mirror of
https://git.dev.opencascade.org/repos/occt.git
synced 2025-04-04 18:06:22 +03:00
Evaluator of offset surface has been protected against evaluation at infinite parameters. Now it throws exception when evaluating such data. The methods IsUClosed and IsVClosed of the class ShapeAnalysis_Surface have been corrected to avoid evaluation of the surface at infinite parameters (fighting with regressions "parasolid doc_3 E3" and "parasolid doc_2 A3" in products).
947 lines
33 KiB
C++
947 lines
33 KiB
C++
// Created on: 2015-09-21
|
|
// Copyright (c) 2015 OPEN CASCADE SAS
|
|
//
|
|
// This file is part of Open CASCADE Technology software library.
|
|
//
|
|
// This library is free software; you can redistribute it and/or modify it under
|
|
// the terms of the GNU Lesser General Public License version 2.1 as published
|
|
// by the Free Software Foundation, with special exception defined in the file
|
|
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
|
|
// distribution for complete text of the license and disclaimer of any warranty.
|
|
//
|
|
// Alternatively, this file may be used under the terms of Open CASCADE
|
|
// commercial license or contractual agreement.
|
|
|
|
#include <GeomEvaluator_OffsetSurface.hxx>
|
|
|
|
#include <GeomAdaptor_HSurface.hxx>
|
|
#include <CSLib.hxx>
|
|
#include <CSLib_NormalStatus.hxx>
|
|
#include <Geom_BezierSurface.hxx>
|
|
#include <Geom_BSplineSurface.hxx>
|
|
#include <Geom_UndefinedValue.hxx>
|
|
#include <GeomAdaptor_HSurface.hxx>
|
|
#include <gp_Vec.hxx>
|
|
#include <Standard_RangeError.hxx>
|
|
#include <Standard_NumericError.hxx>
|
|
|
|
IMPLEMENT_STANDARD_RTTIEXT(GeomEvaluator_OffsetSurface,GeomEvaluator_Surface)
|
|
|
|
namespace {
|
|
|
|
// tolerance for considering derivative to be null
|
|
const Standard_Real the_D1MagTol = 1.e-9;
|
|
|
|
// If calculation of normal fails, try shifting the point towards the center
|
|
// of the parametric space of the surface, in the hope that derivatives
|
|
// are better defined there.
|
|
//
|
|
// This shift is iterative, starting with Precision::PConfusion()
|
|
// and increasing by multiple of 2 on each step.
|
|
//
|
|
// NB: temporarily this is made as static function and not class method,
|
|
// hence code duplications
|
|
static Standard_Boolean shiftPoint (const Standard_Real theUStart, const Standard_Real theVStart,
|
|
Standard_Real& theU, Standard_Real& theV,
|
|
const Handle(Geom_Surface)& theSurf,
|
|
const Handle(GeomAdaptor_HSurface)& theAdaptor,
|
|
const gp_Vec& theD1U, const gp_Vec& theD1V)
|
|
{
|
|
// Get parametric bounds and closure status
|
|
Standard_Real aUMin, aUMax, aVMin, aVMax;
|
|
Standard_Boolean isUPeriodic, isVPeriodic;
|
|
if (! theSurf.IsNull())
|
|
{
|
|
theSurf->Bounds (aUMin, aUMax, aVMin, aVMax);
|
|
isUPeriodic = theSurf->IsUPeriodic();
|
|
isVPeriodic = theSurf->IsVPeriodic();
|
|
}
|
|
else
|
|
{
|
|
aUMin = theAdaptor->FirstUParameter();
|
|
aUMax = theAdaptor->LastUParameter();
|
|
aVMin = theAdaptor->FirstVParameter();
|
|
aVMax = theAdaptor->LastVParameter();
|
|
isUPeriodic = theAdaptor->IsUPeriodic();
|
|
isVPeriodic = theAdaptor->IsVPeriodic();
|
|
}
|
|
|
|
// check if either U or V is singular (normally one of them is)
|
|
Standard_Boolean isUSingular = (theD1U.SquareMagnitude() < the_D1MagTol * the_D1MagTol);
|
|
Standard_Boolean isVSingular = (theD1V.SquareMagnitude() < the_D1MagTol * the_D1MagTol);
|
|
|
|
// compute vector to shift from start point to center of the surface;
|
|
// if surface is periodic or singular in some direction, take shift in that direction zero
|
|
Standard_Real aDirU = (isUPeriodic || (isUSingular && ! isVSingular) ? 0. : 0.5 * (aUMin + aUMax) - theUStart);
|
|
Standard_Real aDirV = (isVPeriodic || (isVSingular && ! isUSingular) ? 0. : 0.5 * (aVMin + aVMax) - theVStart);
|
|
Standard_Real aDist = Sqrt (aDirU * aDirU + aDirV * aDirV);
|
|
|
|
// shift current point from its current position towards center, by value of twice
|
|
// current distance from it to start (but not less than Precision::PConfusion());
|
|
// fail if center is overpassed.
|
|
Standard_Real aDU = theU - theUStart;
|
|
Standard_Real aDV = theV - theVStart;
|
|
Standard_Real aStep = Max (2. * Sqrt (aDU * aDU + aDV * aDV), Precision::PConfusion());
|
|
if (aStep >= aDist)
|
|
{
|
|
return Standard_False;
|
|
}
|
|
|
|
aStep /= aDist;
|
|
theU += aDirU * aStep;
|
|
theV += aDirV * aStep;
|
|
|
|
// std::cout << "Normal calculation failed at (" << theUStart << ", " << theVStart << "), shifting to (" << theU << ", " << theV << ")" << std::endl;
|
|
|
|
return Standard_True;
|
|
}
|
|
|
|
// auxiliary function
|
|
template<class SurfOrAdapt>
|
|
static void derivatives(Standard_Integer theMaxOrder,
|
|
Standard_Integer theMinOrder,
|
|
const Standard_Real theU,
|
|
const Standard_Real theV,
|
|
const SurfOrAdapt& theBasisSurf,
|
|
const Standard_Integer theNU,
|
|
const Standard_Integer theNV,
|
|
const Standard_Boolean theAlongU,
|
|
const Standard_Boolean theAlongV,
|
|
const Handle(Geom_BSplineSurface)& theL,
|
|
TColgp_Array2OfVec& theDerNUV,
|
|
TColgp_Array2OfVec& theDerSurf)
|
|
{
|
|
Standard_Integer i, j;
|
|
gp_Pnt P;
|
|
gp_Vec DL1U, DL1V, DL2U, DL2V, DL2UV, DL3U, DL3UUV, DL3UVV, DL3V;
|
|
|
|
if (theAlongU || theAlongV)
|
|
{
|
|
theMaxOrder = 0;
|
|
TColgp_Array2OfVec DerSurfL(0, theMaxOrder + theNU + 1, 0, theMaxOrder + theNV + 1);
|
|
switch (theMinOrder)
|
|
{
|
|
case 1:
|
|
theL->D1(theU, theV, P, DL1U, DL1V);
|
|
DerSurfL.SetValue(1, 0, DL1U);
|
|
DerSurfL.SetValue(0, 1, DL1V);
|
|
break;
|
|
case 2:
|
|
theL->D2(theU, theV, P, DL1U, DL1V, DL2U, DL2V, DL2UV);
|
|
DerSurfL.SetValue(1, 0, DL1U);
|
|
DerSurfL.SetValue(0, 1, DL1V);
|
|
DerSurfL.SetValue(1, 1, DL2UV);
|
|
DerSurfL.SetValue(2, 0, DL2U);
|
|
DerSurfL.SetValue(0, 2, DL2V);
|
|
break;
|
|
case 3:
|
|
theL->D3(theU, theV, P, DL1U, DL1V, DL2U, DL2V, DL2UV, DL3U, DL3V, DL3UUV, DL3UVV);
|
|
DerSurfL.SetValue(1, 0, DL1U);
|
|
DerSurfL.SetValue(0, 1, DL1V);
|
|
DerSurfL.SetValue(1, 1, DL2UV);
|
|
DerSurfL.SetValue(2, 0, DL2U);
|
|
DerSurfL.SetValue(0, 2, DL2V);
|
|
DerSurfL.SetValue(3, 0, DL3U);
|
|
DerSurfL.SetValue(2, 1, DL3UUV);
|
|
DerSurfL.SetValue(1, 2, DL3UVV);
|
|
DerSurfL.SetValue(0, 3, DL3V);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
if (theNU <= theNV)
|
|
{
|
|
for (i = 0; i <= theMaxOrder + 1 + theNU; i++)
|
|
for (j = i; j <= theMaxOrder + theNV + 1; j++)
|
|
if (i + j > theMinOrder)
|
|
{
|
|
DerSurfL.SetValue(i, j, theL->DN(theU, theV, i, j));
|
|
theDerSurf.SetValue(i, j, theBasisSurf->DN(theU, theV, i, j));
|
|
if (i != j && j <= theNU + 1)
|
|
{
|
|
theDerSurf.SetValue(j, i, theBasisSurf->DN(theU, theV, j, i));
|
|
DerSurfL.SetValue(j, i, theL->DN(theU, theV, j, i));
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
for (j = 0; j <= theMaxOrder + 1 + theNV; j++)
|
|
for (i = j; i <= theMaxOrder + theNU + 1; i++)
|
|
if (i + j > theMinOrder)
|
|
{
|
|
DerSurfL.SetValue(i, j, theL->DN(theU, theV, i, j));
|
|
theDerSurf.SetValue(i, j, theBasisSurf->DN(theU, theV, i, j));
|
|
if (i != j && i <= theNV + 1)
|
|
{
|
|
theDerSurf.SetValue(j, i, theBasisSurf->DN(theU, theV, j, i));
|
|
DerSurfL.SetValue(j, i, theL->DN(theU, theV, j, i));
|
|
}
|
|
}
|
|
}
|
|
for (i = 0; i <= theMaxOrder + theNU; i++)
|
|
for (j = 0; j <= theMaxOrder + theNV; j++)
|
|
{
|
|
if (theAlongU)
|
|
theDerNUV.SetValue(i, j, CSLib::DNNUV(i, j, DerSurfL, theDerSurf));
|
|
if (theAlongV)
|
|
theDerNUV.SetValue(i, j, CSLib::DNNUV(i, j, theDerSurf, DerSurfL));
|
|
}
|
|
}
|
|
else
|
|
{
|
|
for (i = 0; i <= theMaxOrder + theNU+ 1; i++)
|
|
{
|
|
for (j = i; j <= theMaxOrder + theNV + 1; j++)
|
|
{
|
|
if (i + j > theMinOrder)
|
|
{
|
|
theDerSurf.SetValue(i, j, theBasisSurf->DN(theU, theV, i, j));
|
|
if (i != j
|
|
&& j <= theDerSurf.UpperRow()
|
|
&& i <= theDerSurf.UpperCol())
|
|
{
|
|
theDerSurf.SetValue(j, i, theBasisSurf->DN(theU, theV, j, i));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
for (i = 0; i <= theMaxOrder + theNU; i++)
|
|
for (j = 0; j <= theMaxOrder + theNV; j++)
|
|
theDerNUV.SetValue(i, j, CSLib::DNNUV(i, j, theDerSurf));
|
|
}
|
|
}
|
|
|
|
inline Standard_Boolean IsInfiniteCoord (const gp_Vec& theVec)
|
|
{
|
|
return Precision::IsInfinite (theVec.X()) ||
|
|
Precision::IsInfinite (theVec.Y()) ||
|
|
Precision::IsInfinite (theVec.Z());
|
|
}
|
|
|
|
inline void CheckInfinite (const gp_Vec& theVecU, const gp_Vec& theVecV)
|
|
{
|
|
if (IsInfiniteCoord (theVecU) || IsInfiniteCoord (theVecV))
|
|
{
|
|
throw Standard_NumericError ("GeomEvaluator_OffsetSurface: Evaluation of infinite parameters");
|
|
}
|
|
}
|
|
|
|
} // end of anonymous namespace
|
|
|
|
GeomEvaluator_OffsetSurface::GeomEvaluator_OffsetSurface(
|
|
const Handle(Geom_Surface)& theBase,
|
|
const Standard_Real theOffset,
|
|
const Handle(Geom_OsculatingSurface)& theOscSurf)
|
|
: GeomEvaluator_Surface(),
|
|
myBaseSurf(theBase),
|
|
myOffset(theOffset),
|
|
myOscSurf(theOscSurf)
|
|
{
|
|
if (!myOscSurf.IsNull())
|
|
return; // osculating surface already exists
|
|
|
|
// Create osculating surface for B-spline and Besier surfaces only
|
|
if (myBaseSurf->IsKind(STANDARD_TYPE(Geom_BSplineSurface)) ||
|
|
myBaseSurf->IsKind(STANDARD_TYPE(Geom_BezierSurface)))
|
|
myOscSurf = new Geom_OsculatingSurface(myBaseSurf, Precision::Confusion());
|
|
}
|
|
|
|
GeomEvaluator_OffsetSurface::GeomEvaluator_OffsetSurface(
|
|
const Handle(GeomAdaptor_HSurface)& theBase,
|
|
const Standard_Real theOffset,
|
|
const Handle(Geom_OsculatingSurface)& theOscSurf)
|
|
: GeomEvaluator_Surface(),
|
|
myBaseAdaptor(theBase),
|
|
myOffset(theOffset),
|
|
myOscSurf(theOscSurf)
|
|
{
|
|
}
|
|
|
|
void GeomEvaluator_OffsetSurface::D0(
|
|
const Standard_Real theU, const Standard_Real theV, gp_Pnt& theValue) const
|
|
{
|
|
Standard_Real aU = theU, aV = theV;
|
|
for (;;)
|
|
{
|
|
gp_Vec aD1U, aD1V;
|
|
BaseD1 (aU, aV, theValue, aD1U, aD1V);
|
|
|
|
CheckInfinite (aD1U, aD1V);
|
|
|
|
try
|
|
{
|
|
CalculateD0(aU, aV, theValue, aD1U, aD1V);
|
|
break;
|
|
}
|
|
catch (Geom_UndefinedValue&)
|
|
{
|
|
// if failed at parametric boundary, try taking derivative at shifted point
|
|
if (! shiftPoint (theU, theV, aU, aV, myBaseSurf, myBaseAdaptor, aD1U, aD1V))
|
|
{
|
|
throw;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void GeomEvaluator_OffsetSurface::D1(
|
|
const Standard_Real theU, const Standard_Real theV,
|
|
gp_Pnt& theValue, gp_Vec& theD1U, gp_Vec& theD1V) const
|
|
{
|
|
Standard_Real aU = theU, aV = theV;
|
|
for (;;)
|
|
{
|
|
gp_Vec aD2U, aD2V, aD2UV;
|
|
BaseD2 (aU, aV, theValue, theD1U, theD1V, aD2U, aD2V, aD2UV);
|
|
|
|
CheckInfinite (theD1U, theD1V);
|
|
|
|
try
|
|
{
|
|
CalculateD1(aU, aV, theValue, theD1U, theD1V, aD2U, aD2V, aD2UV);
|
|
break;
|
|
}
|
|
catch (Geom_UndefinedValue&)
|
|
{
|
|
// if failed at parametric boundary, try taking derivative at shifted point
|
|
if (! shiftPoint (theU, theV, aU, aV, myBaseSurf, myBaseAdaptor, theD1U, theD1V))
|
|
{
|
|
throw;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void GeomEvaluator_OffsetSurface::D2(
|
|
const Standard_Real theU, const Standard_Real theV,
|
|
gp_Pnt& theValue, gp_Vec& theD1U, gp_Vec& theD1V,
|
|
gp_Vec& theD2U, gp_Vec& theD2V, gp_Vec& theD2UV) const
|
|
{
|
|
Standard_Real aU = theU, aV = theV;
|
|
for (;;)
|
|
{
|
|
gp_Vec aD3U, aD3V, aD3UUV, aD3UVV;
|
|
BaseD3 (aU, aV, theValue, theD1U, theD1V,
|
|
theD2U, theD2V, theD2UV, aD3U, aD3V, aD3UUV, aD3UVV);
|
|
|
|
CheckInfinite (theD1U, theD1V);
|
|
|
|
try
|
|
{
|
|
CalculateD2 (aU, aV, theValue, theD1U, theD1V,
|
|
theD2U, theD2V, theD2UV, aD3U, aD3V, aD3UUV, aD3UVV);
|
|
break;
|
|
}
|
|
catch (Geom_UndefinedValue&)
|
|
{
|
|
// if failed at parametric boundary, try taking derivative at shifted point
|
|
if (! shiftPoint (theU, theV, aU, aV, myBaseSurf, myBaseAdaptor, theD1U, theD1V))
|
|
{
|
|
throw;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void GeomEvaluator_OffsetSurface::D3(
|
|
const Standard_Real theU, const Standard_Real theV,
|
|
gp_Pnt& theValue, gp_Vec& theD1U, gp_Vec& theD1V,
|
|
gp_Vec& theD2U, gp_Vec& theD2V, gp_Vec& theD2UV,
|
|
gp_Vec& theD3U, gp_Vec& theD3V, gp_Vec& theD3UUV, gp_Vec& theD3UVV) const
|
|
{
|
|
Standard_Real aU = theU, aV = theV;
|
|
for (;;)
|
|
{
|
|
BaseD3 (aU, aV, theValue, theD1U, theD1V,
|
|
theD2U, theD2V, theD2UV, theD3U, theD3V, theD3UUV, theD3UVV);
|
|
|
|
CheckInfinite (theD1U, theD1V);
|
|
|
|
try
|
|
{
|
|
CalculateD3 (aU, aV, theValue, theD1U, theD1V,
|
|
theD2U, theD2V, theD2UV, theD3U, theD3V, theD3UUV, theD3UVV);
|
|
break;
|
|
}
|
|
catch (Geom_UndefinedValue&)
|
|
{
|
|
// if failed at parametric boundary, try taking derivative at shifted point
|
|
if (! shiftPoint (theU, theV, aU, aV, myBaseSurf, myBaseAdaptor, theD1U, theD1V))
|
|
{
|
|
throw;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
gp_Vec GeomEvaluator_OffsetSurface::DN(
|
|
const Standard_Real theU, const Standard_Real theV,
|
|
const Standard_Integer theDerU, const Standard_Integer theDerV) const
|
|
{
|
|
Standard_RangeError_Raise_if(theDerU < 0, "GeomEvaluator_OffsetSurface::DN(): theDerU < 0");
|
|
Standard_RangeError_Raise_if(theDerV < 0, "GeomEvaluator_OffsetSurface::DN(): theDerV < 0");
|
|
Standard_RangeError_Raise_if(theDerU + theDerV < 1,
|
|
"GeomEvaluator_OffsetSurface::DN(): theDerU + theDerV < 1");
|
|
|
|
Standard_Real aU = theU, aV = theV;
|
|
for (;;)
|
|
{
|
|
gp_Pnt aP;
|
|
gp_Vec aD1U, aD1V;
|
|
BaseD1 (aU, aV, aP, aD1U, aD1V);
|
|
|
|
CheckInfinite (aD1U, aD1V);
|
|
|
|
try
|
|
{
|
|
return CalculateDN (aU, aV, theDerU, theDerV, aD1U, aD1V);
|
|
}
|
|
catch (Geom_UndefinedValue&)
|
|
{
|
|
// if failed at parametric boundary, try taking derivative at shifted point
|
|
if (! shiftPoint (theU, theV, aU, aV, myBaseSurf, myBaseAdaptor, aD1U, aD1V))
|
|
{
|
|
throw;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void GeomEvaluator_OffsetSurface::BaseD0(const Standard_Real theU, const Standard_Real theV,
|
|
gp_Pnt& theValue) const
|
|
{
|
|
if (!myBaseAdaptor.IsNull())
|
|
myBaseAdaptor->D0(theU, theV, theValue);
|
|
else
|
|
myBaseSurf->D0(theU, theV, theValue);
|
|
}
|
|
|
|
void GeomEvaluator_OffsetSurface::BaseD1(const Standard_Real theU, const Standard_Real theV,
|
|
gp_Pnt& theValue, gp_Vec& theD1U, gp_Vec& theD1V) const
|
|
{
|
|
if (!myBaseAdaptor.IsNull())
|
|
myBaseAdaptor->D1(theU, theV, theValue, theD1U, theD1V);
|
|
else
|
|
myBaseSurf->D1(theU, theV, theValue, theD1U, theD1V);
|
|
}
|
|
|
|
void GeomEvaluator_OffsetSurface::BaseD2(const Standard_Real theU, const Standard_Real theV,
|
|
gp_Pnt& theValue, gp_Vec& theD1U, gp_Vec& theD1V,
|
|
gp_Vec& theD2U, gp_Vec& theD2V, gp_Vec& theD2UV) const
|
|
{
|
|
if (!myBaseAdaptor.IsNull())
|
|
myBaseAdaptor->D2(theU, theV, theValue, theD1U, theD1V, theD2U, theD2V, theD2UV);
|
|
else
|
|
myBaseSurf->D2(theU, theV, theValue, theD1U, theD1V, theD2U, theD2V, theD2UV);
|
|
}
|
|
|
|
void GeomEvaluator_OffsetSurface::BaseD3(
|
|
const Standard_Real theU, const Standard_Real theV,
|
|
gp_Pnt& theValue, gp_Vec& theD1U, gp_Vec& theD1V,
|
|
gp_Vec& theD2U, gp_Vec& theD2V, gp_Vec& theD2UV,
|
|
gp_Vec& theD3U, gp_Vec& theD3V, gp_Vec& theD3UUV, gp_Vec& theD3UVV) const
|
|
{
|
|
if (!myBaseAdaptor.IsNull())
|
|
myBaseAdaptor->D3(theU, theV, theValue, theD1U, theD1V,
|
|
theD2U, theD2V, theD2UV, theD3U, theD3V, theD3UUV, theD3UVV);
|
|
else
|
|
myBaseSurf->D3(theU, theV, theValue, theD1U, theD1V,
|
|
theD2U, theD2V, theD2UV, theD3U, theD3V, theD3UUV, theD3UVV);
|
|
}
|
|
|
|
|
|
void GeomEvaluator_OffsetSurface::CalculateD0(
|
|
const Standard_Real theU, const Standard_Real theV,
|
|
gp_Pnt& theValue,
|
|
const gp_Vec& theD1U, const gp_Vec& theD1V) const
|
|
{
|
|
// Normalize derivatives before normal calculation because it gives more stable result.
|
|
// There will be normalized only derivatives greater than 1.0 to avoid differences in last significant digit
|
|
gp_Vec aD1U(theD1U);
|
|
gp_Vec aD1V(theD1V);
|
|
Standard_Real aD1UNorm2 = aD1U.SquareMagnitude();
|
|
Standard_Real aD1VNorm2 = aD1V.SquareMagnitude();
|
|
if (aD1UNorm2 > 1.0)
|
|
aD1U /= Sqrt(aD1UNorm2);
|
|
if (aD1VNorm2 > 1.0)
|
|
aD1V /= Sqrt(aD1VNorm2);
|
|
|
|
gp_Vec aNorm = aD1U.Crossed(aD1V);
|
|
if (aNorm.SquareMagnitude() > the_D1MagTol * the_D1MagTol)
|
|
{
|
|
// Non singular case. Simple computations.
|
|
aNorm.Normalize();
|
|
theValue.SetXYZ(theValue.XYZ() + myOffset * aNorm.XYZ());
|
|
}
|
|
else
|
|
{
|
|
const Standard_Integer MaxOrder = 3;
|
|
|
|
Handle(Geom_BSplineSurface) L;
|
|
Standard_Boolean isOpposite = Standard_False;
|
|
Standard_Boolean AlongU = Standard_False;
|
|
Standard_Boolean AlongV = Standard_False;
|
|
if (!myOscSurf.IsNull())
|
|
{
|
|
AlongU = myOscSurf->UOscSurf(theU, theV, isOpposite, L);
|
|
AlongV = myOscSurf->VOscSurf(theU, theV, isOpposite, L);
|
|
}
|
|
const Standard_Real aSign = ((AlongV || AlongU) && isOpposite) ? -1. : 1.;
|
|
|
|
TColgp_Array2OfVec DerNUV(0, MaxOrder, 0, MaxOrder);
|
|
TColgp_Array2OfVec DerSurf(0, MaxOrder + 1, 0, MaxOrder + 1);
|
|
Standard_Integer OrderU, OrderV;
|
|
Standard_Real Umin = 0, Umax = 0, Vmin = 0, Vmax = 0;
|
|
Bounds(Umin, Umax, Vmin, Vmax);
|
|
|
|
DerSurf.SetValue(1, 0, theD1U);
|
|
DerSurf.SetValue(0, 1, theD1V);
|
|
if (!myBaseSurf.IsNull())
|
|
derivatives(MaxOrder, 1, theU, theV, myBaseSurf, 0, 0, AlongU, AlongV, L, DerNUV, DerSurf);
|
|
else
|
|
derivatives(MaxOrder, 1, theU, theV, myBaseAdaptor, 0, 0, AlongU, AlongV, L, DerNUV, DerSurf);
|
|
|
|
gp_Dir Normal;
|
|
CSLib_NormalStatus NStatus = CSLib_Singular;
|
|
CSLib::Normal(MaxOrder, DerNUV, the_D1MagTol, theU, theV, Umin, Umax, Vmin, Vmax,
|
|
NStatus, Normal, OrderU, OrderV);
|
|
if (NStatus == CSLib_InfinityOfSolutions)
|
|
{
|
|
// Replace zero derivative and try to calculate normal
|
|
gp_Vec aNewDU = theD1U;
|
|
gp_Vec aNewDV = theD1V;
|
|
if (ReplaceDerivative(theU, theV, aNewDU, aNewDV, the_D1MagTol * the_D1MagTol))
|
|
CSLib::Normal(aNewDU, aNewDV, the_D1MagTol, NStatus, Normal);
|
|
}
|
|
|
|
if (NStatus != CSLib_Defined)
|
|
throw Geom_UndefinedValue(
|
|
"GeomEvaluator_OffsetSurface::CalculateD0(): Unable to calculate normal");
|
|
|
|
theValue.SetXYZ(theValue.XYZ() + myOffset * aSign * Normal.XYZ());
|
|
}
|
|
}
|
|
|
|
void GeomEvaluator_OffsetSurface::CalculateD1(
|
|
const Standard_Real theU, const Standard_Real theV,
|
|
gp_Pnt& theValue, gp_Vec& theD1U, gp_Vec& theD1V,
|
|
const gp_Vec& theD2U, const gp_Vec& theD2V, const gp_Vec& theD2UV) const
|
|
{
|
|
// Check offset side.
|
|
Handle(Geom_BSplineSurface) L;
|
|
Standard_Boolean isOpposite = Standard_False;
|
|
Standard_Boolean AlongU = Standard_False;
|
|
Standard_Boolean AlongV = Standard_False;
|
|
|
|
// Normalize derivatives before normal calculation because it gives more stable result.
|
|
// There will be normalized only derivatives greater than 1.0 to avoid differences in last significant digit
|
|
gp_Vec aD1U(theD1U);
|
|
gp_Vec aD1V(theD1V);
|
|
Standard_Real aD1UNorm2 = aD1U.SquareMagnitude();
|
|
Standard_Real aD1VNorm2 = aD1V.SquareMagnitude();
|
|
if (aD1UNorm2 > 1.0)
|
|
aD1U /= Sqrt(aD1UNorm2);
|
|
if (aD1VNorm2 > 1.0)
|
|
aD1V /= Sqrt(aD1VNorm2);
|
|
|
|
Standard_Boolean isSingular = Standard_False;
|
|
Standard_Integer MaxOrder = 0;
|
|
gp_Vec aNorm = aD1U.Crossed(aD1V);
|
|
if (aNorm.SquareMagnitude() <= the_D1MagTol * the_D1MagTol)
|
|
{
|
|
if (!myOscSurf.IsNull())
|
|
{
|
|
AlongU = myOscSurf->UOscSurf(theU, theV, isOpposite, L);
|
|
AlongV = myOscSurf->VOscSurf(theU, theV, isOpposite, L);
|
|
}
|
|
|
|
MaxOrder = 3;
|
|
isSingular = Standard_True;
|
|
}
|
|
|
|
const Standard_Real aSign = ((AlongV || AlongU) && isOpposite) ? -1. : 1.;
|
|
|
|
if (!isSingular)
|
|
{
|
|
// AlongU or AlongV leads to more complex D1 computation
|
|
// Try to compute D0 and D1 much simpler
|
|
aNorm.Normalize();
|
|
theValue.SetXYZ(theValue.XYZ() + myOffset * aSign * aNorm.XYZ());
|
|
|
|
gp_Vec aN0(aNorm.XYZ()), aN1U, aN1V;
|
|
Standard_Real aScale = (theD1U^theD1V).Dot(aN0);
|
|
aN1U.SetX(theD2U.Y() * theD1V.Z() + theD1U.Y() * theD2UV.Z()
|
|
- theD2U.Z() * theD1V.Y() - theD1U.Z() * theD2UV.Y());
|
|
aN1U.SetY((theD2U.X() * theD1V.Z() + theD1U.X() * theD2UV.Z()
|
|
- theD2U.Z() * theD1V.X() - theD1U.Z() * theD2UV.X()) * -1.0);
|
|
aN1U.SetZ(theD2U.X() * theD1V.Y() + theD1U.X() * theD2UV.Y()
|
|
- theD2U.Y() * theD1V.X() - theD1U.Y() * theD2UV.X());
|
|
Standard_Real aScaleU = aN1U.Dot(aN0);
|
|
aN1U.Subtract(aScaleU * aN0);
|
|
aN1U /= aScale;
|
|
|
|
aN1V.SetX(theD2UV.Y() * theD1V.Z() + theD2V.Z() * theD1U.Y()
|
|
- theD2UV.Z() * theD1V.Y() - theD2V.Y() * theD1U.Z());
|
|
aN1V.SetY((theD2UV.X() * theD1V.Z() + theD2V.Z() * theD1U.X()
|
|
- theD2UV.Z() * theD1V.X() - theD2V.X() * theD1U.Z()) * -1.0);
|
|
aN1V.SetZ(theD2UV.X() * theD1V.Y() + theD2V.Y() * theD1U.X()
|
|
- theD2UV.Y() * theD1V.X() - theD2V.X() * theD1U.Y());
|
|
Standard_Real aScaleV = aN1V.Dot(aN0);
|
|
aN1V.Subtract(aScaleV * aN0);
|
|
aN1V /= aScale;
|
|
|
|
theD1U += myOffset * aSign * aN1U;
|
|
theD1V += myOffset * aSign * aN1V;
|
|
|
|
return;
|
|
}
|
|
|
|
Standard_Integer OrderU, OrderV;
|
|
TColgp_Array2OfVec DerNUV(0, MaxOrder + 1, 0, MaxOrder + 1);
|
|
TColgp_Array2OfVec DerSurf(0, MaxOrder + 2, 0, MaxOrder + 2);
|
|
Standard_Real Umin = 0, Umax = 0, Vmin = 0, Vmax = 0;
|
|
Bounds(Umin, Umax, Vmin, Vmax);
|
|
|
|
DerSurf.SetValue(1, 0, theD1U);
|
|
DerSurf.SetValue(0, 1, theD1V);
|
|
DerSurf.SetValue(1, 1, theD2UV);
|
|
DerSurf.SetValue(2, 0, theD2U);
|
|
DerSurf.SetValue(0, 2, theD2V);
|
|
if (!myBaseSurf.IsNull())
|
|
derivatives(MaxOrder, 2, theU, theV, myBaseSurf, 1, 1, AlongU, AlongV, L, DerNUV, DerSurf);
|
|
else
|
|
derivatives(MaxOrder, 2, theU, theV, myBaseAdaptor, 1, 1, AlongU, AlongV, L, DerNUV, DerSurf);
|
|
|
|
gp_Dir Normal;
|
|
CSLib_NormalStatus NStatus;
|
|
CSLib::Normal(MaxOrder, DerNUV, the_D1MagTol, theU, theV, Umin, Umax, Vmin, Vmax, NStatus, Normal, OrderU, OrderV);
|
|
if (NStatus == CSLib_InfinityOfSolutions)
|
|
{
|
|
gp_Vec aNewDU = theD1U;
|
|
gp_Vec aNewDV = theD1V;
|
|
// Replace zero derivative and try to calculate normal
|
|
if (ReplaceDerivative(theU, theV, aNewDU, aNewDV, the_D1MagTol * the_D1MagTol))
|
|
{
|
|
DerSurf.SetValue(1, 0, aNewDU);
|
|
DerSurf.SetValue(0, 1, aNewDV);
|
|
if (!myBaseSurf.IsNull())
|
|
derivatives(MaxOrder, 2, theU, theV, myBaseSurf, 1, 1, AlongU, AlongV, L, DerNUV, DerSurf);
|
|
else
|
|
derivatives(MaxOrder, 2, theU, theV, myBaseAdaptor, 1, 1, AlongU, AlongV, L, DerNUV, DerSurf);
|
|
CSLib::Normal(MaxOrder, DerNUV, the_D1MagTol, theU, theV, Umin, Umax, Vmin, Vmax,
|
|
NStatus, Normal, OrderU, OrderV);
|
|
}
|
|
}
|
|
|
|
if (NStatus != CSLib_Defined)
|
|
throw Geom_UndefinedValue(
|
|
"GeomEvaluator_OffsetSurface::CalculateD1(): Unable to calculate normal");
|
|
|
|
theValue.SetXYZ(theValue.XYZ() + myOffset * aSign * Normal.XYZ());
|
|
|
|
theD1U = DerSurf(1, 0) + myOffset * aSign * CSLib::DNNormal(1, 0, DerNUV, OrderU, OrderV);
|
|
theD1V = DerSurf(0, 1) + myOffset * aSign * CSLib::DNNormal(0, 1, DerNUV, OrderU, OrderV);
|
|
}
|
|
|
|
void GeomEvaluator_OffsetSurface::CalculateD2(
|
|
const Standard_Real theU, const Standard_Real theV,
|
|
gp_Pnt& theValue, gp_Vec& theD1U, gp_Vec& theD1V,
|
|
gp_Vec& theD2U, gp_Vec& theD2V, gp_Vec& theD2UV,
|
|
const gp_Vec& theD3U, const gp_Vec& theD3V, const gp_Vec& theD3UUV, const gp_Vec& theD3UVV) const
|
|
{
|
|
gp_Dir Normal;
|
|
CSLib_NormalStatus NStatus;
|
|
CSLib::Normal(theD1U, theD1V, the_D1MagTol, NStatus, Normal);
|
|
|
|
const Standard_Integer MaxOrder = (NStatus == CSLib_Defined) ? 0 : 3;
|
|
Standard_Integer OrderU, OrderV;
|
|
TColgp_Array2OfVec DerNUV(0, MaxOrder + 2, 0, MaxOrder + 2);
|
|
TColgp_Array2OfVec DerSurf(0, MaxOrder + 3, 0, MaxOrder + 3);
|
|
|
|
Standard_Real Umin = 0, Umax = 0, Vmin = 0, Vmax = 0;
|
|
Bounds(Umin, Umax, Vmin, Vmax);
|
|
|
|
DerSurf.SetValue(1, 0, theD1U);
|
|
DerSurf.SetValue(0, 1, theD1V);
|
|
DerSurf.SetValue(1, 1, theD2UV);
|
|
DerSurf.SetValue(2, 0, theD2U);
|
|
DerSurf.SetValue(0, 2, theD2V);
|
|
DerSurf.SetValue(3, 0, theD3U);
|
|
DerSurf.SetValue(2, 1, theD3UUV);
|
|
DerSurf.SetValue(1, 2, theD3UVV);
|
|
DerSurf.SetValue(0, 3, theD3V);
|
|
//*********************
|
|
|
|
Handle(Geom_BSplineSurface) L;
|
|
Standard_Boolean isOpposite = Standard_False;
|
|
Standard_Boolean AlongU = Standard_False;
|
|
Standard_Boolean AlongV = Standard_False;
|
|
if ((NStatus != CSLib_Defined) && !myOscSurf.IsNull())
|
|
{
|
|
AlongU = myOscSurf->UOscSurf(theU, theV, isOpposite, L);
|
|
AlongV = myOscSurf->VOscSurf(theU, theV, isOpposite, L);
|
|
}
|
|
const Standard_Real aSign = ((AlongV || AlongU) && isOpposite) ? -1. : 1.;
|
|
|
|
if (!myBaseSurf.IsNull())
|
|
derivatives(MaxOrder, 3, theU, theV, myBaseSurf, 2, 2, AlongU, AlongV, L, DerNUV, DerSurf);
|
|
else
|
|
derivatives(MaxOrder, 3, theU, theV, myBaseAdaptor, 2, 2, AlongU, AlongV, L, DerNUV, DerSurf);
|
|
|
|
CSLib::Normal(MaxOrder, DerNUV, the_D1MagTol, theU, theV, Umin, Umax, Vmin, Vmax,
|
|
NStatus, Normal, OrderU, OrderV);
|
|
if (NStatus != CSLib_Defined)
|
|
throw Geom_UndefinedValue(
|
|
"GeomEvaluator_OffsetSurface::CalculateD2(): Unable to calculate normal");
|
|
|
|
theValue.SetXYZ(theValue.XYZ() + myOffset * aSign * Normal.XYZ());
|
|
|
|
theD1U = DerSurf(1, 0) + myOffset * aSign * CSLib::DNNormal(1, 0, DerNUV, OrderU, OrderV);
|
|
theD1V = DerSurf(0, 1) + myOffset * aSign * CSLib::DNNormal(0, 1, DerNUV, OrderU, OrderV);
|
|
|
|
if (!myBaseSurf.IsNull())
|
|
{
|
|
theD2U = myBaseSurf->DN(theU, theV, 2, 0);
|
|
theD2V = myBaseSurf->DN(theU, theV, 0, 2);
|
|
theD2UV = myBaseSurf->DN(theU, theV, 1, 1);
|
|
}
|
|
else
|
|
{
|
|
theD2U = myBaseAdaptor->DN(theU, theV, 2, 0);
|
|
theD2V = myBaseAdaptor->DN(theU, theV, 0, 2);
|
|
theD2UV = myBaseAdaptor->DN(theU, theV, 1, 1);
|
|
}
|
|
|
|
theD2U += aSign * myOffset * CSLib::DNNormal(2, 0, DerNUV, OrderU, OrderV);
|
|
theD2V += aSign * myOffset * CSLib::DNNormal(0, 2, DerNUV, OrderU, OrderV);
|
|
theD2UV += aSign * myOffset * CSLib::DNNormal(1, 1, DerNUV, OrderU, OrderV);
|
|
}
|
|
|
|
void GeomEvaluator_OffsetSurface::CalculateD3(
|
|
const Standard_Real theU, const Standard_Real theV,
|
|
gp_Pnt& theValue, gp_Vec& theD1U, gp_Vec& theD1V,
|
|
gp_Vec& theD2U, gp_Vec& theD2V, gp_Vec& theD2UV,
|
|
gp_Vec& theD3U, gp_Vec& theD3V, gp_Vec& theD3UUV, gp_Vec& theD3UVV) const
|
|
{
|
|
gp_Dir Normal;
|
|
CSLib_NormalStatus NStatus;
|
|
CSLib::Normal(theD1U, theD1V, the_D1MagTol, NStatus, Normal);
|
|
const Standard_Integer MaxOrder = (NStatus == CSLib_Defined) ? 0 : 3;
|
|
Standard_Integer OrderU, OrderV;
|
|
TColgp_Array2OfVec DerNUV(0, MaxOrder + 3, 0, MaxOrder + 3);
|
|
TColgp_Array2OfVec DerSurf(0, MaxOrder + 4, 0, MaxOrder + 4);
|
|
Standard_Real Umin = 0, Umax = 0, Vmin = 0, Vmax = 0;
|
|
Bounds(Umin, Umax, Vmin, Vmax);
|
|
|
|
DerSurf.SetValue(1, 0, theD1U);
|
|
DerSurf.SetValue(0, 1, theD1V);
|
|
DerSurf.SetValue(1, 1, theD2UV);
|
|
DerSurf.SetValue(2, 0, theD2U);
|
|
DerSurf.SetValue(0, 2, theD2V);
|
|
DerSurf.SetValue(3, 0, theD3U);
|
|
DerSurf.SetValue(2, 1, theD3UUV);
|
|
DerSurf.SetValue(1, 2, theD3UVV);
|
|
DerSurf.SetValue(0, 3, theD3V);
|
|
|
|
|
|
//*********************
|
|
Handle(Geom_BSplineSurface) L;
|
|
Standard_Boolean isOpposite = Standard_False;
|
|
Standard_Boolean AlongU = Standard_False;
|
|
Standard_Boolean AlongV = Standard_False;
|
|
if ((NStatus != CSLib_Defined) && !myOscSurf.IsNull())
|
|
{
|
|
AlongU = myOscSurf->UOscSurf(theU, theV, isOpposite, L);
|
|
AlongV = myOscSurf->VOscSurf(theU, theV, isOpposite, L);
|
|
}
|
|
const Standard_Real aSign = ((AlongV || AlongU) && isOpposite) ? -1. : 1.;
|
|
|
|
if (!myBaseSurf.IsNull())
|
|
derivatives(MaxOrder, 3, theU, theV, myBaseSurf, 3, 3, AlongU, AlongV, L, DerNUV, DerSurf);
|
|
else
|
|
derivatives(MaxOrder, 3, theU, theV, myBaseAdaptor, 3, 3, AlongU, AlongV, L, DerNUV, DerSurf);
|
|
|
|
CSLib::Normal(MaxOrder, DerNUV, the_D1MagTol, theU, theV, Umin, Umax, Vmin, Vmax,
|
|
NStatus, Normal, OrderU, OrderV);
|
|
if (NStatus != CSLib_Defined)
|
|
throw Geom_UndefinedValue(
|
|
"GeomEvaluator_OffsetSurface::CalculateD3(): Unable to calculate normal");
|
|
|
|
theValue.SetXYZ(theValue.XYZ() + myOffset * aSign * Normal.XYZ());
|
|
|
|
theD1U = DerSurf(1, 0) + myOffset * aSign * CSLib::DNNormal(1, 0, DerNUV, OrderU, OrderV);
|
|
theD1V = DerSurf(0, 1) + myOffset * aSign * CSLib::DNNormal(0, 1, DerNUV, OrderU, OrderV);
|
|
|
|
if (!myBaseSurf.IsNull())
|
|
{
|
|
theD2U = myBaseSurf->DN(theU, theV, 2, 0);
|
|
theD2V = myBaseSurf->DN(theU, theV, 0, 2);
|
|
theD2UV = myBaseSurf->DN(theU, theV, 1, 1);
|
|
theD3U = myBaseSurf->DN(theU, theV, 3, 0);
|
|
theD3V = myBaseSurf->DN(theU, theV, 0, 3);
|
|
theD3UUV = myBaseSurf->DN(theU, theV, 2, 1);
|
|
theD3UVV = myBaseSurf->DN(theU, theV, 1, 2);
|
|
}
|
|
else
|
|
{
|
|
theD2U = myBaseAdaptor->DN(theU, theV, 2, 0);
|
|
theD2V = myBaseAdaptor->DN(theU, theV, 0, 2);
|
|
theD2UV = myBaseAdaptor->DN(theU, theV, 1, 1);
|
|
theD3U = myBaseAdaptor->DN(theU, theV, 3, 0);
|
|
theD3V = myBaseAdaptor->DN(theU, theV, 0, 3);
|
|
theD3UUV = myBaseAdaptor->DN(theU, theV, 2, 1);
|
|
theD3UVV = myBaseAdaptor->DN(theU, theV, 1, 2);
|
|
}
|
|
|
|
theD2U += aSign * myOffset * CSLib::DNNormal(2, 0, DerNUV, OrderU, OrderV);
|
|
theD2V += aSign * myOffset * CSLib::DNNormal(0, 2, DerNUV, OrderU, OrderV);
|
|
theD2UV += aSign * myOffset * CSLib::DNNormal(1, 1, DerNUV, OrderU, OrderV);
|
|
theD3U += aSign * myOffset * CSLib::DNNormal(3, 0, DerNUV, OrderU, OrderV);
|
|
theD3V += aSign * myOffset * CSLib::DNNormal(0, 3, DerNUV, OrderU, OrderV);
|
|
theD3UUV += aSign * myOffset * CSLib::DNNormal(2, 1, DerNUV, OrderU, OrderV);
|
|
theD3UVV += aSign * myOffset * CSLib::DNNormal(1, 2, DerNUV, OrderU, OrderV);
|
|
}
|
|
|
|
gp_Vec GeomEvaluator_OffsetSurface::CalculateDN(
|
|
const Standard_Real theU, const Standard_Real theV,
|
|
const Standard_Integer theNu, const Standard_Integer theNv,
|
|
const gp_Vec& theD1U, const gp_Vec& theD1V) const
|
|
{
|
|
gp_Dir Normal;
|
|
CSLib_NormalStatus NStatus;
|
|
CSLib::Normal(theD1U, theD1V, the_D1MagTol, NStatus, Normal);
|
|
const Standard_Integer MaxOrder = (NStatus == CSLib_Defined) ? 0 : 3;
|
|
Standard_Integer OrderU, OrderV;
|
|
TColgp_Array2OfVec DerNUV(0, MaxOrder + theNu, 0, MaxOrder + theNv);
|
|
TColgp_Array2OfVec DerSurf(0, MaxOrder + theNu + 1, 0, MaxOrder + theNv + 1);
|
|
|
|
Standard_Real Umin = 0, Umax = 0, Vmin = 0, Vmax = 0;
|
|
Bounds(Umin, Umax, Vmin, Vmax);
|
|
|
|
DerSurf.SetValue(1, 0, theD1U);
|
|
DerSurf.SetValue(0, 1, theD1V);
|
|
|
|
//*********************
|
|
Handle(Geom_BSplineSurface) L;
|
|
// Is there any osculatingsurface along U or V;
|
|
Standard_Boolean isOpposite = Standard_False;
|
|
Standard_Boolean AlongU = Standard_False;
|
|
Standard_Boolean AlongV = Standard_False;
|
|
if ((NStatus != CSLib_Defined) && !myOscSurf.IsNull())
|
|
{
|
|
AlongU = myOscSurf->UOscSurf(theU, theV, isOpposite, L);
|
|
AlongV = myOscSurf->VOscSurf(theU, theV, isOpposite, L);
|
|
}
|
|
const Standard_Real aSign = ((AlongV || AlongU) && isOpposite) ? -1. : 1.;
|
|
|
|
if (!myBaseSurf.IsNull())
|
|
derivatives(MaxOrder, 1, theU, theV, myBaseSurf, theNu, theNv, AlongU, AlongV, L, DerNUV, DerSurf);
|
|
else
|
|
derivatives(MaxOrder, 1, theU, theV, myBaseAdaptor, theNu, theNv, AlongU, AlongV, L, DerNUV, DerSurf);
|
|
|
|
CSLib::Normal(MaxOrder, DerNUV, the_D1MagTol, theU, theV, Umin, Umax, Vmin, Vmax,
|
|
NStatus, Normal, OrderU, OrderV);
|
|
if (NStatus != CSLib_Defined)
|
|
throw Geom_UndefinedValue(
|
|
"GeomEvaluator_OffsetSurface::CalculateDN(): Unable to calculate normal");
|
|
|
|
gp_Vec D;
|
|
if (!myBaseSurf.IsNull())
|
|
D = myBaseSurf->DN(theU, theV, theNu, theNv);
|
|
else
|
|
D = myBaseAdaptor->DN(theU, theV, theNu, theNv);
|
|
|
|
D += aSign * myOffset * CSLib::DNNormal(theNu, theNv, DerNUV, OrderU, OrderV);
|
|
return D;
|
|
}
|
|
|
|
|
|
void GeomEvaluator_OffsetSurface::Bounds(Standard_Real& theUMin, Standard_Real& theUMax,
|
|
Standard_Real& theVMin, Standard_Real& theVMax) const
|
|
{
|
|
if (!myBaseSurf.IsNull())
|
|
myBaseSurf->Bounds(theUMin, theUMax, theVMin, theVMax);
|
|
else
|
|
{
|
|
theUMin = myBaseAdaptor->FirstUParameter();
|
|
theUMax = myBaseAdaptor->LastUParameter();
|
|
theVMin = myBaseAdaptor->FirstVParameter();
|
|
theVMax = myBaseAdaptor->LastVParameter();
|
|
}
|
|
}
|
|
|
|
|
|
Standard_Boolean GeomEvaluator_OffsetSurface::ReplaceDerivative(
|
|
const Standard_Real theU, const Standard_Real theV,
|
|
gp_Vec& theDU, gp_Vec& theDV,
|
|
const Standard_Real theSquareTol) const
|
|
{
|
|
Standard_Boolean isReplaceDU = theDU.SquareMagnitude() < theSquareTol;
|
|
Standard_Boolean isReplaceDV = theDV.SquareMagnitude() < theSquareTol;
|
|
Standard_Boolean isReplaced = Standard_False;
|
|
if (isReplaceDU ^ isReplaceDV)
|
|
{
|
|
Standard_Real aU = theU;
|
|
Standard_Real aV = theV;
|
|
Standard_Real aUMin = 0, aUMax = 0, aVMin = 0, aVMax = 0;
|
|
Bounds(aUMin, aUMax, aVMin, aVMax);
|
|
|
|
// Calculate step along non-zero derivative
|
|
Standard_Real aStep;
|
|
Handle(Adaptor3d_HSurface) aSurfAdapt;
|
|
if (!myBaseAdaptor.IsNull())
|
|
aSurfAdapt = myBaseAdaptor;
|
|
else
|
|
aSurfAdapt = new GeomAdaptor_HSurface(myBaseSurf);
|
|
if (isReplaceDV)
|
|
{
|
|
aStep = Precision::Confusion() * theDU.Magnitude();
|
|
if (aStep > aUMax - aUMin)
|
|
aStep = (aUMax - aUMin) / 100.;
|
|
}
|
|
else
|
|
{
|
|
aStep = Precision::Confusion() * theDV.Magnitude();
|
|
if (aStep > aVMax - aVMin)
|
|
aStep = (aVMax - aVMin) / 100.;
|
|
}
|
|
|
|
gp_Pnt aP;
|
|
gp_Vec aDU, aDV;
|
|
// Step away from currect parametric coordinates and calculate derivatives once again.
|
|
// Replace zero derivative by the obtained.
|
|
for (Standard_Real aStepSign = -1.0; aStepSign <= 1.0 && !isReplaced; aStepSign += 2.0)
|
|
{
|
|
if (isReplaceDV)
|
|
{
|
|
aU = theU + aStepSign * aStep;
|
|
if (aU < aUMin || aU > aUMax)
|
|
continue;
|
|
}
|
|
else
|
|
{
|
|
aV = theV + aStepSign * aStep;
|
|
if (aV < aVMin || aV > aVMax)
|
|
continue;
|
|
}
|
|
|
|
BaseD1(aU, aV, aP, aDU, aDV);
|
|
|
|
if (isReplaceDU && aDU.SquareMagnitude() > theSquareTol)
|
|
{
|
|
theDU = aDU;
|
|
isReplaced = Standard_True;
|
|
}
|
|
if (isReplaceDV && aDV.SquareMagnitude() > theSquareTol)
|
|
{
|
|
theDV = aDV;
|
|
isReplaced = Standard_True;
|
|
}
|
|
}
|
|
}
|
|
return isReplaced;
|
|
}
|