector.hxx>
#include <NCollection_Array1.hxx>
#ifdef OCCT_DEBUG
#include <Geom_Circle.hxx>
#include <Geom_Ellipse.hxx>
#include <Geom_Hyperbola.hxx>
#include <Geom_Parabola.hxx>
#include <Geom_BezierCurve.hxx>
#include <Geom_BSplineCurve.hxx>
#include <GeomLib.hxx>
#endif
static Standard_Boolean IsDegenerated(const Handle(Adaptor3d_CurveOnSurface)& theCurve);
static Standard_Boolean IsDegenerated(const IntSurf_Quadric& theQuadric);
static void FindVertex (const TheArc&,
const Handle(TheTopolTool)&,
TheFunction&,
IntStart_SequenceOfPathPoint&,
const Standard_Real);
static void BoundedArc (const TheArc& A,
const Handle(TheTopolTool)& Domain,
const Standard_Real Pdeb,
const Standard_Real Pfin,
TheFunction& Func,
IntStart_SequenceOfPathPoint& pnt,
IntStart_SequenceOfSegment& seg,
const Standard_Real TolBoundary,
const Standard_Real TolTangency,
Standard_Boolean& Arcsol,
const Standard_Boolean RecheckOnRegularity);
static void PointProcess (const gp_Pnt&,
const Standard_Real,
const TheArc&,
const Handle(TheTopolTool)&,
IntStart_SequenceOfPathPoint&,
const Standard_Real,
Standard_Integer&);
static Standard_Integer TreatLC (const TheArc& A,
const Handle(TheTopolTool)& aDomain,
const IntSurf_Quadric& aQuadric,
const Standard_Real TolBoundary,
IntStart_SequenceOfPathPoint& pnt);
static Standard_Boolean IsRegularity(const TheArc& A,
const Handle(TheTopolTool)& aDomain);
class MinFunction : public math_Function
{
public:
MinFunction(TheFunction &theFunc) : myFunc(&theFunc) {};
//returns value of the one-dimension-function when parameter
//is equal to theX
virtual Standard_Boolean Value(const Standard_Real theX,
Standard_Real& theFVal)
{
if(!myFunc->Value(theX, theFVal))
return Standard_False;
theFVal *= theFVal;
return Standard_True;
}
//see analogical method for abstract owner class math_Function
virtual Standard_Integer GetStateNumber()
{
return 0;
}
private:
TheFunction *myFunc;
};
//=======================================================================
//function : FindVertex
//purpose :
//=======================================================================
void FindVertex (const TheArc& A,
const Handle(TheTopolTool)& Domain,
TheFunction& Func,
IntStart_SequenceOfPathPoint& pnt,
const Standard_Real Toler)
{
// Find the vertex of the arc A restriction solutions. It stores
// Vertex in the list solutions pnt.
TheVertex vtx;
Standard_Real param,valf;
Standard_Integer itemp;
Domain->Initialize(A);
Domain->InitVertexIterator();
while (Domain->MoreVertex()) {
vtx = Domain->Vertex();
param = TheSOBTool::Parameter(vtx,A);
// Evaluate the function and look compared to tolerance of the
// Vertex. If distance <= tolerance then add a vertex to the list of solutions.
// The arc is already assumed in the load function.
Func.Value(param,valf);
if (Abs(valf) <= Toler) {
itemp = Func.GetStateNumber();
pnt.Append(IntStart_ThePathPoint(Func.Valpoint(itemp),Toler, vtx,A,param));
// Solution is added
}
Domain->NextVertex();
}
}
Standard_Boolean IsDegenerated(const Handle(Adaptor3d_CurveOnSurface)& theCurve)
{
if (theCurve->GetType() == GeomAbs_Circle)
{
gp_Circ aCirc = theCurve->Circle();
if (aCirc.Radius() <= Precision::Confusion())
return Standard_True;
}
return Standard_False;
}
Standard_Boolean IsDegenerated(const IntSurf_Quadric& theQuadric)
{
GeomAbs_SurfaceType TypeQuad = theQuadric.TypeQuadric();
if (TypeQuad == GeomAbs_Cone)
{
gp_Cone aCone = theQuadric.Cone();
Standard_Real aSemiAngle = Abs(aCone.SemiAngle());
if (aSemiAngle < 0.02 || aSemiAngle > 1.55)
return Standard_True;
}
return Standard_False;
}
class SolInfo
{
public:
SolInfo() : myMathIndex(-1), myValue(RealLast())
{
}
void Init(const math_FunctionAllRoots& theSolution, const Standard_Integer theIndex)
{
myMathIndex = theIndex;
myValue = theSolution.GetPoint(theIndex);
}
void Init(const IntCurveSurface_HInter& theSolution, const Standard_Integer theIndex)
{
myMathIndex = theIndex;
myValue = theSolution.Point(theIndex).W();
}
Standard_Real Value() const
{
return myValue;
}
Standard_Integer Index() const
{
return myMathIndex;
}
bool operator>(const SolInfo& theOther) const
{
return myValue > theOther.myValue;
}
bool operator<(const SolInfo& theOther) const
{
return myValue < theOther.myValue;
}
bool operator==(const SolInfo& theOther) const
{
return myValue == theOther.myValue;
}
Standard_Real& ChangeValue()
{
return myValue;
}
private:
Standard_Integer myMathIndex;
Standard_Real myValue;
};
static
void BoundedArc (const TheArc& A,
const Handle(TheTopolTool)& Domain,
const Standard_Real Pdeb,
const Standard_Real Pfin,
TheFunction& Func,
IntStart_SequenceOfPathPoint& pnt,
IntStart_SequenceOfSegment& seg,
const Standard_Real TolBoundary,
const Standard_Real TolTangency,
Standard_Boolean& Arcsol,
const Standard_Boolean RecheckOnRegularity)
{
// Recherche des points solutions et des bouts d arc solution sur un arc donne.
// On utilise la fonction math_FunctionAllRoots. Ne convient donc que pour
// des arcs ayant un point debut et un point de fin (intervalle ferme de
// parametrage).
Standard_Integer i, Nbi = 0, Nbp = 0;
gp_Pnt ptdeb,ptfin;
Standard_Real pardeb = 0., parfin = 0.;
Standard_Integer ideb,ifin,range,ranged,rangef;
// Creer l echantillonage (math_FunctionSample ou classe heritant)
// Appel a math_FunctionAllRoots
//@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
//@@@ La Tolerance est asociee a l arc ( Incoherence avec le cheminement )
//@@@ ( EpsX ~ 1e-5 et ResolutionU et V ~ 1e-9 )
//@@@ le vertex trouve ici n'est pas retrouve comme point d arret d une
//@@@ ligne de cheminement
//@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
Standard_Real EpsX = 1.e-10;
//@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
//@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
//@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
// Standard_Integer NbEchant = TheSOBTool::NbSamplesOnArc(A);
Standard_Integer NbEchant = Func.NbSamples();
if(NbEchant<100) NbEchant = 100; //-- lbr le 22 Avril 96
//-- Toujours des pbs
//-- Modif 24 Aout 93 -----------------------------
Standard_Real nTolTangency = TolTangency;
if((Pfin - Pdeb) < (TolTangency*10.0)) {
nTolTangency=(Pfin-Pdeb)*0.1;
}
if(EpsX>(nTolTangency+nTolTangency)) {
EpsX = nTolTangency * 0.1;
}
//--------------------------------------------------
//-- Plante avec un edge avec 2 Samples
//-- dont les extremites son solutions (f=0)
//-- et ou la derivee est nulle
//-- Exemple : un segment diametre d une sphere
//-- if(NbEchant<3) NbEchant = 3; //-- lbr le 19 Avril 95
//--------------------------------------------------
Standard_Real para=0,dist,maxdist;
//-------------------------------------------------------------- REJECTIONS le 15 oct 98
Standard_Boolean Rejection=Standard_True;
Standard_Real maxdr,maxr,minr,ur,dur;
minr=RealLast();
maxr=-minr;
maxdr=-minr;
dur=(Pfin-Pdeb)*0.2;
for(i=1,ur=Pdeb;i<=6;i++) {
Standard_Real F,D;
if(Func.Values(ur,F,D)) {
Standard_Real lminr,lmaxr;
if(D<0.0) D=-D;
D*=dur+dur;
if(D>maxdr) maxdr=D;
lminr=F-D;
lmaxr=F+D;
if(lminr<minr) minr=lminr;
if(lmaxr>maxr) maxr=lmaxr;
if(minr<0.0 && maxr>0.0) {
Rejection=Standard_False;
break;
}
}
ur+=dur;
}
if(Rejection)
{
dur=0.001+maxdr+(maxr-minr)*0.1;
minr-=dur;
maxr+=dur;
if(minr<0.0 && maxr>0.0) {
Rejection=Standard_False;
}
}
Arcsol=Standard_False;
if(Rejection==Standard_False)
{
const IntSurf_Quadric& aQuadric = Func.Quadric();
GeomAbs_SurfaceType TypeQuad = aQuadric.TypeQuadric();
GeomAbs_CurveType TypeConS = GeomAbs_OtherCurve;
IntCurveSurface_HInter IntCS;
Standard_Boolean IsIntCSdone = Standard_False;
TColStd_SequenceOfReal Params;
std::unique_ptr<math_FunctionAllRoots> pSol;
math_FunctionSample Echant(Pdeb,Pfin,NbEchant);
Standard_Boolean aelargir=Standard_True;
//modified by NIZNHY-PKV Thu Apr 12 09:25:19 2001 f
//
//maxdist = 100.0*TolBoundary;
maxdist = TolBoundary+TolTangency;
//
//modified by NIZNHY-PKV Thu Apr 12 09:25:23 2001 t
for(i=1; i<=NbEchant && aelargir;i++) {
Standard_Real u = Echant.GetParameter(i);
if(Func.Value(u,dist)) {
if(dist>maxdist || -dist>maxdist) {
aelargir=Standard_False;
}
}
}
if(!(aelargir && maxdist<0.01)) {
maxdist = TolBoundary;
}
if (TypeQuad != GeomAbs_OtherSurface) //intersection of boundary curve and quadric surface
{
//Exact solution
Handle(Adaptor3d_Surface) aSurf = Func.Surface();
Adaptor3d_CurveOnSurface ConS(A, aSurf);
TypeConS = ConS.GetType();
#ifdef OCCT_DEBUG
Handle(Geom_Curve) CurveConS;
switch(TypeConS)
{
case GeomAbs_Line:
{
CurveConS = new Geom_Line(ConS.Line());
break;
}
case GeomAbs_Circle:
{
CurveConS = new Geom_Circle(ConS.Circle());
break;
}
case GeomAbs_Ellipse:
{
CurveConS = new Geom_Ellipse(ConS.Ellipse());
break;
}
case GeomAbs_Hyperbola:
{
CurveConS = new Geom_Hyperbola(ConS.Hyperbola());
break;
}
case GeomAbs_Parabola:
{
CurveConS = new Geom_Parabola(ConS.Parabola());
break;
}
case GeomAbs_BezierCurve:
{
CurveConS = ConS.Bezier();
break;
}
case GeomAbs_BSplineCurve:
{
CurveConS = ConS.BSpline();
break;
}
default:
{
Standard_Real MaxDeviation, AverageDeviation;
GeomLib::BuildCurve3d(1.e-5, ConS, ConS.FirstParameter(), ConS.LastParameter(),
CurveConS, MaxDeviation, AverageDeviation);
break;
}
}
#endif
Handle(Adaptor3d_CurveOnSurface) HConS = new Adaptor3d_CurveOnSurface(ConS);
Handle(Geom_Surface) QuadSurf;
switch (TypeQuad)
{
case GeomAbs_Plane:
{
QuadSurf = new Geom_Plane(aQuadric.Plane());
break;
}
case GeomAbs_Cylinder:
{
QuadSurf = new Geom_CylindricalSurface(aQuadric.Cylinder());
break;
}
case GeomAbs_Cone:
{
QuadSurf = new Geom_ConicalSurface(aQuadric.Cone());
break;
}
case GeomAbs_Sphere:
{
QuadSurf = new Geom_SphericalSurface(aQuadric.Sphere());
break;
}
case GeomAbs_Torus:
{
QuadSurf = new Geom_ToroidalSurface(aQuadric.Torus());
break;
}
default:
break;
}
Handle(GeomAdaptor_Surface) GAHsurf = new GeomAdaptor_Surface(QuadSurf);
if ((TypeConS == GeomAbs_Line ||
TypeConS == GeomAbs_Circle ||
TypeConS == GeomAbs_Ellipse ||
TypeConS == GeomAbs_Parabola ||
TypeConS == GeomAbs_Hyperbola) &&
TypeQuad != GeomAbs_Torus &&
!IsDegenerated(HConS) &&
!IsDegenerated(aQuadric))
{
//exact intersection for only canonic curves and real quadric surfaces
IntCS.Perform(HConS, GAHsurf);
}
IsIntCSdone = IntCS.IsDone();
if (IsIntCSdone)
{
Nbp = IntCS.NbPoints();
Nbi = IntCS.NbSegments();
}
//If we have not got intersection, it may be touch with some tolerance,
//need to be checked
if (Nbp == 0 && Nbi == 0)
IsIntCSdone = Standard_False;
} //if (TypeQuad != GeomAbs_OtherSurface) - intersection of boundary curve and quadric surface
if (!IsIntCSdone)
{
pSol.reset(new math_FunctionAllRoots(Func,Echant,EpsX,maxdist,maxdist)); //-- TolBoundary,nTolTangency);
if (!pSol->IsDone()) {throw Standard_Failure();}
Nbp=pSol->NbPoints();
}
//
//jgv: build solution on the whole boundary
if (RecheckOnRegularity && Nbp > 0 && IsRegularity(A, Domain))
{
//Standard_Real theTol = Domain->MaxTolerance(A);
//theTol += theTol;
Standard_Real theTol = 5.e-4;
math_FunctionAllRoots SolAgain(Func,Echant,EpsX,theTol,theTol); //-- TolBoundary,nTolTangency);
if (!SolAgain.IsDone()) {throw Standard_Failure();}
Standard_Integer Nbi_again = SolAgain.NbIntervals();
if (Nbi_again > 0)
{
Standard_Integer NbSamples = 10;
Standard_Real delta = (Pfin - Pdeb)/NbSamples;
Standard_Real GlobalTol = theTol*10;
Standard_Boolean SolOnBoundary = Standard_True;
for (i = 0; i <= NbSamples; i++)
{
Standard_Real aParam = Pdeb + i*delta;
Standard_Real aValue;
Func.Value(aParam, aValue);
if (Abs(aValue) > GlobalTol)
{
SolOnBoundary = Standard_False;
break;
}
}
if (SolOnBoundary)
{
for (i = 1; i <= Nbi_again; i++)
{
IntStart_TheSegment newseg;
newseg.SetValue(A);
// Recuperer point debut et fin, et leur parametre.
SolAgain.GetInterval(i,pardeb,parfin);
if (Abs(pardeb - Pdeb) <= Precision::PConfusion())
pardeb = Pdeb;
if (Abs(parfin - Pfin) <= Precision::PConfusion())
parfin = Pfin;
SolAgain.GetIntervalState(i,ideb,ifin);
//-- cout<<" Debug : IntStart_SearchOnBoundaries_1.gxx : i= "<<i<<" ParDeb:"<<pardeb<<" ParFin:"<<parfin<<endl;
ptdeb=Func.Valpoint(ideb);
ptfin=Func.Valpoint(ifin);
PointProcess(ptdeb,pardeb,A,Domain,pnt,theTol,ranged);
newseg.SetLimitPoint(pnt.Value(ranged),Standard_True);
PointProcess(ptfin,parfin,A,Domain,pnt,theTol,rangef);
newseg.SetLimitPoint(pnt.Value(rangef),Standard_False);
seg.Append(newseg);
}
Arcsol=Standard_True;
return;
}
}
} //if (RecheckOnRegularity && Nbp > 0 && IsRegularity(A, Domain))
////////////////////////////////////////////
//-- detection du cas ou la fonction est quasi tangente et que les
//-- zeros sont quasi confondus.
//-- Dans ce cas on prend le point "milieu"
//-- On suppose que les solutions sont triees.
if(Nbp) {
NCollection_Array1<SolInfo> aSI(1, Nbp);
for(i=1;i<=Nbp;i++)
{
if (IsIntCSdone)
aSI(i).Init(IntCS, i);
else
aSI(i).Init(*pSol, i);
}
std::sort(aSI.begin(), aSI.end());
//modified by NIZNHY-PKV Wed Mar 21 18:34:18 2001 f
//////////////////////////////////////////////////////////
// The treatment of the situation when line(arc) that is
// tangent to cylinder(domain).
// We should have only one solution i.e Nbp=1. Ok?
// But we have 2,3,.. solutions. That is wrong ersult.
// The TreatLC(...) function is dedicated to solve the pb.
// PKV Fri Mar 23 12:17:29 2001
Standard_Integer ip = TreatLC (A, Domain, aQuadric, TolBoundary, pnt);
if (ip) {
//////////////////////////////////////////////////////////
//modified by NIZNHY-PKV Wed Mar 21 18:34:23 2001 t
//
// Using of old usual way proposed by Laurent
//
for(i=1;i<Nbp;i++) {
Standard_Real parap1 = aSI(i + 1).Value();
para = aSI(i).Value();
Standard_Real param=(para+parap1)*0.5;
Standard_Real yf = 0.0;
Standard_Real ym = 0.0;
Standard_Real yl = 0.0;
if(Func.Value(param,ym) && Abs(ym) < maxdist) {
Standard_Real sm = Sign(1., ym);
Standard_Boolean aTang = Func.Value(para,yf) && Func.Value(parap1,yl);
if (aTang) {
//Line can be tangent surface if all distances less then maxdist
aTang = aTang && Abs(yf) < maxdist && Abs(yl) < maxdist;
}
if (aTang && IsIntCSdone && TypeConS == GeomAbs_Line) {
//Interval is got by exact intersection
//Line can be tangent if all points are on the same side of surface
//it means that signs of all distances are the same
Standard_Real sf = Sign(1., yf), sl = Sign(1., yl);
aTang = aTang && (sm == sf) && (sm == sl);
}
if(aTang) {
// Modified by skv - Tue Aug 31 12:13:51 2004 OCC569 Begin
// Consider this interval as tangent one. Treat it to find
// parameter with the lowest function value.
// Compute the number of nodes.
Standard_Real aTol = TolBoundary*1000.0;
if(aTol > 0.001)
aTol = 0.001;
// fix floating point exception 569, chl-922-e9
parap1 = (Abs(parap1) < 1.e9) ? parap1 : ((parap1 >= 0.) ? 1.e9 : -1.e9);
para = (Abs(para) < 1.e9) ? para : ((para >= 0.) ? 1.e9 : -1.e9);
Standard_Integer aNbNodes = RealToInt(Ceiling((parap1 - para)/aTol));
Standard_Real aVal = RealLast();
Standard_Real aValMax = 0.;
//Standard_Integer aNbNodes = 23;
Standard_Real aDelta = (parap1 - para)/(aNbNodes + 1.);
Standard_Integer ii;
Standard_Real aCurPar;
Standard_Real aCurVal;
for (ii = 0; ii <= aNbNodes + 1; ii++) {
aCurPar = (ii < aNbNodes + 1) ? para + ii*aDelta : parap1;
if (Func.Value(aCurPar, aCurVal)) {
Standard_Real anAbsVal = Abs(aCurVal);
if (anAbsVal < aVal) {
aVal = anAbsVal;
param = aCurPar;
}
if (anAbsVal > aValMax)
{
aValMax = anAbsVal;
}
}
}
// At last, interval got by exact intersection can be considered as tangent if
// minimal distance is inside interval and
// minimal and maximal values are almost the same
if (IsIntCSdone && aNbNodes > 1) {
aTang = Abs(param - para) > EpsX && Abs(parap1 - param) > EpsX &&
0.01*aValMax <= aVal;
}
if (aTang)
{
aSI(i).ChangeValue() = Pdeb - 1;
aSI(i + 1).ChangeValue() = param;
}
}
}
}
for (i=1; i<=Nbp; i++) {
para = aSI(i).Value();
if((para-Pdeb)<EpsX || (Pfin-para)<EpsX)
continue;
if(!Func.Value(para,dist))
continue;
dist = Abs(dist);
Standard_Integer anIndx = -1;
//const Standard_Real aParam = Sol->GetPoint(aSI(i).Index());
const Standard_Real aParam = aSI(i).Value();
if (dist < maxdist)
{
if (!IsIntCSdone &&
(Abs(aParam - Pdeb) <= Precision::PConfusion() || Abs(aParam - Pfin) <= Precision::PConfusion()))
{
anIndx = pSol->GetPointState(aSI(i).Index());
}
}
gp_Pnt aPnt(anIndx < 0 ? Func.LastComputedPoint() : Func.Valpoint(anIndx));
if (dist > 0.1*Precision::Confusion())
{
//Precise found points. It results in following:
// 1. Make the vertex nearer to the intersection line
// (see description to issue #27252 in order to
// understand necessity).
// 2. Merge two near vertices to single point.
//All members in TabSol array has already been sorted in increase order.
//Now, we limit precise boundaries in order to avoid changing this order.
const Standard_Real aFPar = (i == 1) ? Pdeb : (para + aSI(i - 1).Value()) / 2.0;
const Standard_Real aLPar = (i == Nbp) ? Pfin : (para + aSI(i + 1).Value()) / 2.0;
MinFunction aNewFunc(Func);
math_BrentMinimum aMin(Precision::Confusion());
aMin.Perform(aNewFunc, aFPar, para, aLPar);
if(aMin.IsDone())
{
para = aMin.Location();
const gp_Pnt2d aP2d(A->Value(para));
aPnt = Func.Surface()->Value(aP2d.X(), aP2d.Y());
}
}
PointProcess(aPnt, para, A, Domain, pnt, TolBoundary, range);
}
}// end of if(ip)
} // end of if(Nbp)
// Pour chaque intervalle trouve faire
// Traiter les extremites comme des points
// Ajouter intervalle dans la liste des segments
if (!IsIntCSdone)
Nbi = pSol->NbIntervals();
if (!RecheckOnRegularity && Nbp) {
//--cout<<" Debug : IntStart_SearchOnBoundaries_1.gxx :Nbp>0 0 <- Nbi "<<Nbi<<endl;
Nbi=0;
}
//-- cout<<" Debug : IntStart_SearchOnBoundaries_1.gxx : Nbi : "<<Nbi<<endl;
for (i=1; i<=Nbi; i++) {
IntStart_TheSegment newseg;
newseg.SetValue(A);
// Recuperer point debut et fin, et leur parametre.
if (IsIntCSdone)
{
IntCurveSurface_IntersectionSegment IntSeg = IntCS.Segment(i);
IntCurveSurface_IntersectionPoint End1 = IntSeg.FirstPoint();
IntCurveSurface_IntersectionPoint End2 = IntSeg.SecondPoint();
pardeb = End1.W();
parfin = End2.W();
ptdeb = End1.Pnt();
ptfin = End2.Pnt();
}
else
{
pSol->GetInterval(i,pardeb,parfin);
pSol->GetIntervalState(i,ideb,ifin);
//-- cout<<" Debug : IntStart_SearchOnBoundaries_1.gxx : i= "<<i<<" ParDeb:"<<pardeb<<" ParFin:"<<parfin<<endl;
ptdeb=Func.Valpoint(ideb);
ptfin=Func.Valpoint(ifin);
}
PointProcess(ptdeb,pardeb,A,Domain,pnt,TolBoundary,ranged);
newseg.SetLimitPoint(pnt.Value(ranged),Standard_True);
PointProcess(ptfin,parfin,A,Domain,pnt,TolBoundary,rangef);
newseg.SetLimitPoint(pnt.Value(rangef),Standard_False);
seg.Append(newseg);
}
if (Nbi==1) {
if((Abs(pardeb - Pdeb) < Precision::PConfusion()) &&
(Abs(parfin - Pfin) < Precision::PConfusion()))
{
Arcsol=Standard_True;
}
}
}
}
//=======================================================================
//function : ComputeBoundsfromInfinite
//purpose :
//=======================================================================
// - PROVISIONAL - TEMPORARY - NOT GOOD - NYI - TO DO
// - Temporary - temporary - not good - nyi - to do
void ComputeBoundsfromInfinite(TheFunction& Func,
Standard_Real& PDeb,
Standard_Real& PFin,
Standard_Integer& NbEchant)
{
// - We are looking for parameters for start and end of the arc (2d curve)
// - Infinity, a way to intersect the quadric with a portion of arc
// - Finished.
//
// - The quadric is a plane, a cylinder, a cone and a sphere.
// - Idea: We take any point on the arc and the fact grow
// - Terminals to the signed distance function values or is likely
// - S cancel.
//
// - WARNING: The following calculations provide a very estimated coarse parameters.
// - This avoids the raises and allows a case of Boxes
// - Inifinies walk. It will take this code
// - With curve surface intersections.
NbEchant = 100;
Standard_Real U0 = 0.0;
Standard_Real dU = 0.001;
Standard_Real Dist0,Dist1;
Func.Value(U0 , Dist0);
Func.Value(U0+dU, Dist1);
Standard_Real dDist = Dist1 - Dist0;
if(dDist) {
U0 -= dU*Dist0 / dDist;
PDeb = PFin = U0;
Standard_Real Umin = U0 - 1e5;
Func.Value(Umin , Dist0);
Func.Value(Umin+dU, Dist1);
dDist = Dist1-Dist0;
if(dDist) {
Umin -= dU*Dist0 / dDist;
}
else {
Umin-=10.0;
}
Standard_Real Umax = U0 + 1e8;
Func.Value(Umax , Dist0);
Func.Value(Umax+dU, Dist1);
dDist = Dist1-Dist0;
if(dDist) {
Umax -= dU*Dist0 / dDist;
}
else {
Umax+=10.0;
}
if(Umin>U0) { Umin=U0-10.0; }
if(Umax<U0) { Umax=U0+10.0; }
PFin = Umax + 10. * (Umax - Umin);
PDeb = Umin - 10. * (Umax - Umin);
}
else {
//-- Possibilite de Arc totalement inclu ds Quad
PDeb = 1e10;
PFin = -1e10;
}
}
//=======================================================================
//function : PointProcess
//purpose :
//=======================================================================
void PointProcess (const gp_Pnt& Pt,
const Standard_Real Para,
const TheArc& A,
const Handle(TheTopolTool)& Domain,
IntStart_SequenceOfPathPoint& pnt,
const Standard_Real Tol,
Standard_Integer& Range)
{
// Check to see if a solution point is coincident with a vertex.
// If confused, you should find this vertex in the list of
// Start. It then returns the position of this point in the list pnt.
// Otherwise, add the point in the list.
Standard_Integer k;
Standard_Boolean found,goon;
Standard_Real dist,toler;
Standard_Integer Nbsol = pnt.Length();
TheVertex vtx;
IntStart_ThePathPoint ptsol;
Domain->Initialize(A);
Domain->InitVertexIterator();
found = Standard_False;
goon = Domain->MoreVertex();
while (goon) {
vtx = Domain->Vertex();
dist= Abs(Para-TheSOBTool::Parameter(vtx,A));
toler = TheSOBTool::Tolerance(vtx,A);
#ifdef OCCT_DEBUG
if(toler>0.1) {
std::cout<<"IntStart_SearchOnBoundaries_1.gxx : ** WARNING ** Tol Vertex="<<toler<<std::endl;
std::cout<<" Ou Edge degenere Ou Kro pointu"<<std::endl;
if(toler>10000) toler=1e-7;
}
#endif
if (dist <= toler) {
// Locate the vertex in the list of solutions
k=1;
found = (k>Nbsol);
while (!found) {
ptsol = pnt.Value(k);
if (!ptsol.IsNew()) {
//jag 940608 if (ptsol.Vertex() == vtx && ptsol.Arc() == A) {
if (Domain->Identical(ptsol.Vertex(),vtx) &&
ptsol.Arc() == A &&
Abs(ptsol.Parameter()-Para) <= toler) {
found=Standard_True;
}
else {
k=k+1;
found=(k>Nbsol);
}
}
else {
k=k+1;
found=(k>Nbsol);
}
}
if (k<=Nbsol) { // We find the vertex
Range = k;
}
else { // Otherwise
ptsol.SetValue(Pt,Tol,vtx,A,Para);
pnt.Append(ptsol);
Range = pnt.Length();
}
found = Standard_True;
goon = Standard_False;
}
else {
Domain->NextVertex();
goon = Domain->MoreVertex();
}
}
if (!found) { // No one is falling on a vertex
//jgv: do not add segment's extremities if they already exist
Standard_Boolean found_internal = Standard_False;
for (k = 1; k <= pnt.Length(); k++)
{
ptsol = pnt.Value(k);
if (ptsol.Arc() != A ||
!ptsol.IsNew()) //vertex
continue;
if (Abs(ptsol.Parameter()-Para) <= Precision::PConfusion())
{
found_internal = Standard_True;
Range = k;
}
}
/////////////////////////////////////////////////////////////
if (!found_internal)
{
Standard_Real TOL=Tol;
TOL*=1000.0;
//if(TOL>0.001) TOL=0.001;
if(TOL>0.005) TOL=0.005; //#24643
ptsol.SetValue(Pt,TOL,A,Para);
pnt.Append(ptsol);
Range = pnt.Length();
}
}
}
//=======================================================================
//function : IsRegularity
//purpose :
//=======================================================================
Standard_Boolean IsRegularity(const TheArc& /*A*/,
const Handle(TheTopolTool)& aDomain)
{
Standard_Address anEAddress=aDomain->Edge();
if (anEAddress==NULL) {
return Standard_False;
}
TopoDS_Edge* anE=(TopoDS_Edge*)anEAddress;
return (BRep_Tool::HasContinuity(*anE));
}
//=======================================================================
//function : TreatLC
//purpose :
//=======================================================================
Standard_Integer TreatLC (const TheArc& A,
const Handle(TheTopolTool)& aDomain,
const IntSurf_Quadric& aQuadric,
const Standard_Real TolBoundary,
IntStart_SequenceOfPathPoint& pnt)
{
Standard_Integer anExitCode=1, aNbExt;
Standard_Address anEAddress=aDomain->Edge();
if (anEAddress==NULL) {
return anExitCode;
}
TopoDS_Edge* anE=(TopoDS_Edge*)anEAddress;
if (BRep_Tool::Degenerated(*anE)) {
return anExitCode;
}
GeomAbs_CurveType aTypeE;
BRepAdaptor_Curve aBAC(*anE);
aTypeE=aBAC.GetType();
if (aTypeE!=GeomAbs_Line) {
return anExitCode;
}
GeomAbs_SurfaceType aTypeS;
aTypeS=aQuadric.TypeQuadric();
if (aTypeS!=GeomAbs_Cylinder) {
return anExitCode;
}
Standard_Real f, l, U1f, U1l, U2f, U2l, UEgde, TOL, aDist, aR, aRRel, Tol;
Handle(Geom_Curve) aCEdge=BRep_Tool::Curve(*anE, f, l);
gp_Cylinder aCyl=aQuadric.Cylinder();
const gp_Ax1& anAx1=aCyl.Axis();
gp_Lin aLin(anAx1);
Handle(Geom_Line) aCAxis=new Geom_Line (aLin);
aR=aCyl.Radius();
U1f = aCAxis->FirstParameter();
U1l = aCAxis->LastParameter();
U2f = aCEdge->FirstParameter();
U2l = aCEdge->LastParameter();
GeomAdaptor_Curve C1, C2;
C1.Load(aCAxis);
C2.Load(aCEdge);
Tol = Precision::PConfusion();
Extrema_ExtCC anExtCC(C1, C2, U1f, U1l, U2f, U2l, Tol, Tol);
aNbExt=anExtCC.NbExt();
if (aNbExt!=1) {
return anExitCode;
}
gp_Pnt P1,PEdge;
Extrema_POnCurv PC1, PC2;
anExtCC.Points(1, PC1, PC2);
P1 =PC1.Value();
PEdge=PC2.Value();
UEgde=PC2.Parameter();
aDist=PEdge.Distance(P1);
aRRel=fabs(aDist-aR)/aR;
if (aRRel > TolBoundary) {
return anExitCode;
}
if (UEgde < (f+TolBoundary) || UEgde > (l-TolBoundary)) {
return anExitCode;
}
//
// Do not wonder !
// It was done as into PointProcess(...) function
//printf("TreatLC()=> tangent line is found\n");
TOL=1000.*TolBoundary;
if(TOL>0.001) TOL=0.001;
IntStart_ThePathPoint ptsol;
ptsol.SetValue(PEdge, TOL, A, UEgde);
pnt.Append(ptsol);
anExitCode=0;
return anExitCode;
}
//=======================================================================
//function : IntStart_SearchOnBoundaries::IntStart_SearchOnBoundaries
//purpose :
//=======================================================================
IntStart_SearchOnBoundaries::IntStart_SearchOnBoundaries ()
: done(Standard_False),
all(Standard_False)
{
}
//=======================================================================
//function : Perform
//purpose :
//=======================================================================
void IntStart_SearchOnBoundaries::Perform (TheFunction& Func,
const Handle(TheTopolTool)& Domain,
const Standard_Real TolBoundary,
const Standard_Real TolTangency,
const Standard_Boolean RecheckOnRegularity)
{
done = Standard_False;
spnt.Clear();
sseg.Clear();
Standard_Boolean Arcsol;
Standard_Real PDeb,PFin, prm, tol;
Standard_Integer i, nbknown, nbfound,index;
gp_Pnt pt;
Domain->Init();
if (Domain->More()) {
all = Standard_True;
}
else {
all = Standard_False;
}
while (Domain->More()) {
TheArc A = Domain->Value();
if (!TheSOBTool::HasBeenSeen(A)) {
Func.Set(A);
FindVertex(A,Domain,Func,spnt,TolBoundary);
TheSOBTool::Bounds(A,PDeb,PFin);
if(Precision::IsNegativeInfinite(PDeb) ||
Precision::IsPositiveInfinite(PFin)) {
Standard_Integer NbEchant;
ComputeBoundsfromInfinite(Func,PDeb,PFin,NbEchant);
}
BoundedArc(A,Domain,PDeb,PFin,Func,spnt,sseg,TolBoundary,TolTangency,Arcsol,RecheckOnRegularity);
all = (all && Arcsol);
}
else {
// as it seems we'll never be here, because
// TheSOBTool::HasBeenSeen(A) always returns FALSE
nbfound = spnt.Length();
// On recupere les points connus
nbknown = TheSOBTool::NbPoints(A);
for (i=1; i<=nbknown; i++) {
TheSOBTool::Value(A,i,pt,tol,prm);
if (TheSOBTool::IsVertex(A,i)) {
TheVertex vtx;
TheSOBTool::Vertex(A,i,vtx);
spnt.Append(IntStart_ThePathPoint(pt,tol,vtx,A,prm));
}
else {
spnt.Append(IntStart_ThePathPoint(pt,tol,A,prm));
}
}
// On recupere les arcs solutions
nbknown = TheSOBTool::NbSegments(A);
for (i=1; i<=nbknown; i++) {
IntStart_TheSegment newseg;
newseg.SetValue(A);
if (TheSOBTool::HasFirstPoint(A,i,index)) {
newseg.SetLimitPoint(spnt.Value(nbfound+index),Standard_True);
}
if (TheSOBTool::HasLastPoint(A,i,index)) {
newseg.SetLimitPoint(spnt.Value(nbfound+index),Standard_False);
}
sseg.Append(newseg);
}
all = (all& TheSOBTool::IsAllSolution(A));
}
Domain->Next();
}
done = Standard_True;
}